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Abstract

Extracting the rules from spatio-temporal patterns generated by the evolution
of Cellular Automata (CA) usually produces a CA rule table without providing a
clear understanding of the structure of the neighbourhood or the CA rule. In the
present paper a new identification method based on using a modified orthogonal
least squares or CA-OLS algorithm to detect the neighbourhood structure and the
underlying polynomial form of the CA rules is proposed. The Quine-McClauskey
method is then applied to extract minimum Boolean expressions from the poly-
nomials. Spatio-temporal patterns produced by the evolution of one-, two- and
higher-dimensional binary CA’'s are used to illustrate the new algorithm and simu-
lation results show that the CA-OLS algorithm can quickly select both the correct
neighbourhood structure and the corresponding rule.

1 Introduction

Cellular Automata (CA) represent an important class of models that evolve in time over
a spatial lattice structure of cells. CA’s have been applied in image processing [1], pattern
recognition [2], digital circuit design [3] and robotics [4]. Many authors have demonstrated
that relatively simple binary CA rules can produce highly complex patterns of behavior.
These results illustrate the potential of CA’s as a model class and suggest that it may
be possible to model even very complex spatio-temporal behavior using CA models of a
simple form. But very few studies have investigated how these rules can be extracted
from observed patterns of spatio-temporal behavior.

Ideally the identification technique should produce a concise expression of the rule. This
ensures that the model is parsimonious and can readily be interpreted either for simula-
tion or hardware realization of the CA. Sequential and parallel algorithms for computing
the local transition table were presented by Adamatskii [5], and Richards [6] introduced
a method using Genetic Algorithms (GA’s). However, no clear structure of the related
neighbourhoods was obtained in either of these studies and the detection process was
complicated and time consuming. Genetic Algorithms were also employed in [7] to de-
termine the rules as a set of logical operators. Parsimonious local rules were found for
low-dimensional CA’s , but the identification was computationally demanding.

In the present study a totally new approach is adopted to identify both the neighbour-
hood and the CA rule from complex patterns of high-dimensional spatio-temporal behav-
ior. Identifying the CA rule or model is considered as a two stage procedure. First the
neighbourhood which defines the spatial interaction of the cells over a temporal window




is determined and then the rules that specify the values of these cells is estimated. Earlier
studies [5], [6], [7] have attempted to devise solutions to these problems based on the
logical rule base which defines binary CA’s. But this involves determining the spatio-
temporal rules as nonlinear combinations of cellular values.

In the present research this problem is avoided by exploiting the fact that the binary rules
can be expressed as Boolean functions and showing that these can be exactly- represented
using simple polynomial models. The main advantage of this is that now the problem is
mapped into a linear-in-the-parameters model. A modified orthogonal least squares algo-
rithm, called the CA-OLS method is introduced which determines the neighbourhood and-
the unknown model parameters. The Quine-McClauskey algorithm can then be applied
to extract the minimum Boolean expression to produce the final CA model. Mapping the
problem into a polynomial model form, determining the structure and parameters. and
then mapping back to a logical expression produces for the first time a powerful method
for determining the rules of high-dimensional CA’s in the form of a parsimonious model.
This is achieved from just the observations of the data and no a priori information.

The remainder of the paper is organized as follows. In Section 2. the cefinition, charac-
teristics and other relevant background information of one-, two- and higher-dimensional
cellular automata are introduced. Section 3 introduces the crucial link between boolean
expressions and polynomial model equivalents of hinary CA rules. The CA-OLS tech-
nique is then derived to determine the neighbourhood and polynomial model parameters.
Finally the Quine-McClauskey method is employed to extract the minimum Boolean ex-
pression from the polynomial model. Simulation results incJuding four-dimensional CA’s
are presented in Section 4, and the conclusions are in Section 5.

2 Cellular Automata and the difficulties of CA iden-
tification

A cellular automaton is defined by three parts: a neighbourhood. a local transition rule
and a discrete lattice structure consisting of a large number of cells which are occupied
by states from a finite set of discrete values. The local transition rule updates all cells
synchronously by assigning to each cell, at a given time step, a value which depends only
on the neighbourhood.

Attention in this paper is restricted to binary cellular automata where the cells can only
take binary values. Although binary CA’s form one of the simplest classes of CA’s, they
have been the focus of most investigations and are capable of generating complicated pat-
terns of global behavior and capturing the essential features of many complex phenomena.

