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Abstract

The identification of Probabilistic Cellular Automata (PCA) is studied using a
new two stage neighbourhood detection algorithm. It is shown that a Binary Prob-
abilistic Cellular Automaton (BPCA) can be described by an integer-parameterised
polynomial corrupted by noise. Searching for the correct neighbourhood of a BPCA
is then equivalent to selecting the correct terms, which constitute the polynomial
model of the BPCA, from a large initial term set. It is proved that the contribution
values for the correct terms can be calculated independently of the contribution
values for the noise terms. This allows the neighbourhood detection technique de-
veloped for deterministic rules in [16] to be applied with a larger cutoff value to
discard the majority of spurious terms and to produce an initial pre-search for
the BPCA neighbourhood. A multi-objective GA search with integer constraints
is then evolved to refine the reduced neighbourhood and to identify the polyno-
mial rule which is equivalent to the probabilistic rule with the largest probability.
A probability table representing the BPCA can then be determined based on the
identified neighbourhood and the deterministic rule. The new algorithm is tested
over a large set of 1-D, 2-D and 3-D BPCA rules. Simulation results demonstrate
the efficiency of the new method.

1 Introduction

Probabilistic Cellular Automata (PCA), which are refered to as Stochastic Cellular Au-
tomata (SCA) by some authors, are constructed by introducing probabilistic elements
into deterministic local CA rules. The probabilistic elements are generally regarded as a
form of noise, which unlike the classical definition of noise in other systems, 1s essential
in investigating the dynamical behavior of PCA’s. Deterministic CA’s can have a large
number of attractors, but the inclusion of noise can cause jumps between attractors and
leads to the selection of a small number of physical states [1]. Noise also plays an impor-
tant role in phase transitions when CA’s are employed as a modelling tool to approximate
both equilibrium and non-equilibrium systems.

PCA’s have been widely studied in recent years. The combined simplicity of PCA rules
together with the rich dynamical behavior exhibited in the spatio-temporal patterns pro-
duced in the evolution of these systems has attracted the attention of many researchers.
This has made the PCA a prototype in the study and testing of certain aspects of com-
plex systems including oscillations in reaction-diffusion processes [2], population growth
[3] and the spread of damage [4]. However, a review of the literature shows that the study
of PCA has largely been focused on simulating dynamical systems [5], [6], [7]. [8] and
investigations of the dynamical behavior revealed by PCA models [9], [10], [11], [12], [13].
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But the important problem of identification of PCA rules from given patterns of data
seems to have been largely ignored.

The identification problem consists of determining the probabilistic local transition rules
and the associated neighbourhood over which the rule is operated. from a given set of
spatio-temporal patterns generated by the PCA evolution. The identified PCA rule should
be parsimonious so that the rule set is as small as possible and the size of the neighbour-
hood is minimal. Only a few authors have studied this problem. In [14] a genetic algorithm
was designed in search for an appropriate probabilistic CA rule through a space of possible
PCA’s constructed over a number of dimensions. However, the neighbourhood selection
process was complicated and it was unclear if the neighbourhood obtained was minimal.
Both sequential and parallel algorithms were introduced in (15] for the identification of
PCA’s. The neighbourhood was found by incrementing the radius by one at each iteration
until a pre-formulated condition was satisfied. Although this produced small neighbour-
hoods the search process was not very flexible or efficient. The simulation results in [16]
suggested that the correct neighbourhood and local transition rules may still be obtained
under certain levels of noise when the GA search developed in the paper for deterministic
rules was applied. However, the rule space was constructed over the complete assumed
neighbourhood and this can involve an exceptionally large number of possible rules. and
the search time can be extremely long.

This paper considers Binary Probabilistic Cellular Automata (BPCA) and shows for the
first time that a class of BPCA can be described by simple integer-parameterised polyno-
mials corrupted by noise (the probabilistic elements). It is proved that the contribution
values for cell terms that define the neighbourhood can be calculated without a knowl-
edge of the noise. This is important because this will allow the neighbourhood detection
scheme developed in [19] for deterministic rules to be employed as a preliminary neigh-
bourhood detection tool in the presence of noise. By increasing the cutoff value for the
contributions the preliminary neighbourhood detection technique can be used to discard
most of the spurious terms included in the selected term set and therefore to produce a
much reduced neighbourhood. As a result the number of terms in the candidate term
set can be dramatically reduced. A multi-objective genetic algorithm with integer con-
straints is then introduced to refine the pre-selected neighbourhood to the minimum and
to find the polynomial that best represents the BPCA rule with the largest probability.
It is shown that the efficiency of the search is considerably improved because the genetic
algorithm now only has to search through the reduced candidate term set.

The paper is organized as follows. In Section 2 a class of BPCA's and the polynomial
representation are introduced. Section 3 discusses the preliminary neighbourhood selec-
tion process. A multi-objective GA with integer constraints Is constructed in Section 4
and Section 5 provides the simulation results and some discussions. Section 6 contains
the conclusions.

2 Probabilistic Cellular Automata

A binary probabilistic cellular automaton comprises a lattice of cells, each taking only 0 or
1 as the state, and a probabilistic local transition rule which specifies at any discrete time
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step the state of a cell as a function of the states in previous time steps of the cells within
a given neighbourhood. Some examples of PCA neighbourhoods are shown in Figure 1.
Note that these neighborhoods only involve cells from time step ¢t — 1 although BPCA
neighborhoods can take cells from various spatial and temporal scales. For simplicity,
this paper only considers neighborhoods composed of cells from time step ¢ — 1. but the
results are not restricted to this case.

NER R 2 7
(@) (b) (o)

Figure 1: Some examples of PCA neighbourhood (a) 1-D von Neumann neighbourhood
(b) 2-D von Neumann neighbourhood (c) a 3-D neighbourhood

The probabilistic local rule is composed of 2" (n is the size of the neighbourhood) rule
components, where each represents a possible state of the neighbourhood. The probabilis-
tic rule is constructed by specifving one or more (not all) of the rule components to be 1
or 0 with probability p (denoted as 1/p or 0/p respectively), and 0 or 1 with probability
(I —p) (denoted as 0/(1 — p) or 1/(1 — p) respectively) while the other components are
deterministic (0 only or 1 only). Varying the probability p between 1 and 0 leads to a tran-
sition from one deterministic rule (corresponding to p=1) to another rule (corresponding
to p=0). A typical rule of a 1-D 3-site BPCA with von Neumann neighbourhood is shown
in Table 1.

