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Abstract

Subharmonic generation is a complex nonlinear phenomenon which can
arise from nonlinear oscillations. bifurcation and chaos. It is well known that
single input single output Volterra series cannot currently be applied to model
svstems which exhibit subharmonics. A new modelling alternative is intro-
duced in this paper which overcomes these restrictions by using local multi-
ple input single output Volterra models. The generalised frequency response
functions can then be applied to interpret systems with subharmonics in the

frequency domain.

1 Introduction

The steady-state output of a linear system driven by a sine wave will consist
of a sine wave of the same frequency but with a different amplitude and phase.
Nonlinear systems driven by a sine wave mayv produce new frequency components.
including components at integer multiples of the input frequency called harmonics. or

new frequency components at fractions of the input frequency. called subharmonics.

Subharmonics are an important practical problem in the dynamics of nonlin-
ear systems and are particularly evident in mechanical systems. In many industrial
fields an important issue is the possibility of controlling subharmonics. Examples
of real situations in which subharmonic generation can be a critical problem are
given for example in Lefschetz [1956]. Nayfeh and Mook [1979]. Ishida et al [1992]
or Ishida [1994.. A theoretical interest in studying subharmonics emerged over the
last few decades from the connection between chaos and subharmonics. It has been

noticed [Feigenbaum. 1930] that subharmonic generation is the first step on the




route to chaos. Therefore studying subharmonics may provide more insight into the

phenomenon of chaos.

Motivated by the theoretical and practical importance of subharmonics a lot
of research has been carried out during the past few vears. Subharmonic oscillations
have been studied not only in nonlinear vibrations theory. but also in the context
of nonlinear systems. dynamical systems applications and control {Thompson and
Stewart. 1991].

tial geometry and topological vector spaces, especially when the subharmonics are

Very often the tools employed for analysis belong to the differen-

associated with bifurcations and chaos [Guckenheimer and Holmes. 1983]. The lit-
erature devoted to this subject is therefore extensive. However a svstematic theory

on subharmonic oscillations does not seem to exist.

In the present paper the main objective is to introduce a new way of mod-
elling and interpreting systems which exhibit subharmonics. It is well known that
single input single output (SISO) Volterra models cannot currently be used to model
svstems which can produce subharmonic oscillations. A new modelling approach is
introduced in this paper which overcomes these restrictions by using local multiple
input single output (MISO) Volterra models. The advantage of the new approach
is that all the existing knowledge regarding the interpretation. analysis and prop-
erties of Volterra models can be applied to reveal new insights into subharmonic
syvstems. In particular the Generalised Frequency Response Functions (GFRF's)
which are the frequency domain equivalents of the Volterra kernels can be used to

study subharmonic systems in the frequency domain.

After introducing the main definitions and properties for subharmonic oscil-
lations in Section 2. an overview of the current methods used in the analysis and
modelling of subharmonics is given in Section 3. In Section 4 a new modelling
methodology is introduced for subharmonic systems. based on multiple input single
output {MISQ) Volterra series. This methodology is applied to the Duffing oscil-
lator. The particular case of the Duffing oscillator has recently been analvsed in
Billings and Boaghe [1999]. where the Response Spectrum Map was introduced.

which can reveal the presence of subharmonic oscillations.

The simulation examples described in this paper show that combining sub-
harmonic modelling with the nonlinear GFRF s or transfer function generation may
indeed reveal new features of a system exhibiting subharmonics. The new mod-
elling principle is expected to improve the understanding of the complex problem of

subharmonic and chaos generation.




2  Definitions and terminology .

Nonlinear systems in the presence of forced oscillations and under suitable
conditions admit subharmonics as a steady-state solution. Subharmonics are com-

ponents where the frequency is an integral submultiple of the driving frequency.

Subharmonic oscillations have been encountered in many tvpes of systems.
including systems which are parametrically excited, stationary or non-stationary.
Subharmonics have been detected in both nonlinear discrete systems with finite
degrees of freedom and in continuous systems (beams. strings, plates. membranes)

with infinite degrees of freedom.