2.1 CA neighbourhoods

The neighbourhood of a cell is the set of cells directly involved in the evolution of the cell.
Sometimes this includes the cell itself. The neighbourhood structure varies depending on
the construction of the cellular automata. Consider a one-dimensional 3-site CA for ex-
ample. Denoting the cell at position j at time step ¢ as cell(j:t). then the neighbourhood




of cell(j;t) could be a von Neumann neighbourhood illustrated i Figure 1 (a) or the two
exotic neighbourhoods shown in Figure 1 (b) and (c) respectively. The neighbourhood
can involve cells from different spatial and temporal scales. The exotic neighbourhood in
Figure 1 (b) encompasses cells from the same temporal scale but different spatial scale
than the cells in the von Neumann neighbourhood while the neighbourhood in Figure 1
(c) involves cells from the same spatial scale but different temporal scale from the cells in
the von Neumann neighbourhood.
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Figure 1: Examples of 3-site neighbourhoods for a one-dimensional CA (a) von Neumann
neighbourhood, (b) and (c) exotic neighbourhoods

There are many more possible neighbourhood structures for two-dimensional cellular au-
tomata. The most commonly used are the 5-site von Neumann neighbourhood and the
9-site Moore neighbourhood, illustrated in Figure 2 (a) and (b).
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Figure 2: Examples of neighbourhoods for a two-dimensional CA (a) 3-site von Neumann
neighbourhood (b) 9-site Moore neighbourhood

The neighbourhood structures for higher-dimensional cellular automata are much more
complicated and diverse than the one- and two-dimensional cases. Figure 3 shows a simple
example of the neighbourhood for a three-dimensional cellular automata.
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Figure 3: An example of the neighbourhood for a three-dimensional CA

Neighbourhoods for two- and higher-dimensional CA can also involve cells from temporal
scales other than ¢ — 1. For example, a 5-site two-dimensional neighbourhood could take




the form {cell(i.j—1:t—3),cell(i.j—1;t=2). cell(i, j—1;t—1), cell(i+1,j; t—1), cell(i, j+
1:¢—1)}. Clearly the number of possible cells in a multi-dimensional C'A over a range of
temporal scales can be huge.

2.2 Local CA transition rules

Local transition rules can be defined in several equivalent ways. The most common
method is to use a transition table analogous to a truth table where the first row describes
the states of the neighbourhood and the second row indicates the next state of the cells.
The rules are then labelled by specifying which neighbourhoods map to 0 and which to
1. The standard form of a 3-site one-dimensional rule R is shown below

000 001 010 011 100 101 110 111

To s r's o 4 Pz Ts s

where r;,i = 0,---,7 indicating the next-states of the cells. Every component r; corre-
sponds to a coefficient 2' which is essential in computing the numerical label associated
with the rule. The numerical label D assigned to rule R above is therefore given by
D(R) = S¥5'r;2, which is simply the sum of the coefficients associated with all the
non-zero components.

2.3 Difficulties in CA identification

Many studies of CA have focussed on demonstrating that relatively simple CA rules can
produce complex patterns of behavior. This demonstrates the potential of CA's as a
model class but shows that this can only be realized if the simple underlying rules can be
determined from observed spatio-temporal behavior.

When identifying CA rules the only a priori knowledge will be the spatio-temporal patterns
produced by the evolution of the CA. Realistically the neighbourhood structure including
the size will be unknown and this means that the possible combinations can number into
the hundreds of millions. It may be possible to find simple CA rules by searching through
the rule space when only one- or two-dimensional CA’s with very small neighbourhoods
are involved. But as the neighbourhood size, or the dimensionality, or both increase the
combinational possibilities become huge. The few authors that have studied this problem
[5], [6] have therefore focussed on a very limited class of low-dimensional CA’s. But there
is a clear need to develop procedures which can operate on observed data from CA’s over
higher-dimensional spatial and temporal neighbourhoods with no a priori information.

3 Identification using the CA-OLS method

In the present study the problem of searching for the neighbourhood and then the pa-
rameter values associated with a nonlinear logical model will initially be mapped into
an equivalent polynomial representation. While this relationship is well known it has
not previously been appreciated that the polynomial model can be collapsed to a very
simple structure with integer parameters, even for high-dimensional and complex CA’s .




Using this model form and introducing a modified orthogonal least squares routine, called
the CA-OLS method. both the CA neighbourhood and the unknown polynomial model
parameters can easily be determined. The equivalent polynomial model is then mapped
back to a minimal logical expression to yield the final parsimonious CA model. The steps
associated with this new procedure are introduced below.

3.1 Boolean form of CA rules

The local rule for an binary cellular automaton may also be considered as a Boolean
function of the cells within the neighbourhood. For a one-dimensional CA, denote the
state of the cell at position j at time step ¢ as s(j;¢) and the states of the cells within the
neighbourhood of cell j at previous time steps as N(7; [t) where |t represents time steps
before t. The one-dimensional CA can then be represented by

s(7;t) = F(N(7; [t)) (1)

where f is the Boolean form of the local transition rule.