Table 1. An example of a 1-D BPCA

t—1: 000 001 010 011 100 101 110 111

. 1/p 1/p
0 N 765 B
This probabilistic rule causes a transition from Rule60 (following Voorhees' nomenclature
scheme [17]) to Rule40. It can be seen that the noise is added to RuleG0 through making
rule components 010 and 100 dependent on the probability parameter p. For Rule60. the
states that are governed by these two rule components are no longer exclusively updated
to 1 at time step ¢ but may be flipped to 0 with probability 1 — p. These flipped states
represent the noise.

3 Preliminary Neighbourhood detection

Determining the neighbourhood which defines the spatial and temporal connections that
specify the CA rule is an important first step in CA identification. Even complex patterns




can be generated from simple neighbourhoods and it is important to develop procedures
that can identify parsimonious CA model forms from CA pattern data. This problem
will be addressed in the following sections by introducing an algorithm which shows the
contribution that each term makes to the CA rule.

3.1 Representations of BPCA

Every deterministic binary CA rule with a neighbourhood {cell(xy), -, cell(z,)} of size
n can be expressed by a Boolean function of the form [16]

si(zj) =ao P ais(z))®--- @ av(s(zy) * - * s(x,)) (1)

where ' = 2" —1, z; is the cell to be updated, s(z;) is the state of cell(x;) at time step t—1,
sd(z;) is the next state in cell(z;) at time step ¢, and the subscript d is used to indicate
the rule is deterministic. a; (i =0, ---, V) are binary numbers and a; = 1 indicates that
the following term is included in the Boolean expression while a; = 0 indicates that the
following term is not included. @ and * denote XOR and AND operators respectively.
The XOR and AN D operators can be represented using the normal algebraic plus + and
multiplication x operators to give -

hl a hg = hl X hg, hl o hg = 11?,;_ + hg — 2f11 X h.g

Applying this to equation (1) shows that every binary deterministic CA rule with a
neighbourhood {ecell(x,),--,cell(z,)} can be represented by a polynomial of the form

sd(zj) = O1s(xy) + - Ops(zn) + - + Ovs(ar) x - x s(x,) (2)

where V' =2" —1 and 6, (i = 1,---,V) are integers.
According to the definition, a BPCA can be represented by
Galdy) with probability 1 — p; ,
qp(;tj): . " " 5 Wy ara (3}
I —sq(z;) with probability p,

where py = (1 —p) x p; (p > 0.5), p; is the probability with which the probabilistic
components will appear in the spatio-temporal pattern and the p subscript is used to
indicate that the rule is defined in terms of probabilities. p1 is related to and smaller than
p.

Equation (3) shows that a probabilistic rule is equivalent to the deterministic rule defined
by specifying all the probabilistic components to be 1. with a probability 1 — p; and the
conjugate deterministic rule constructed by assigning 0 to all the probabilistic components.
with a probability p;. Since sp(x;), sq(x;) and s(z;) (1 = 1.---.n) are all temporally
dependent. the probabilistic rule can also be viewed as a binary time series defined by (2)
where the data is corrupted by a time dependent noise signal which occasionally flips the
updated state. To make later discussions clearer, temporal symbols are introduced into
the notation and s,(2;), sq(x;) and 5(x;) (i = 1,---.n) can then be denoted as s,(x;: ).
sa(x;it) and s(xi;t — 1) (i = 1,---,n) respectively.
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The noise signal is defined as

n(t) = sp(zjit) — sq(aj;t) (4)

So that substituting (3) into (4) and using the new notation above vields

_ 0 l—p -
n(t) = { L == Sl 1) 2 1 (5)

It can be seen that n(¢) is a signal with only three states —1, 0 and 1 and the nonzero
states appear with probability p;.

The statistics of the noise signal are unknown and difficult to predict since the occurrence
of the nonzero states is dependent on the initial conditions and the evolution of the BPCA .
The noise signal can therefore be assumed to be nonstationary and nonlinear. According
to equation (26.3) in [18], 7(¢) can be expanded as

n(t) = gil€(t = 1), &(t — ny)) x Bi(t) + £(t) (6)
i=1
where the g;()’s (1 = 1,---,m,) are a set of nonlinear functions and £(¢) is a white noise

sequence. The nonstationary nature of n(t) is denoted by the temporal dependence of the
parameters §; (1 = L, v, ),

From the discussions above, every hinary probabilistic CA rule with a neighbourhood
{cell(z1),- -, cell(xn)} can be represented by

Sp(ajit) = 0ys(zy;t—1)+- clps(anyt—1)4 - +Oys(a;t—1) XeooxXs(xart—1)4+n(t) (7)

where V' =2" —1 and §; (: = 1,---, V) are integers.

Before moving on to the next section, the relationships between a cell. a neighbourhood,
a term and a CA rule need to be clarified. A neighbourhood is composed of one or more
cells. For example, the 2-D von Neumann neighbourhood in Figure 1 (b) consists of five
cells, cell(i +1,7), cell(z,5 — 1), cell(i,7), cell(i,j + 1) and cell(i — 1.5). An assumed
neighbourhood normally includes other cells that are not within the real neighbourhood to
be identified. A term is a product of the states of one or more cells within a neighbourhood.
A CA rule is constructed over one or more terms. The correct term set for a CA rule is
the collection of only those terms that define the CA rule. For example, 1-D Rule60 over
the von Neumann neighbourhood can be written as

sq(Jit)=s(j—Lit—1)+s(fit—1)—2xs(fj—1it=1) x s(j:t — 1)

The correct term set for this rule therefore consists of three terms s(j —1:t —1). s(j;t —1)
and s() — 1:¢t — 1) x s(j.:t —1).