Many terms have been associated with subharmonic phenomenon. including
frequency demultiplication ([Stoker. 1957]. [Nayfeh and Mook. 1979]]). subharmonic
resonance ([Nayfeh and Mook. 1979]. [Thompson and Stewart. 1991]). and sub- .
harmonic oscillation ([Stoker. 1957]. [Cunningham. 1953]. [Thompson and Stewart,

1991]. [Rao, 1995]). :

The term subharmonic resonance is also used in the literature in conjunc-
tion with Volterra series response functions. Schetzen [1980. p.152] remarked that
nonlinear Volterra systems can have subharmonic resonances. where a subharmonic
resonance refers to the local maximum of the output spectrum. appearing when
the nonlinear system is excited with a fraction of the fundamental frequency of
oscillation. The usage of the term subharmonic resonance in this context is there-
fore confusing. especially because subharmonic resonances meaning subharmonic
oscillations, can not be generated by Volterra series. while subharmonic resonances
described by Schetzen exist only for Volterra systems. An example of a subharmonic

resonance is given in Billings and Boaghe [1999].

3 Subharmonic analysis and modelling

Subharmonic analysis belongs to the more general and vast realm of nonlinear
oscillations. For nonlinear oscillations explicit solutions of the differential equations
describing the system in terms of elementary functions are not alwayvs possible. In
spite of this. geometric interpretation of the differential equations is often undertaken
and useful information of a qualitative character can be obtained. However the
geometric interpretation can not be applied for very complex svstems where various

analytic approximation methods of a more quantitative character are employved.
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3.1 Quantitative analysis of subharmonics

The problem of determining the amplitude and frequency of weakly non-
linear oscillators dates back at least to Duffing [1918]. Since then several methods
have been developed. such as the describing function method, the harmonic balance

method. the method of multiple scales. and the averaging or perturbation method.

The describing function and harmonic balance methods are known to incor-
rectly predict oscillations in systems where there are none [Nayfeh and Mook. 1979].
The multiple scales and averaging methods allow the calculation of the amplitude
and frequency of the response oscillations to any degree of accuracy, but extremely
complex calculations are involved for orders of nonlinearity greater than two [Nayfeh
and Mook. 1979]. Lindstedt’s perturbation method gives only the periodic solution
[Rao. 1993].

Lindstedt’s perturbation method has been used by many authors to predict
the possible appearance of subharmonics in the solution a nonlinear differential
equation. Cunningham [1938] applied this method to the Duffing equation without
dissipation and found that in certain cases subharmonics can be generated if the
frequency of the input signal is at an integral multiple of the fundamental frequency

of oscillation.

The iteration method can also be used to derive the conditions of existence
for subharmonics. Stoker [1957] has found that in the case of a syvstem described by

the Duffing equation with dissipation

it wey 4+ ay + 3y° = Acos(wt) (1)
if the external force amplitude A is prescribed and the parameters c. a. 3 are given,
a third order subharmonic exists for
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The subharmonic vibration results from a bifurcation from the harmonic solution
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A different approach is considered in Navfeh and Mook [1979] in which the
method of multiple scales is applied. Third order subharmonics are derived also for

the system described by the Duffing equation with dissipation

U+ 2epy + wly + eay® = Acos(wt) (3)




Subharmonic approximate solutions are obtained if the following condition is fulfilled

where w = 3wy + €0, A = 2L and ¢ is a small parameter, ¢ < 1. It is also found

]
Wy T

that a and o should have the same sign and A? < e

More recently some other methods were developed for the analysis of subhar-
monic oscillations, based on classical methods of analysis. In a review paper Ishida
[1994] summarises some of the various numerical and analvtical methods to study
steady-state responses of subharmonic oscillations. Ishida describes the subharmonic
oscillations observed in gas-turbine engines and in the high-pressure turbo-pump of

the space shuttle main engine.

A frequency domain method of analysis was used in Ishida et al [1992] to

-

analyse non-stationary subharmonic oscillations in a rotating shaft. An improved- p

averaging scheme to calculate approximate solutions of the main resonance and
subharmonics, using Floquet theory. was proposed in Tsuda et al [1992]., where
the difficulty of obtaining analytical approximate periodical steadv-state solutions
with high accuracy for oscillating systems was emphasised. A class of relaxation
algorithms has recently been proposed in Frey and Norman [1992] and Frey [1993] for

the efficient analysis of both non-autonomous and autonomous oscillating svstems.