Two different ways of constructing Boolean rules are currently available. One formulation
produces Boolean rules using only the NOT, AND and OR logical operators and rules
for all one-dimensional CA with 3-site neighbourhoods are listed in [8]. The Boolean form
of Rule30, for example, is

s(7it) = (s(G—Lit=1)*3(j;t — 1) *5(j + 1;¢ — 1))
HEG =Lt =) st =) [ (57— Lt -1 *s(G+ 1Lt =1))  (2)

where ~, * and || denote NOT, AND and OR operators respectively.

The alternative formulation uses only the NOT, AND and XOR operators instead. Lists
of Boolean expressions of even number one-dimensional 3-site CA rules based on this
formulation can be found in [9]. Using these operators Rule30 can also be represented as

s(Fit)=s(j — Lt —1)@s(j;t —1) @ (3(j;t — 1) * s(j + 1;t — 1)) (3)

where @ denotes the XOR operator.

Note that on the right side of equation (3) logical terms are produced by connecting the
‘states’ or the ‘NOT states’ of the cells within the neighbourhood using AND opera-
tors which are then combined by XOR operators. It can easily be observed that every
one-dimensional binary rule can be reformulated into a Boolean form which follows this
principle.

Furthermore, note that @ = 1 @ a, 0 ® a = ¢. Hence all one-dimensional binary cellular
automata can be represented by a Boolean function with only AND and XOR operators.
For example a CA with an n-site neighbourhood of {cell(j+1;¢t—1), -, cell(j+n;t— 1)}
can be expressed in the form

S(j;t}:ao.%als(j+1;t—+I)GQK--@QN(S(]'JFl;t—l)*---*s(j+n;t—l)) (4)
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where a; (1 = 0,---, N, N = 27 _ 1) are binary numbers and a; = 1 indicates that the
following term is included in the Boolean function while a; = 0 indicates that the following
term is not included.

Note that the number of possible expressions in equation (4) is 22" which is exactly the
number of all possible one-dimensional rules with that particular neighbourhood. This
implies that the representation in equation (4) is unique, one set of {di,i = 1, - N}
corresponds to one and only one CA rule.

Equation (1) can be extended to higher-dimensional CA’s. For a three-dimensional CA,

this would be denoted as
s(i,7,5;t) = f(N(i, 7,4 |t))

where s(1, 7,(;t) is the state of the cell at position (7,7,() at time step ¢ and N(:, 7,4 |¢)
represents the states of the cells within the neighbourhood of cell(s, j,1: t).

The unified expression in equation (4) can also be extended to multi-dimensional CA’s.
For example any three-dimensional CA with a 5-site neighbourhood {cell(i — 1,5 1:¢ —
1), cell(i, g, l;t— 1),cell(i,j+1,0;t— 1)yeellle, 5,1 — 14— 1, eellli,, I+ 1it— 1)} can be
represented by a Boolean expression

st it)=ag S ars(i—1,5,1:¢ — 1)@ - @ az(s(i — Ly ik = L)oese @ g(, 4. 1+ 1s p— 1} (5]

Extending this further, every CA with an n site neighbourhood {eell(zy; |t). - - y sell(mq; [6)}
may be written as

s(zjit) = a0 S ars(zy; ) B - @ an(s(@; [t) * - # s(zp; |t)) (6)

where V = 2" — 1 and cell(z;;t) is the cell to be updated.

Equation (6) is important because it significantly reduces the complexity of CA identi-
fication by using a reduced set of logical operators. The difficulty in identifying multi-
dimensional CA’s is also decreased because the higher-dimensional C'A rules are reduced
to an equation which depends on the size of the neighbourhood not the dimensionality.

3.2  Polynomial form of CA rules

Every CA with an n site neighbourhood can be reformulated from a truth table to a
Boolean function of the form of equation (6). However the model to be identified is defined
in terms of AND and XOR operators and is therefore nonlinear in the parameters. But
it is often advantageous to reconfigure the nonlinear model to be linear in the parameters
if this is possible. This will be investigated below for CA's.

Table 1. Relationship between NOT, AND, XOR and +. x

aja|l-ala [a[a;*as | a Xas || ay | as | ayBas | ay+ ar — 2a; % a-
0] 1 1 0]0 0 0 0 0 0 0
L0 0 1 0 0 0 1 1 1

1 0 0 0 1 0 1 1

I 1 1 1 1 1 0 0




If a. a;. ay are binary integer variables taking the values 0 and 1 for true and false respec-
tively. then there is an exact polynomial representation of each of the logical functions

a=1-—a, ar * ag = a; X a,, a1 & ay = a; + a — 2a; X ay

This is obvious from the truth table Table 1.