3.2 Orthogonalization and the noise model

Equation (2) can also be expressed as

sa(xjit) =s(t—1) x d (8)
where B =
6=, 6, oy |
and
s(t—1) = [ stepd=l] o glpgi—1) = s{@ygh ~ 1) s walzat — 1) ]
Or in matrix form
Sqg = 5 % g (9)
where -
se= | sa(2ji1) sa(e;;2) - sz N) ]
#
S = [ sT(0) sT(1) --- sT(N —1) ] = [ 8; +:+ Sy }
Matrix S can be decomposed as S = E x Q, where
e1(0) ev(0)
E - = [ e, N 17 ]
el(N—1) -+ ey(N—-1)
is an orthogonal matrix.
ETXE:D-iag[efxel el xey ]

and Q is an upper triangular matrix with unity diagonal elements

[ 1 qi2 qi3 - qiyv
1 g3 -+ Gov
Q= R
I gvov
e 1 -

Equation (9) can then be represented as
si=ExQx0=Ex§ (10)

where § = Q x 0 = [y dv]T.




Equation (2) can therefore be expressed as

sd(;tj;t):Zei(t—l)x(}; (11)

Substituting (11) into (7) gives

"_f

sp(jst) = et — 1) x §; + () (12)

=1

The neighbourhood detection algorithm should be designed to select the correct neigh-
bourhood {ce!f (21), -, cell(xn)} from an initial large neighbourhood {cell(z,), - » el %),
celll Tuya )y~ + yeell(zy )} of size m. The algorithm pmposed in [19] selects the lelevant Vi
(V. < V) terms from the initial term set 18 i =100 Vi } (Vo = 2™ — 1) by calculating
the contribution

07 x el x e;

[ct]; =
‘ s;—f R 8p

(13)

each term s; in equation (9) makes to s,. This guarantees that all the correct terms are
in the assumed term set and without the corruption of noise, is able to select a correct
set of terms that represent the rule and cover the correct neighbourhood. However, terms
not included in the correct term set but constructed over cells within the neighbourhood
and terms constructed over cells out of the neighbourhood may also be chosen if noise
is introduced (see the simulated examples in Section 5). This means that the effects
of the noise can be restrained to two parts: inclusion of terms out of the correct term
set but constructed over cells within the real neighbourhood and terms constructed over
cells within the assumed neighbourhood but out of the real neighbourhood. Following an
analogous procedure as above but now for 7(t) vields

Vu Vo
1(t) = D el(t=1) x 07(2) + 3 _ed(t — 1) x 62(¢) + &(1) (14)

where the first and second sum represent the orthogonalized noise terms constructed over
cells within and out of the real neighbourhood respectively. The nonstationary nature of
n(t) exhibited in 3;(¢) in equation (6) is now expressed by the time dependence of §¥(¢)
and 0°(1).

3.3 The effects of noise on term contribution

The term contribution defined in equation (13) is important in the term selection process.
For deterministic rules the correct term set can be selected by calculating the contributions
[ct];. In this subsection the effects of noise on term contribution will be discussed.

Although all the terms of e;(t —1) x 0; (i = 1,---,V ) are present in equation (12) assume
that only V. < 17 define the correct BPCA model. The irrelevant terms are assumed to
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correspond to 6;’s which are zero in equation (7). Therefore equation (12) can be rewritten

as
Ve

sp(ajit) =D et — 1) x 6; + n(2) (15)

i=1

Squaring both sides of equation (13) and taking the expected value gives

Elsai )] = B3 ei(t — 1) x 0 +2 x BIS lt — 1) x 8) xcn(t)] + Bl()] (16)

Because the e;(t — 1)’s are orthogonal, e;( — 1) xej(t—1)=0 (i # j), and

vr v,
ei(t — 1) )]:E[Zef(z&—l)xéﬂ (17)

Substituting (17) into (16) yields

l JV ‘Vr 1 ‘.\f' -
f‘:Zbi(lj,tJ—Z-—r e?(t—l)x(ffzq (18)
N 5 it ¥ Ty
where
v,
T=2XE[(Q et —1) x 0;) x n(t)] + E[n*(2)] (19)
=1
Replacing n(¢) in (19) by (14)
Vi . Vi 5
v o= 2xE[(D et —1) x8;) x( ef(t —1) x 0¥ (¢ +Z (¢ =1) x 97(t) + £(¢))]
it | il

-

3
=

o

FE[(S et = 1) x 02() + " e2(t = 1) x (1) + (1))

i=1 i=1
T'rtu Vo
= 00404+ EQ (et = 1) x 67(2)" + 3 (ed(t — 1) x 82(1))° + (1)
. - 1 X v ) [N
= IZZ ef(t—1) x 0(8)* + = D00 (e2(t — 1) x B2())* + — S €2(2)
N &= o N =

Substituting v back into (18) produces

B wz, -0 %6 T AL - xdrw)? | T L ;H(f(z—l)xéfunf

F
_\’ ZL:I s5(zjit) %V : 15§(‘Uj§i) N Z::lsg(f;‘;f)

) 1 N
+5 2 € (20)

1 -

t=1




From the definition of [ct] in (13), equation (20) can finally be expressed as

v, W B 52
b= 2 letlf = 3o lellt = 3 (et + = (21)
=1 i=1 =1 Sp

where the subscripts and superscripts r, w and o are used to indicate the terms that
are in the real term set, the noise terms that are only related to cells within the correct
neighbourhood and the noise terms that are related to both cells within and out of the
correct neighbourhood. Equation (21) implies that the [ct] values for terms that are in the
correct term set ([ct]") and noise terms that are out of the correct term set but constructed
over cells within the correct neighbourhood ([ct]¥) can be calculated independently of the
noise terms that are constructed over cells out of the correct neighbourhood ([et]°). This
suggests that the neighbourhood detection algorithm in [19] can still be employed to detect
the neighbourhood. The problem is the cutoff point C,s; because any noise term which

has a [et]? value larger than 3;5— will be incorrectly included if Cyy is still set to 0 as in [19].

Ideally C,/s should be set to Y12, [ct]® + —“-— and learned online in order to determine the

appropriate cutoff and hence the exact couect term set. However, because the statistics
of n({) are unknown and the signal:noise ratio is 100 percent occurring with probability
p1, which makes it difficult to use conventional methods to minimise the effects of the
noise, it is not easy to calculate C,;; online. But equation (21) is still a valuable result
because even if the correct cutoff cannot be easily found the application of [¢t] can still
be employed to eliminate many inappropriate terms. However the test results in Section
5.1 suggest that the correct or almost correct neighbourhood can still be found if Cy; is
chosen within the range [0.05.0.1].