It is also interesting to mention an application of Volterra series to nonlinear
oscillations. Chua and Tang [1982] derived a method to determine the frequency
and amplitude of the fundamental harmonic. for a nonlinear autonomous oscillating
system. using Volterra series. The method is of interest in this context because it
represents the first rigorous application of the Volterra series to nonlinear oscilla-

tions.

3.2 Qualitative analysis of subharmonics .

The geometrical approach adopted during the last two decades provides use-
ful insight into the realm of nounlinear oscillations. of a qualitative nature. based
on the geometrical and topological properties of differential equation solutions and
iterated maps. Methods from dynamical systems and bifurcation theories have heen
applied in the analysis of nonlinear oscillations. Issues such as existence and unique-

ness of the differential equations. Poincaré Maps and structural stahility, also became




related to nonlinear oscillations.

A dynamical system can have a rich variety of solutions: periodic. quasi-
periodic or chaotic. It is also common in nonlinear systems to have different co-
existing steady-state solutions, or to have several periodic and chaotic motions for
the same parameter values but with different initial conditions. As pointed out in
Soliman and Thompson [1992], where there is more than one solution coexisting
at the local bifurcation. a simple jump to resonance may become indeterminate in
the sense that it is not possible to predict onto which solution the syvstem will set-
tle. Prediction of such behaviour can be made in a qualitative manner using the
Poincaré Map. the Bifurcation Diagram or the Response Spectrum Map [Billings

and Boaghe. 1999].

In the case of a non-autonomous system. such as the Duffing equation consid-
ered in the next section. the Poincaré Map is equivalent to sampling the trajectory
of the solution at a rate equal to the forcing frequency [Parker and Chua. 1989].
Fixed points and closed orbits indicate a periodic solution. A fixed point of the
Poincaré Map corresponds to a period-one solution and a k-periodic closed orbit

corresponds to a kth-order subharmonic,

The Bifurcation Diagram can be seen as a succession of compressed Poincaré
Maps. providing a graphical representation of the bifurcation phenomenon, when a
certain parameter is varied. The term bifurcation was originally used by Poincaré
to describe the point where equilibrium solutions split into a family of differential
equations. The bifurcation concept is therefore related to structural stability. The
stability of a fixed point in a discrete system is determined by the eigenvalues of
the first derivative of the map evaluated at that point. Bifurcations occur when
the linearised map is degenerate, in other words when at least one eigenvalue of the
discrete map has unit modulus [Guckenheimer and Holmes. 1983]). When the system
parameters are varied the eigenvalue mayv pass through the unit modulus value. at

which point a bifurcation occurs.

The case in which the eigenvalue of a fixed point has the value —1 is a special
case. The eigenvalue —1 is associated with flip bifurcations. also referred-to as period
doubling or subharmonic bifurcations. If the subharmonic is unstable. subharmonic
bifurcations are continuously generated. this phenomeuon is called a period doubling
cascade. or period doubling route to chaos. Sometimes the motion found at the end
of the period doubling cascade is no longer periodical. but chaotic. In some other

cases a reverted period doubling cascade is produced. Therefore period doubling

G




may be a first indication that the system is becoming chaotic.

The Poincaré Map and the Bifurcation Diagram are qualitative descriptors of
the system dynamics in the time domain. In the frequency domain a similar means of
analysis is the Response Spectrum Map [Billings and Boaghe. 1999]. The Response
spectrum Map can be seen as a projection of the information in the Bifurcation
Diagram into the frequency domain. While the former provides information about
the intersection point in the time domain of the flow with a certain plane when a
parameter is varied. the latter gives information about the response power spectrum
in the frequency domain. The Response Spectrum Map can therefore be used to

identify the various states of a svstem such as subharmonics and chaos,

In conclusion the identification and analysis of steady-states with subhar-
monics is a difficult task. Studies of these effects often require a good mastery of
dynamical systems techniques and of topological and bifurcational procedures. In a

few cases anal\tlc approximate methods can be applied with success.

3.3 Modelling subharmonics

A central issue in system theory is svstem modelling. In general system
models can be classified as being either implicit or explicit. Differential or difference
equation models are an example of implicit models in which the svstem response
is expressed as an implicit operation on the system input. as opposed to explicit
models where the operation on the system input is explicit.  An example of an

xplicit model for nonlinear systems is the Volterra series representation.