4 Rule selection using multi-objective GA’s with in-
teger constraints

The full neighbourhood search can be dramatically reduced by examining the terms se-
lected using [ct] in Section 3 above. Denote the selected terms as {sl;,---,sly,} and the
associated neighbourhood as {cell(z,), -, cell(z,)} (V) < 2*—1). The deterministic rule
which is equivalent to the probabilistic rule with probability 1 — p, can then be assumed
as

o
[ew]
~—

Sd(lfj)2915!1+---+91'ES[VU (:

where §; (1 = 1,---, 1) are integers.

Although the size of the assumed neighbourhood and the number of terms in the assumed
polynomial have both been considerably reduced, the noise effect is not completely elimi-
nated when using data extracted from BPCA patterns to determine the polynomial model
n (22). A further noise reduction technique is therefore required.

Equation (2) shows that the parameters in the polynomial model of a CA must be integers.
In fact a large number of simulation tests suggest that the parameters in the polynomial
model of a CA are often integers within a finite range, for example [—6,6]. This suggests




that it may be possible to find the correct equivalent deterministic rule from the noise
contaminated data by constraining the parameters to be integers within a limited range.
However most of the available optimization methods treat the variables as continuous
and are therefore not appropriate when the parameters are integers. Although some of
these algorithms may produce integer solutions by first solving the continuous problem
and then employing round-off techniques the solutions may be far from optimal. The
optimal integer solution can only be obtained by an exhaustive search. However, this is
impractical due to time and memory constraints even for small scale problems. Various
methods ([20], [21], [22]) have been designed to solve the integer optimization problem,
but each has drawbacks including low efficiency, limited reliability and becoming trapped
at a local optimum. Genetic Algorithms (GA) however seem to be appropriate and allow
integer constraints to be added to polynomial rule selection. GA’s will therefore be briefly
introduced in the following sections.

4.1 Population

The objective of the GA search is to select the appropriate terms from the reduced term
set, which has been determined using contribution [ct] in Section 3, and to determine the
associated integer parameters so that the resulting polynomial represents a parsimonious
model representation of the BPCA pattern.

Each term and associated parameter is represented by a 1 x u binary vector. The length
p is determined by the range of integer parameters which define the search space. For
example for 4 = 4 the mapping between the 1 x g binary vectors and the corresponding
integers is shown in Table 2. The leading 0 in the binary vectors denotes plus and the
leading 1 means negative.

Table 2. The relationship between the binary vectors and the corresponding integers

Binary vectors | Integers | Binary vectors Integers
[0000] 0 [1000] -0
[0001] 1 [1001] -1
(0010] 2 [1010] -2
[0011] 3 [1011] -3
[0100] 4 [1100] -4
[0101] 5 [2131] -)
[0110] 6 [1110] -6
[0111] T [1111] -7

For integer polynomial parameters of CA’s with a dimension under 4 our results suggest
that a range of [~6,6], 1 = 4 is large enough. If higher-dimensional or more complex
BPCA's are involved, j« may need to be increased to give 271 > max — min, where max
and min represent the largest and the smallest possible integer parameters respectively.
The length A of the binary GA chromosome can therefore be computed from A = wx V.
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The ith GA chromosome ¢; will be defined as a 1 x A binary vector so that starting
from the first bit, every p bits in the chromosome represent an integer parameter and
correspond to a term in equation (22):

Ci(]- : IU') = 5‘{1'. C;’(,U, + 1z 21”) P S"T'Z: e Ci((l'it - 1)!“‘ + 1 11:)“') — SI,IV“

If the jth parameter 8; (j = 1,---,V,) which is represented by ¢;(ju + 1 : (7 + D)y) is
identified as zero, then the corresponding term s/; is not included in Equation (22). Define

JF e [ sly sly - sly, ]

&
C:[Cl Cg = Cﬂp]

D=de(C)=[di do - du]

where np is the population size and de is the decoding function which maps the binary
vectors back to integers according to Table 1. The whole population C' is initialized by
assigning each chromosome as a randomly generated binary vector with A bits.

4.2 Multi-objective fitness function

The fitness function is designed to measure the performance of polynomial rules repre-
sented by the chromosomes in regenerating the observed spatio-temporal patterns. An
important measure in the present problem is the modulus of errors function defined as
Mer(2) = 2557 |y(i, j) — (4, 7)|, where r is the number of data points in the data set
extracted from the BPCA patterns, y(7, 7) is the original measured state at data point j
for chromosome 7 and y(7,7) = d; x f; is the predicted state.

If Mer is chosen as the fitness function the GA search will find a solution with the least
modulus of errors. However it is not guaranteed that the associated neighbourhood is
correct and minimal.

The preliminary neighbourhood detection technique in Section 3 produces the reduced
neighbourhood {cell(x;).---,cell(z,)} for the GA search, which should be considerably
smaller than the original neighbourhood {cell(z1), -, cell(zy), -+, cell(xy), -, cell(zm)},
but this may still be larger than the true neighbourhood {cell(x,),-- -, cell(z,)}.

Notice that there may be more than one model that produces a minimum modulus of
errors. However the principle of parsimony implies that the best model will have the least
terms. Therefore another search objective must be added to direct the GA evolution to
produce a parsimonious polynomial with minimal modulus of errors.

In the present study the two search objectives are to minimize the modulus of errors and

to minimize the number of terms in all models with the same Mer. An efficient way
of combining these two search objectives is to construct a multi-objective fitness func-
tion based on a ranking scheme according to the concept of Pareto optimality [23]. This
will guarantee equal probability of reproduction to all non-dominant chromosomes and
should generate a solution nearest to the optimal. The multi-objective fitness function is

constructed as follows.
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i) For the current population with size np, each chromosome is ranked with respect to
Mer. The chromosome with the least error occupies the first position. the chromo-
some with the second least error occupies the second position and so on. Chromo-
somes with the same error share the same rank. So that

RANK 1 e 1 1 l e np
ERROR Mer(l) --- Mer(i) Mer(i4+1) Mer(142) ... Mer(np)
with

Mer(l) < - < Mer(i) = Mer(i + 1) = Mer(i+2) < -+« < Mer(np).

ii) Map the binary vectors back to integer parameters using Table 2 and define the
structure function St(i) for the ith chromosome as the number of nonzero integers
in the chromosome. Resort the orders of chromosomes sharing the same rank in
proportion to the associated S(i) and keep the ranking of the remainder unchanged.