System modelling is also an important problem for nonlinear svstems with
subharmonics. Modelling subharmonics with explicit and implicit tvpes of mod-
els has heen reported in the literature. In particular. modelling with the explicit
Volterra series was considered as an exciting alternative, given all the advantages
of the Volterra series approach. The periodic steady stated theorem formulated in
[Bovd et al. 1984] provides a time domain equivalent of the fact that Volterra series
cannot represent systems with subharmonics. by proving that Volterra nonlinear
svstems respond in the time domain to a periodic excitation with a periodic output

with exactly the same period:

Theorem 3.1 [Periodic steady state theorem] If the input of a nonlinear system
described by a Volterra series operator N is periodic will, period T fort > 0. then

the output Nu approaches a steady state. which is also peviodic wilh period T




Moreover Volterra series represent or approximate time-invariant nonlinear

systems with fading memory. Fading memory is related to the concept of a unique
steady state and independence from the initial conditions [Boyd and Chua. 1985].
For a subharmonic oscillation to exist in a physical system initial conditions are cru-
cially important. In other words svstems with subharmonics have infinite memory

and therefore they do not belong to the Volterra class of svstems.

The implicit differential or difference equations have proven to be more suc-
cessful in modelling nonlinear systems with subharmonics. In fact it has been argued
[Pearson. 1994] that the key feature required in nonlinear models capable of generat-
ing subharmonics is recursion: the present output must depend on previous outputs
and not just on the past history of the inputs as in the Volterra model. However,
the implicit model provides no insight into the internal svstem mechanism in the

way Volterra models do.

In the next section a new methodology is proposed in an attempt to overcome
several restrictions associated with existing methods for modelling systems with
subharmonics. The new approach is based on using MISO Volterra models and
will be illustrated using the Duffing oscillator. The new models are then further
analysed in both the time and the frequency domain to illustrate the simplicity and

advantages of the new approach.

4 Modelling subharmonics with
MISO Volterra series

As concluded above, it is impossible to model subharmonics with single input
single output (SISO) Volterra series. because Volterra series respond to a periodic
excitation with a periodic signal with the same period. But if the given input could
be modified somehow to create an input with a period equal to the subharmonic
oscillation. Volterra series modelling could be applied. In this section the possibility
of modelling subharmonics with multiple input single output (MISO) Volterra series

is investigated for the first time.

It 15 well known that initial condirions are crucially important for a subhar-
monic to exist in a nonlinear svstem. Consequently sublarmonics cannot be pro-
duced in a \olterra svstem. where the dependence on the initial conditions gradually

facdes out. However. local Volterra series can be derived for a particular steadyv-state




of the system. If a local Volterra series representation exists for a state of the system
which features subharmonics, then the local Volterra series will not be expected to
be equal to another local Volterra series. corresponding to a different state of the

system.

The modified input which could be used for Volterra series modelling of a
subhiarmonic should have the same period as the subharmonic. If the subharmonic
considered for modelling has the period n times the original input period T, a
modified input up.q should have the period n times the real input period. The
modified input can then be considered to be n-dimensional. Yinod = [thigs « WiTs ool

with the ith component u; taken as

0 tel0:T)

u(t) t€[(i—1)T:iT)
0 teiT:(i+1)T)

0 te[(n—-1)T:nT)

Consequently. for the individual components u;(t) it can be verified that

ur(t) + .o w(t) + .o+ uglt) = ult) (6)
and ui(t) = uy(t —17) (7)

To allow for MISO Volterra modelling. the svstem which generates subhar-
monics in the steady state y when excited with the input u should have the internal
structure given in Figure 1. The information required for modelling is the order n
of the subharmonic and the period 7" of the imput signal v. This information can be
readily obtained by analysing the system. in the form of a given model or from a svs-
tem identification study (eg. a NARMAX model) using a Bifurcation Diagram and
a Response Spectrum Map. This was illustrated in the examples given in Billings

and Boaghe [1999] and will be used in the examples below.

The system given in Figure 1 (a) is composed of a time multiplexor M and
a MISO syvstem S. The time multiplexor generates the n-dimensional nput Upy,,q =
(it .. u,]. based on the original input u(t). the subharmounic order n and imput
period 7. The modified input w . is applied to the svetem S. for which the output
is the subharmonic y(¢). For the system S both input u,,.; and output y have the
period nT. therefore a local MISO Volterra model can be identified directly from

the data generated from the simulation.
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of the system. If a local Volterra series representation exists for a state of the system
which features subharmonics, then the local Volterra series will not be expected to
be equal to another local Volterra series, corresponding to a different state of the

svstem.

The modified input which could be used for Volterra series modelling of a
subharmonic should have the same period as the subharmonic. If the subharmonic
considered for modelling has the period n times the original input period T, a
modified input u,,.,; should have the period n times the real input period. The
modified input can then be considered to be n-dimensional. U = (13 + SUT ],
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Consequently. for the individual components u;(¢) it can be verified that

ur(t) + oo Fwlt) + .o+ un (1) = u(t) (6)
and ui(t) = uy(t —iT) (7)

To allow for MISO Volterra modelling. the svstem which generates subhar-
monics in the steady state y when excited with the input u should have the internal
structure given in Figure 1. The information required for modelling is the order n
of the subharmonic and the period T of the input signal u. This information can be

readily obtained by analysing the system. in the form of a given model or from a sys-

tem identification study (eg. a NARMAX model) using a Bifurcation Diagram and

a Response Spectrum Map. This was illustrated in the examples given in Billings

and Boaghe [1999] and will be used in the examples below.

The system given in Figure 1 (a) is composed of a time multiplexor M and
a MISO svstem S. The time multiplexor generates the n-dimensional IMput wpy,,¢ =
[upi.. . tuy]. based on the original input u(t). the subharmonic order n and input
period T. The modified input w,,., is applied to the svstem S. for which the output
is the subharmonic y(t). For the system S both input w, .y and output y have the
period nT. therefore a local MISO Volterra model can be identified directly from

the data generated from the simulation.
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Figure 1: Internal structure of a nonlinear system generating subharmonics for
modelling with (a) MISO Volterra series (b) MISO Volterra series without cross-

product u;u; terms

To simplify the internal system mechanism the Volterra series to be derived
can be prevented from containing cross-product terms of the type Uity 2 F J. 850
that individual contributions from every input u; can be separated in the Volterra
model. If individual contributions at the input are separated. the system S in Figure
1 (b) can be decomposed into n independent subsvstems Sj.. ... S,. one for every
individual input u;. In this case the MISO Volterra model will not contain cross-
product terms between inputs and the generalised frequency response functions can

then easily be derived for the individual subsystems S..

To summarise, the modelling procedure is given below:

1. Detect a subharmonic steady state using the Bifurcation Diagram for
a simulated implicit difference or differential equation. or any other

model form.

0

. Identify the order n and the period of oscillation »T of the sub-
harmonic y(). by visual inspection or using the Response Spectrum
Map.

1. Generate an n-dimensional modified input w4 based on the original
mput u(?). using a time multiplexor.

iv. Identifv a MISO discrete-time Volterra model for the svstem with

output y(t) and the n-dimensional modified input w 4.

The methodology given above for modelling with MISO Volterra series will
be applied in the next section to the Duffing equation. where subharmonics can
be generated for example by the Duffing-Ueda or Duffing-Holmes cases. For both
cases the input considered is a periodic sine wave. however the modelling procedure

given above is not limited to sine waves. The Volterra series are obtained in the

10




time-domain as MISO models based on just the input or exogenous variables. and

the Volterra kernels are further analysed in the frequency domain.

To illustrate the ideas in the simplest way all the examples below start from
an assumed known differential equation model of the svstem. But the method is
based on simulations of the system model for the nput u,,,; and can therefore be
Just as easily applied to an identified NARMAX. neural network or any other mode]

that represents the system.

4.1 Example 1: Duffing-Ueda equation

In this example the Duffing equation is considered in the form also known
as the Duffing-Ueda model
J+ky+y° =u(t) (8)

For the present analysis the Duffing-Ueda equation (8) was simulated for & = 0.1
and u(t) = Acos(t). where 0 < 4 < 12. A fourth-order Runge-Kutta algorithm with
an integration interval of 7/3000 was used to simulate the response of the system to
the sinusoidal input. The input and output signals were further sampled at periods

of Ty, = 7/60 sec.