Thus,
RANK 1 1 1+ 1 | np
ERROR Mer(l) -+ Mer(i) Mer(i + 1) Mer(i+2) ... Mer(np)
STRUCTURE  St(1) .-+ St(3) St(r+1) St(i+2) - St(np)

with S3(1) < -+ < St(2) < St(i + 1) = St(i+2) < - < St(p).
i1i) The multi-objective fitness function of the ith chromosome is finally defined as

B MAX(rank(i)) — rank(i)
B MAX (rank(i)) — MIN(rank(:))

fit(z)

To avoid the GA search becoming trapped at a local optima two subpopulations will be
introduced which evolve in parallel with the main population [24]. The subpopulations
are evolved separately under two different search objectives. One is to minimize the
modulus of errors Mer, the other to minimize the structure function S¢t. The main
population will then evolve synchronously with the subpopulations under an objective
Jointly determined by the two objectives. Each candidate in the main population is
produced by genetic communication between the two subpopulations and is subject to
evaluation by the ranking technique.

4.3 Reproduction

In the reproduction process, chromosomes are first selected as parents to reproduce off-
spring according to the corresponding fitness values. The purpose of parent selection is to
give more reproductive chances to those chromosomes that are the most fit. This paper
uses the roulette wheel parent selection technique from [23]. The selected population is
then used for genetic operations in the breeding process. There are two principle genetic
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operators for producing new chromosomes during the breeding process. The crossover
operator cuts segments from both parents and combines these segments to produce new
chromosomes. The mutation operator arbitrarily alters the bits in a chromosome accord-
ing to a predetermined probability, the mutation rate. See [25] and [26] for details.

The new multi-objective GA search for polynomial rules with integer constraints can be
summarized as:

i) Initialize the two subpopulations and the main population on the basis of the pre-
liminary neighbourhood obtained in Section 3.

i1) Evaluate the three populations according to Mer, St, and Mer combined with St
respectively using the ranking technique.

iii) Apply the parent selection technique to the two subpopulations.
iv) Employ crossover and mutation to the two subpopulations separately.

v) Employ crossover and mutation to the two subpopulations combined to produce
new candidates for the main population.

vi) Repeat (ii) and insert new populations to replace the three old populations respec-
tively.

vii) If all chromosomes in the new main population converge to a single individual then
stop, otherwise return to (iii) and repeat.

After the deterministic model which is corrupted by noise, is found the minimal neigh-
bourhood can be retrieved. The probabilistic elements and the associated probability can
then easily be found from the data set by collecting a probability table. For every rule
component which is determined by the minimal neighbourhood, the occurrences of 0 and
1 in s,(w;:t) are recorded. Tor the deterministic rule components the occurrences of 0
and 1 in s,(2,;t) cannot be both nonzero. This probability table represents the identified

BPCA.

5 Simulation Studies

5.1 Preliminary Neighbourhood detection

Three examples, for 1-D. 2-D and 3-D BPCA. will be used to demonstrate the prelimi-
nary neighbourhood detection and the crucial role the increased C\,;; plays in reducing
the number of insignificant terms in the selected term set. The initial neighbourhoods
used in the three examples are defined in Table 3. To simplify the notation all the neigh-
bourhoods are assumed as to be 9-site neighbourhoods. The candidate term set SET
which is determined from the initial neighbourhoods is therefore the same for all the
three examples, and is constructed as :




where 1.2.3,4,5,6.7.8.9 denote the cells in the assumed neighbourhoods. The map-

pings between entries in SET and cells in the neighbourhoods are illustrated in Table
3. Tor example, entry 5 is associated with cell(j + 2) in Example 1. cell(z — 1.j) in
Example 2 and cell(i.j — 1,k) in Example 3, and so on. The whole SET consists of
2° — 1 = 511 rows. Each row represents a candidate term which corresponds to an
si;t = 1,-++,V in matrix S in equation (9). For example, the first row (LO0OOOO
0 0 0) represents only s(j) in Example 1, s(i.5) in Example 2. and s(,7,k) in Exam-
ple 3, while the last row (123456 78 9) corresponds to a product of nine states,
s(J)xs(7=1)xs(j+1) xs(j —2) xs(j +2) x s(j —3) x s(j +3) x s(J—4)xs(j+4) in
Example 1, s(z,7) xs(i+1,7) xs(i,j—1)x s(i, j+1) x s(i =1, §) Xs(i4+1,7—-1)xs(i+1, 7+
1)xs(i—1,7=1)xs(i—1,j+1) in Example 2. and s(i, 7, k)xs(i+1.5.k)xs(i—1,7,k) x
s(i,7+1,k) xs(i, 7 —1,k) xs(i,7,k+1) x s(i, j, k—1) x s(i—1,j+ LK) xs(i—=1,5=1,k)
in Example 3. Note that an entry in SET denotes a cell while a row in SET denotes the
product of the states of one or more cells, that is. a candidate term Sy a2 Lauai . W

Table 3. The initial neighbourhoods used in Examples 1. 2, and 3

Eicample Cells in the initial neighbourhood
1 2 3 4 3}
1 cell(j) cell(j — 1) cell(j +1) cell(j —2) cell(j +2)
. cell(i. J) cell(i 4+ 1, 7) cell(i,j —1) cell(i,j+ 1) cell(i—1,7)
3 cell(i.j k) | cell(i +1,5.k) | cell(i — 1,7, k) | cell(i,j + L. k) cell(i,j — 1. k)
Eiarisla Cells in the initial neighbourhood
§ 7 8 9
1 cell(j —3) cell(j +3) cell(j —4) cell(j +4)
; cell(i+1.j—1) | cellli+1,j+1) [ cellli—1,7—1) cell(i—1,j+1)
3 cell(i.j, k+ 1) cell(i,j, b —=1) | celli—1,j+1.k) [ celli —1,j=1,k)

5.1.1 Example 1

Example 1 uses the 1-D BPCA rule given in Table 1. This rule is equivalent to Rule60
occurring with probability p and Rule40 occurring with probability 1 — p. The spatio-
temporal patterns produced by the evolution of this BPCA rule with varying p are shown
in Figure 2. All the patterns were developed on a 200 x 200 lattice with time evolution
from top to bottom and a periodic boundary condition. That is the lattice is taken as a
circle in the horizontal dimension, so the first and last sites are identified as if thev lay
on a circle of finite radius. The evolution started from an initial condition of a randomly
generated binary vector,




Figure 2: Spatio-temporal patterns produced from Example 1 for the evolution of a 1-D
BPCA with varying p

Figure 2 (a) shows the evolution of the deterministic Rule60 (because p = 1). Figure
2 (b)-(e) can be considered as patterns produced by the evolution of Rule60 with noise
of various levels defined by the probability 1 — p. It can be seen that the introduction
of noise/probabilistic elements results in considerable changes in the patterns, from a
distribution of triangles in Figure 2 (a) to a random tree structure in Figure 2 (e) where
the noise level is 1 — 0.7 = 0.3.