For this equation various dynamic regimes were noticed. for different ampli-
tudes of the input signal. The Bifurcation Diagram and the Response Spectrum
Map. for a varying amplitude A of the input signal u(t) = Acos(t). are given in
Figure 2. The Response Spectrum Map shows that the frequency of the sinusoidal
input f = _,% = 0.159H: is present for all input values 4 and that subharmonic
generation is evident for certain sets of amplitude values. In this example the sub-

1 _ 1

harmonic of order + = 5 at 0.033H z obtained for amplitude 4 = 6 in the model (3)

will be considered.

In order to derive a Volterra MISO model a modified input is produced. The
modified input is generated from the original input signal. knowing the order of the
subharmonic n and the time period 7. Both n and T parameters can be readily
obtained from the Response Spectrum Map given in Figure 2. For the amplitude
value 4 = 6. the order is n = 3 and the time period is T = 7/60secs. Figure 3 shows
the original input u and the modified 3-dimensional input. with the components uy.
uz and uz. By inspecting the waveforms given in Figure 3. the relations given in (6)

and (7) can be easily verified.

For a system with the input [u,: us: us] a discrete-time MISO Volterra model

11
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Figure 2: Bifurcation Diagram and Response Spectrum Map (plan view) for the

Duffing-Ueda equation (8)

was identified. In the present study the MINO Orthogonal Least Squares (OLS)
method [Billings et al. 1989] was applied but there are several alternatives. The
main advantage of the OLS method is that it can automatically select the terms in
the model. Notice that because the MISO consists of a set of Volterra models which
only involve the inputs. bias which can be induced by noise should not be a problem

and the estimation is therefore relatively straightforward.

Volterra models with 3. 5 and 7 orders of nonlinearity were estimated, provid-
ing correspondingly increased degrees of accuracy. For a 3rd order of nonlinearity

the model predicted output was already very good. therefore the model selected for
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Figure 3: Modified input signal [u;: us: uz] with the components (a) uy: (b) uq: (¢)

uz and (d) original input

further analysis was a 3rd order MISO Volterra model

(k) = =0.6683 + 1.6766u;(k — 3) + 0.8832ui(k — 3) — 1.468%3u, (k — 1) +

+ 0.0213uj(k — 1) - 0.0239u3(k — 3) + 0.0048u; (k — 1)ud(k - 2) +

+ 0.3323uj(k — 1) — 1.1966u; (k — 1)us(k — 3) (9)
y2(k) = 0.0195u3(k — 3) — 1.2882uj(k — 3) — 1.0715ua(k — 3) — 1.0424ud(k — 1) +

+ 2.368Tuz(k — L)uz(k — 3) — 0.0202u3(k — 1) + 1.4514uy(k — 1) (10)
ya(k) = —0.9846u3(k — 3) + 0.6732us(k — Lui(k —3) —0.1331us(k - 3) +

+  0.7935us(k — 1) + 1.0905ua(k — 1)us(k — 2)us(k — 3) + 5.7359u3(k — 3) +

+ 6.0159u3(k — 1) — 11.754us(k — 1)uz(k — 3) — 0.7903u3(k — 1) (11)

where
y(k) = (k) + yalk) + ya(k) (12)

It should be noticed that according to the general internal structure given
in Figure 1 (b). the model has no cross product input terms (no terms of the tyvpe
wiuz). therefore the identification procedure is easier. and consists of fitting 3 SISO

Volterra models which are further combined to give the system output.

The model predicted output is plotted in Figure 4. where it can be compared

with the original output. Thev match almost exactly and some nmprovement is




step

Figure 4: Model (12) predicted output (dashed line), original output (solid line),

and input signal

obtained for an increased order of nonlinearity. In Figure 4 the original input signal

is also shown. with a period 3 times smaller than the resulting subharmonic.

[t is important to emphasise that one single Volterra model cannot represent
this system and any attempt to find such a model results in very poor model pre-
dictions. But by using the Response Spectrum Map to determine an appropriate
input and then by estimating in this case three single input single output models
and combining these gives the final MISO Volterra representation. The result is that
now the MISO model should be an excellent representation of the svstem with the
advantage that the properties, analysis and interpretation of this model can now be
studied using all the methods developed for Volterra systems. But now these can

be applied to severely nonlinear systems and to study subharmonic phenomena.