:::::::::

Figure 3: The noise signal generated by flipping the states of the updated cells governed
by rule components 010 and 100 in Rule60 from 1 to 0 with probability 1 —p = 0.3

The noise signal at level 1 — p = 0.3 is shown in Figure 3. The noise is introduced
by flipping the states of the updated cells governed by rule components 010 and 100 in
Rule60 from 1 to 0 and therefore only takes two values, —1 and 0. Although the nonzero
values appear with a low occurrence, 6 out of a possible 500, the impact is by no means
trivial as can be seen in the pattern changes in Figure 2. This is because the signal/noise
ratio is 100 percent at each point the noise appears.

Data extracted from Figure 2 (a) was used for detecting the term set of the deterministic
rule. C,;; was chosen as 0 and the result is shown in model 1 —(a). The last entry in each
row represents the normalized value of the contribution the term in that row makes to s.
The sum of all the [ct] values will be unity so if [ct] were multiplied by 100 this would give
the percentage contribution the term in that row makes to sp. The same also applies to
the other models. In model 1 — (a) only 3 terms have been selected from the SET of 511
terms and the neighbourhood that are determined by these terms is {cell(j),cell(7—1)},
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which is the same as listed in Appendix 1 in [17] and is minimal and correct.

r1 0 0 0 0 0 0 0 0 0.3600 7
) 1 2 0 0 0 0 0 0 0 01626
0 0 0 0 0 0 0 0 0129 2 00 0O 0D O 0 0 0 0.3600
1 2 0 0 0 0 0 0 0 00562 1 6 0 0 0 0 0 0 0 0.0029
2 0 0 0 0 0 0 0 0 00440 | 1 6 8 0 0 0 0 0 0 000861
Model 1 - (a) 1 34 6 0 0 0 0 0 0.0042
1 2 8 0 0 0 0 0O 0 0.0046
1 3 4 5 0 0 0 0 0 0.0030
[1 0 0 0 0 0 0 0 0 0.3600 ] 2 6 7 0 0 0 0 0 0 0.0036
1 2 0 00 0 0 0 O 01626 2 6 7 8 0 0 0 0 O 00103
2 0 00 00 0 O 0 0.3600 2 6 00 0 0 0 0 0 0.0027
1 3 0 0 0 0 0 0 0 00079 1 2 6 0 0 0 0 0 0 0.0011
1 2 3 00 0 0 0 0 0002 1 5 0 0 0 0 0 0 0 00029
2 3 0 0 0 0 0 0 0 0.0044 1 5 6 8 0 0 0 0 0O 0.0026
\_ 1 6 00 00 0 0 0 0002 | 1 4 53 0 8 0 0 0 0 00018
Model 1 - (¢) 1 3 5 0 0 0 0 0 0 0.0028
2 4 8 0 0 0 0 0 0 0.0038
1 5 8 0 0 0 0 0 0 0.0022
[1 0 0o 0o o 0o 0o 0 0 0.3600 1 3 5 8 0 0 0 0 0 0.002
1 2 00 OO 0O 0 0 01626 2 9 00 0 0 0 0 0 0.0007
2 00 0 0 0 0 0 0 0.3600 2 8 9 0 0 0 0 0 0 0.0009
) Model 1 - (d) 1 2 9 0 0 0 0 0O 0 00008
L1 6 8 9 0 0 0 0 0 0.0015 ]
Model 1 — (b)

Data extracted from Figure 2 (e) was used in determining the neighbourhood when
noise was introduced at a level defined by 1 — p = 0.3. Model 1-(b) shows the result
from this data set when C,;; is set as 0. Although only 23 out of 511 terms have been
selected, the neighbourhood covered by these terms is e}gactiy the same as the 9-site
neighbourhood assumed and little can be gained from this result. Model 1 — (c) shows the
chosen terms when C,; is chosen as 0.1. The neighbourhood determined by these terms
is {cell(7), cell(j—1).cell(j+1), cell(j—3)}, which fully covers the correct neighbourhood
but is much smaller than the initial neighbourhood. When Copy is increased to 0.2. the
three terms selected in model 1 — (d) are exactly the same as the correct terms in model
1 —(a). This suggests that increasing the cutoff value can reduce the number of irrelevant
terms included in the identified model and in some cases, for example in model 1 — (d),
can even discard all the spurious terms.

5.1.2 Examples 2 and 3

The data used for preliminary neighbourhood detection in Example 2 was produced by the
evolution of a 2-D BPCA which was constructed by specifying the states of the updated
cells governed by rule components 0010, 0110, 1000 and 1101 in Rule24235 to be 0 with
probability p and 1 with probability 1 — p over the neighbourhood {cell(i+1. ), cell(i, j —
1), cell(i,j+1),cell(i — 1,)}. Model 2 — (a) shows the result when p = 1 and Coyys is set
as 0. The 9 terms selected constitute the deterministic Rule24235 and referring back to
Table 3. determine the correct and minimal neighbourhood. When the noise is introduced
by setting p as 0.7. the cutoff value was incremented to decrease the number of spurious
terms included in the identified model. The result for C,z; = 0.09 is given in model
2—(b), where 18 terms were selected. A close inspection shows that these 18 terms cover
all the 9 correct terms in model 2 — (). The remaining terms are composed of two types,
5 terms made up of cells within the correct neighbourhood and 4.terms made up of cells
within the correct neighbourhood but including a cell outside the correct neighbourhood,

cell(z —1,7 4+ 1).
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Example 3 illustrates the preliminary neighbourhood detection for a 3-D BPCA. This
probabilistic rule was created over a 6-site neighbourhood defined by {cell(i—1, j, k), cell(i+
L, k) cell(i,7 — 1, k). cell(i,j + 1,k),cell(s, j,k — 1), cell(i, .k + 1)} by specifying the
states of the updated cells governed by rule components 000010. 000101. 000111, 001100,
010010, 010101, 010111, 011100, 100001, 100110, 101001, 101111. 110001. 110011, 110111,
111110 in a deterministic rule (01111110 11010111 11100110 11011110 01000100 01011110
01110110 01010110) to be 1 with probability p and 0 with probability 1 —p. Model 3 — ()
gives the 54 selected terms when p = 0.7 and Coss was chosen as 0.095. The 54 terms were
composed of three parts, 36 correct terms in model 3 — (a) selected for the deterministic
rule when Corr = 0, 11 terms which are constructed only over the cells within the correct
neighbourhood, 7 terms which are composed of cells within the correct neighbourhood
but also one cell out of the correct neighbourhood, cell(i, 7+ 1, k).

Both model 2-(b) and model 3-(b) define a neighbourhood larger than the correct neigh-
bourhood. However, the number of candidate terms in both models are considerably
reduced compared to the original term set. Only 18 and 54 out of a possible 511 terms
are selected in Example 2 and Example 3 respectively. This shows that although it is
difficult to calculate the exact cutoff value when noise is present. Cors can take a range
of values so that most of the spurious terms are excluded. In some cases, for instance in
model 1 — (d) in Example 1, the chosen Coss is even capable of selecting only the correct
terms and hence the correct and minimal neighbourhood.

Note that within each of models 1 — (¢), 2 — (b) and 3 — (b) there is a set of terms which
are not in the corresponding correct term set (see models 1 — (a), 2 — (a) and 3 — (a)
respectively) but which are constructed over the correct cells (cells within the correct
neighbourhood). The inclusion of a term set of this kind demonstrates the probabilistic
characteristic of the rule since these terms may well be from other deterministic rules
with a similar component structure but with a different p- Tor instance in Example 1,
the result in model 1 — (¢) also includes three terms s(J=1)xs(j+1). s(J) xs(j+1)
and s(j — 1) x s(7) x s(j + 1) which constitute exactly the deterministic Rule40. This is
because the BPCA rule is equivalent to Rule60 occurring with probability p = 0.7 and
Ruled0 occurring with probability 1 — p =103

These three examples also demonstrate that when using the neighbourhood detection
algorithm in [19], the [ct] values for terms that are in the correct term set and noise
terms that are out of the correct term set but constructed over cells within the correct
neighbourhood can be calculated independently of the [ct] values for noise terms that are
constructed over cells out of the correct neighbourhood.

The preliminary neighbourhoods for Examples 1, 2 and 3 can then be retrieved from
the selected term set in models 1 — (c), 2 — (b) and 3 — (b) as {cell(j — 3),cell(j —
1), cell(5), cell(54+1)}. {cell(i+1,7),cell(i,j— 1), cell(i. j+ 1). cell(i — Loj)icell(i—1. 7+
1)} and {eell(i — 1,j. k). cell(i — Ly + 1.E).cell(i + 1,7,k),cell(i.j — 1.k), cell(i.j +
Lok)ocell(i.jok — 1), cell(i.j. k + 1)} respectively. These neighbourhoods can be refined
using the GA’s described in the next section.




5.2 Rule selection using GA’s with integer constraints

The terms selected in Section 5.1 will be used as initial term sets for the application of
the GA algorithm described in Section 4. The algorithm was tested over a large set of
1-D, 2-D and 3-D BPCA rules with various neighborhoods of randomly chosen radius. A

sample of the results is summarized in Table 4.

Table 4. Summary of results obtained in evolving some 1-D, 2-D and 3-D BPCA poly-
nomial rules with various sizes of neighbourhoods using the GA routine of Section 4

Generations

D ln Rule 0 Modulus of errors Structure average
mean | std.dev. | mean std.dev. mean | std.dev. | run time

3 Ruleb0 4 | 18.96 3.54 6 0 3 0 38.56 min.
Ruleld 4 | 22.13 4.25 28 0 6 0 40.02 min.
4 Rulel6798 | 6 | 104.23 6.89 16 0 15 0 200.09 min.
Rule24235 | 5 | 75.48 6.06 35 0 9 0 141.26 min.
5 Rulel —35 | 5 | 80.05 7.71 22 0 21 0 147.51 min.
Rulel —6 | 6 | 112.92 10.58 15 0 18 0 213.42 min.
ar Rulel —7 | 7 | 159.64 12.19 9 0 26 0 289.97 min.
Rulel —8 | 7 | 193.79 17.55 32 0 19 0 329.44 min.
- Rulel —9 | 7 | 201.82 15.83 27 0 27 0 364.58 min.
Rulel — 10 | 7 | 170.37 14.44 10 0 23 0 209.83 min.
3 Rulel —11 | 8 | 254.91 19.89 41 0 16 0 470.69 min.
Rulel —12 | 9 | 338.26 23.25 13 0 34 0 592.85 min.
9 Rulel =13 | 9 | 309.74 30.31 24 0 29 0 552.14 min.
" | Rulel =14 | 9 | 372.55 21.25 11 0 44 0 614.32 min.
4 RulelG798 | 6 | 98.92 10.13 19 0 15 0 187.43 min.
Rule24235 | 5 | 72.39 3.57 30 0 9 0 150.06 min.
5 Rule2 -3 | 6| 90.21 7.74 3 0 12 0 165.29 min.
Rule2 —4 | 7 | 173.24 9.83 43 0 11 0 313.80 min.
8 Rule2 — 5 g | 107.38 12.78 26 0 20 0 151.91 min.
" Rule?2 — 6 | 7 | 166.43 15.69 14 0 25 0 311.29 min.
| .| Rule2—-7 | 8| 238.56 14.32 5 0 32 0 422.36 min.
: Rule? —8 | 7 | 153.63 20.59 37 0 24 0 218.07 min.
3 Rule2 —9 | 9 | 400.07 36.77 20 0 53 0 713.46 min.
" Rule2—10 | 8 | 251.93 | 26.60 i 0 28 0 436.83 min.
9 Rule2 —11 | 9 | 385.28 29.89 18 0 45 0 648.31 min.
| Rule2—12 | 9 | 360.24 18.72 29 0 a1 0 625.03 min.
6 Rule3 —1 | 7 | 186.53 10.99 33 0 36 0 313.45 min.
Rule3 —2 | 7 | 151.38 11.48 1T 0 26 0 220.96 min.
_| Rule3 =3 19 | 379.26 13.05 29 0 39 0 £539.46 min.
" TRule3—4 | 7 | 196.44 | 11.58 14 0 F; 0 363.51 min.
3 2 Rule3 —5 | & | 290.00 14.45 29 0 32 0 537.09 min.
- Rule3 —06 | 8 | 223.76 17.89 28 0 24 0 416.37 min.
9 Ruled3 —7 | 9 | 335.14 20.31 7 0 29 0 589.(‘551) JD?IL
i Rule3 —3 | 9 | 390.56 2298 25 0 35 0 | 674.18 min.