The Volterra kernels of the MISO model (9)-(11) can now be analysed in
the frequency domain. There are no cross-product terms between individual input
components. and the model (12) can be considered to be composed of 3 independent
submodels. one for each input component. By applving the probing method to the
submodels (9)-(11). following the methodology given in Peyvton Jones and Billings
[1989] the Generalised Frequency Response Functions are derived next. one for each
submodel. There will be 3 different linear functions H,(j.). 3 different functions

Hy(jwr. jwa). etc. The linear functions H,(jw) are given in Figure 3.
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Figure 5: Generalised Frequency Response Function H,(j«) for (a) u;. (b) ua, (¢)

uz 11 equation (12)

For all input components the functions H, () have the same parabolic shape
for the magnitude. with different maximum values at the normalised frequency f; =
0.25 (corresponding to 9.54H=z). The functions Hy(jw.jws) are given in Figure 6,
together with the plan images. These also have a similar shape, with a maximuni
it f1 = fa =10.25.

The functions Hj(jw, jws. Jws) are represented in Figure 7. for the section
f1 = fs. Again the first two of these have similar features. with high magnitudes
for fi + f2 + fa = 0.25 the normalised frequency (corresponding to 9.54Hz). and a
minimum magnitude for f; + f; + f3 = 0. Only for the third subsystem are the lines
somewhat distorted, showing high magnitude for fi + f, + f3 = 0 and a minimum
magnitude on the frequency lines f; + f2 + f3 = 0.25. which is the direct opposite

to the first two third order frequency response functions.

4.2 Example 2: Duffing-Holmes equation

In this section the Duffing equation is considered in the form also known as

the Duffing-Holmes model
§4+ 157 —y+y® = Acos(t) (13)

This equation was simulated using a fourth-order Runge-Iliutta algorithm with an
integration interval of 7/15. for an amplitude 4 varying in the range 1 < 4 < 1.6,
The Bifurcation Diagram and the Response Spectrum Map given in Figure 8 show

cascades of period doubling, for different amplitudes of the input signal varying in
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(a) H21 (b) H22 (c) H23

: ! 0.5
f2 f2 f2
Figure 6: Generalised Frequency Response Function Hy(jwy. juws) for (a) us. (b) us,

(¢) us in equation (12)

(a) H31 (b) H32 (c) H33

SR e
0.5
f2
Figure 7: Generalised Frequency Response Function Hs(jw,. juws. juy ) for (a) uy. (b)

uz. (¢} usz in equation (12)
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the range 1 < 4 < 1.6. In this example the subharmonic of order + = 5 at 0.089H =

i

=

obtained for amplitude .4 = 1.2 in the model (13) will be considered.

1 1.4 1.2 1.3 1.4 1.5 1.6
A

Figure 8: Bifurcation Diagram and Response Spectrum Map (plan view) for the

Duffing-Holmes equation (13)

As in the previous example, a modified input is produced first. The modified -
nput is generated from the original input signal. knowing the order of the subhar-
monic n and the time period T. By examining the Response Spectrum Map given
in Figure 8. the parameters n and T can be obtained. For the amplitude value
A= 1.2 the order is n = 2 and the time period is T = 7/60secs. The original and

the modified 2-dimensional input signals are given in Figure 9.

For a system with the input [u): us] represented in Figure 9 a discrete-time

MISO Volterra model was identified. using the MIMO OLS method [Billings et al.
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VR

step

192
Figure 9: Modified input signal [u;; us] with the components (a) uy: (b) uy and (c)

original input

1989]. The Volterra model selected had a 3rd order of nonlinearity and no cross

product input terms (no terms of the type u;u,)

yi(k) = 5.6235uy(k — 3) — 0.0859u3(k — 3) + 2.9122u; (k — 1) — 0.0833u3(k — 1) +

+  5.7643u1(k — 2)ug(k — 3) — 12.0268u;(k — 1)uy (k= 2) — 7.9389u, (k = 2) +

+ 5.7980ui(k — 1) — 3.0893ul(k — 3) + 3.6287u?(k — 2) (14)
y2(k) = 14.6176ua(k — L)ua(k — 2) + 6.6054u3(k — 3) + 6.0183uy(k — 3) —

— 10.1978uz(k — 2) 4+ 0.4071ug(k — 2)ud(k — 1) — 7.8590u3(k — 1) + 0.4472 —

—  13.5093us(k — 2)ua(k — 3) — 0.3316u5(k — 1) + 4.0732uy(k — 1) (15)
where

y(k) = yi(k) + ya(k) (16)

As in the preceding example, the model predicted output was estimated and
used for model validation. Figure 10 shows a good agreement between the original
and the estimated output. In Figure 10 the original input signal is also shown. with

a period 2 times smaller than the resulting subharmonic.