D represents the dimension of the rule. n indicates the size of the real neighbourhood. u denotes the size of the prelimi-

narily detected neighbourhood before GA evolution. 100 trials were made for each problem. The “Generations™ column

indicates the number of generations reached before the solution converged.

19




For each rule. 100 trials were conducted with different initial populations. The data used
for the GA search were extracted from spatio-temporal patterns generated by evolving
the BPCA rules constructed hy specifying the states of the updated cells governed by
a quarter of all the rule components in the associated deterministic rules to be 1 with
probability p = 0.7 and 0 with probability 1 — p = 0.3. The numerical labels for these
deterministic rules are listed in the “Rule”column. Only the deterministic rules with
small neighbourhoods will be enumerated. This is due to the fact that the numerical
label and the component form of the deterministic rules can be very cumbersome when
the neighbourhood size is larger than 4. For simplicity only the average and standard
deviation (std.dev.) values are listed in Table 4.

Inspection of Table 4 shows that the modulus of errors did not converge to zero because
the data used for the GA search are corrupted by probabilistic noise. The number of
errors 1s actually the number of contaminated data points.

Rules in Table 4 are selected from a set of no more than 24 x 22°-1 possible rules. For
example, when w = 4, for the 1-D 3-site rules in Table 4, the rule set for the GA search
with preliminary neighbourhood detection comprises a maximum of 24 x 22'-1 = 524983
possible rules. In particular, in Example 1 when C,;s is chosen as 0.1, the number of
possible rules determined by model 1 — (¢) which is used to prime the GA search is
dramatically reduced to only 24 x 27 = 2048. In comparison when m = 9 (m is the
size of the initial neighbourhood) the rule set for the C'A search with no preliminary
neighbourhood detection which generates the results in Table 6 in [16] consisted of a
massive 22° = 1.3408e + 154 rules. Hence the average run time in Table 4 is considerably
smaller than in Table 6 in [16].

The preliminary neighbourhood detection and the GA search with integer constraints are
insensitive to the dimensionality of the BPCA rules because what matters is the number
of terms searched. not the dimensionality. Identification of rules of the same construction
but different dimensions should therefore be able to produce the same St and similar
Mer and average run times. These properties are demonstrated in the results for the
two 1-D 4-site rules Rulel6798 and Rule24235 and the two 2-D 4-site rules of the same
rule number. The slight discrepancy in Mer and the average run time is caused by the
different initial conditions and the randomness of genetic operations in the GA evolution.
Each identified polynomial produces a correct truth table that matches the component
form of the deterministic rule which represents the probabilistic rule with probability
I — p1. This polynomial also determines a correct and minimal neighbourhood for the
corresponding probabilistic rule. The probabilistic rule components and the associated
probability can then easily be identified from the data set by collecting a probability
table. This is achieved by recording the occurrences of 0 and 1 in spla;j:t) for every
rule component which is determined by the identified neighbourhood. This collected
probability table represents the identified BPCA. The probability table for the BPCA
rule in Example 2 was collected from a data set of 1000 data points and is presented in
Table 5. TFor simplicity the probability tables for other BPCA rules discussed are not
included in the paper.




Table 5. The probability table for the BPCA rule in Example 2

t—1: 0000 0001 0010 0011 O0l00 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

19 54 28 69

t 1 1 s 1 0 0% 1 AT 1 1 1 1 % s
: 3 24 12 29
1/ 57 /5% 13t /5

Table 5 shows that 0 appeared in the updated cells governed by rule components 0010,
0110, 1000 and 1101 with a occurrence of 19 times out of 27, 34 times out of 78, 28 times
out of 41 and 69 times out of 98, and 1 appeared with a occurrence of 8 times out of
27, 24 times out of 78, 13 times out of 41 and 69 times out of 98 respectively while the
updated cells governed by the other rule components are either occupied by 0 only or 1
only. This shows that rule components 0010, 0110, 1000 and 1101 are probabilistic and the

probability p is approximately 0.7 (%—? = 0.7037, -?—é =il).BY%3, % = 0.6829. & = 0.7041).

6 Conclusions

Despite the fact that probabilistic cellular automata have been widely used in generating
complex spatio-temporal patterns, very few investigators have studied how to identify
the PCA rules given only the patterns. A two-step solution to this important problem
has been developed in the present study based on a mapping of the PCA rules to a
polynomial rule space. It has been shown that a class of binary probabilistic cellular
automata can be represented as integer-parameterised polynomials contaminated by noise.
On the basis of these polvnomials it has then been proved that the contribution values
for the correct terms that are related only to the cells within the neighbourhood can
be calculated independently of the noise terms that are also associated with cells out
of the neighbourhood. This allows the neighbourhood detection technique. originally
developed for deterministic rules, to be used to select a preliminary neighbourhood even
in the presence of noise by increasing the contribution cutoff value. This preliminary
neighbourhood detection stage can yield significant improvements in efficiency by reducing
the number of candidate rules from 22" to less than 2# x 22*~!. For example as shown in
Example 1 where m =9, g =4 and u = 4, the number of possible rules are reduced from
1.3408e + 154 to only 2048. However, the choice of an exact contribution cutoff value that
discards all of the spurious terms still needs further study. Integer constraints were added
to the GA search to restrain the preliminarily selected neighbourhood to the minimum
and to direct the search so that the deterministic polynomial rule which represents the
probabilistic rule with the largest probability can be retrieved. Several simulated examples
of 1-D. 2-D and 3-D PCA rules demonstrated the effectiveness of the new approach.
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