The Volterra model (16) has no cross-product terms between individual input
components. therefore the Volterra kernels can be further analysed in the frequency
domain. By applying the probing method to the submodels (14)-(13). following the

methodology given in Peyvton Jones and Billings [1989], the Generalised Frequency
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Figure 10: Model (16) predicted output (dashed line). original output (solid line).

and input signal

Response Functions are derived next. one for each submodel. The first order GFRF's

are given in Figure 11.

The functions H;(jw) have the same parabolic shape for both input com-
ponents. with different maximum values. of 24dB and 26dB respectively. at the
normalised frequency f; = 0.5 (corresponding to 2.38Hz). They are also similar
to the left hand side half of the functions Hi(jw) derived in the previous example,

given in Figure 3.

The functions H(jw,.jw,) are given in Figure 12. together with the plan
images. The shape of the functions Hs(jw;. jw2) are again very similar. Both func-
tions H,(jw;. jwz) have a maximum amplitude near f; = f, = 0.5 (corresponding
to 2.38Hz). of 27dB and 31dB respectively. and a minimum near the origin of the

mput frequencies.

The functions Hi(jw;. jws. Jws) are represented in Figure 13. for the section
fi = f5. For the first model the function Hi(jw;. jws. jwy) shows high magnitude
for fi + fo + fa = 0.5 normalised frequency. with a maximum value of —13d5.
and a minimum magnitude is produced when f; + f2 + f3 = 0.25. For the second
model the function Hi(jw;.jw;) shows a maximum magnitude of —2dB for f; =

f2 = f3 = 0.5 normalised frequency and a minimum magnitude is produced when

19
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(a) H11 (b) H12
30

20

10

-10
0 i
f1 f1

Figure 11: Generalised Frequency Response Functions Hy(jw) for (a) uy (b) us in

equation (16)

fi = f2 = f3 = 0. By comparing the maximum values of the Generalised Frequency
Response Functions it is apparent that the significance of the nonlinearities in the

model decreases with the order.

The frequency response functions obtained in both examples have graphical
representations with similar features. This may suggest that the H's previously
derived correspond not only to the local Volterra kernels. but they can also be related
to the original underlying svstem. which is the Duffing equation. and are therefore
a global feature. This idea will be the starting point for further investigations into

subharmonic analysis.

5 Conclusions

The objective of this paper was to investigate the modelling. analysis and
interpretation of nonlinear systems with subharmonics. After an introduction to
nonlinear subharmonic oscillations, various techniques for subharmonic analysis were
reviewed and possible ways of modelling subharmonics were discussed. It was found
that methods from system dynamies. topology. bifurcation theory and nonlinear

oscillations can be applied to subharmonic analvsis and modelling.

A new modelling approach was introduced based on a MISO Volterra series
model representation. The advantage of this approach is that it is relatively simple
to apply and once the model has been obtained all the well known methods of

analysis for Volterra series, which have until now been restricted to mildly nonlinear
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Figure 12: Generalised Frequency Response Functions Ha(j«1. jws) for input (a) up,

(b) uz in equation (16)

(a) H31 (b) H32
OW | 0 a
' , / -20
_58\//0—68
105 0 fe

05
fo

Figure 13: Generalised Frequency Response Functions Hi(jwr. jws. jw1) for input
(a) uy. (b) wy in equation (16)
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systems only. can now be applied to nonlinear systems which exhibit subharmonics.

The new approach was applied to modelling subharmonics associated with
various steady-states of the Duffing oscillator. and the GFRF’s of the MISO models
were used to analyse the system properties in the frequency domain. It was interest-
ing to find common characteristics in the GFRF representations for different local
subharmonics of the Duffing oscillator, suggesting that the GFRFs derived describe
some invariant features of the system and not just the local behaviour. This idea
will form the starting point for further investigations into the analvsis of systems

with subharmonics.
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