Therefore all CA rules can be represented by exact polynomial expressions. The one-
dimensional von Neumann Rule30, for example, can be written as 5(J;t) = 312, b, where
br=s(j—1;t=1); by = s(Jit=1); by = s(j+1;¢—1); by = =2s(f—1Lit—1)xs(j; t—1); by = —25(j—Lit=1)Xs(j+1;¢—1);
be = —s(jit—1)x s(j+1;t = 1); by = 250 =Lt = 1) X s(f;t — 1) x s(j + 13¢ — 1)i b = =25 (jit = 1) x s(j + 1:t — 1);
by = =2s(jit—1)xs? (j+1;¢=1); byp = ds(i=1i t~1)xs? (fi t=1) xs(j+1;t=1); by, = ds(i=1:t=1)xs(jit=1)xs? (j+1;¢—1);
biz = 4s?(jit = 1) X s2(5 + Lit — 1); bys = —8a(j — 1;¢ — ) xs®(Git—1) x 82(j + 1;¢ - 1).

But this equivalent expression will involve as many parameters as the number of possible
combinations of all the cells within the neighbourhood and little will be gained by using
such a representation.

However using the Principle of Duality and Absorption in Boolean Algebra [11] where for
every binary variable a, ¢ x ¢ = a, considerable simplification can be achieved. Therefore
terms in the form of s1(j —1;¢ — 1)s(5;¢ —1)s's (7415t — 1) where 4, Iy, I3 are integers
can all be reduced to one term s(j=1;t—1)s(5; ¢t — )s(7+1;¢—1). Consequently applying
the Principle of Duality and Absorption to all the terms results in a new expression for
all one-dimensional CA’s with von Neumann neighbourhood of the form

5(7;t) = Ous(j—1;¢—1) + O28(7;t — 1) +035(7 + 15t — 1) +048(5 — 1;¢ — 1) x s(j;t—1)
+0s5s(j — 1;t — 1) Xs(j+1;t-1)+963(j;t——l) xs(j+1;¢—1)
+07s(j — 15t — 1) x s(j;t — 1) Xs(g+1;t—1)

where the parameters ;.- 8; can only take integer values and s(j — 1:¢ — LY, 8] £ =
1),s(j + 1;¢t — 1) are binary variables.

Applying this to equation (6) shows that a general polynomial expression of all binary
CA rules with an n-site neighbourhood {eell(zy; |t),-- -, cell(zp; |t)} can be expressed by
the exact polynomial expression

s(zj;t) = Ors(zy;[t) + - - Ops(an; )+ + Ons(zq; [t) x -+ x s(zzt) (7)

where V = 2" —1 and cell(z; t) is the cell to be updated. Using this important observation
the number of parameters to be identified can be substantially reduced. It can also be
seen that the most important factor is the size of the neighbourhood n, not the order
of the dimension. For example, a two-dimensional CA rule with a 5-site neighbourhood
may have a simpler polynomial expression than a one-dimensional CA rule with an S-site
neighbourhood.

These are important observations which surprisingly have not previously been exploited
and which together with the CA-OLS algorithm introduced below provide a new and
powerful method of reconstructing the CA model even for high-dimensional CA’s.

|




3.3 Identification using CA-OLS

A CA can be viewed as a nonlinear dynamical system. Although the system has a spatio-
temporal structure, a single time series can be measured at a single lattice site or a spatial
series can be measured at a fixed time and traditional methods can be applied to model
either. However Diks [10] showed that studying only a time series or a spatial series from
a spatio-temporal system without any knowledge of the system can easily lead to the in-
correct conclusion that there is no spatio-temporal structure. For a full characterization
of the system structure time and space have to be considered simultaneously. Determina-
tion of the spatial and temporal span of the neighbourhood is therefore very important
in identifying CA models.

In practice the neighbourhood structure will be unknown and it is necessary to extend
the assumed neighbourhood to a more general case which encompasses cells from different
spatial and temporal scales. Hence a set of models which are over-specified on both the
spatial and temporal spans will be introduced as the model set. For a three-dimensional
CA the model set can be defined as

s(t,5,5t) = fs(i+in,d+ a0+ttt = 1), s(i — 12,7 = Jas L = lost — 1);---;
s(i+ 6107 + g, b lyt —h), - oo 8(i — gy 7 — Jarl — Lyt — h)) (8)

where i1, 12, j1, J2, [1 and [, denote the maximum space scale the three-dimensional CA
could possibly span and A denotes the maximum time scale the three-dimensional CA
could possibly span. Reducing the dimensions in equation {8) will yield models for one-
and two-dimensional CA’s as special cases while increasing the dimensions will produce
models for four-, five- and higher-dimensional CA’s.

Finding the neighbourhood can now be defined as determining just the relevant or signifi-
cant terms in equation (8) for the three-dimensional case and analogously for other dimen-
sions. The neighbourhood can therefore be thought of as equivalent to the model structure
in nonlinear system identification. Using equation (8) and the three dimensional case as an
example the neighbourhood must be determined from a set of 201+ +1Ui+2+)(hi+k+1)h _ 1
possible candidate model terms. Consider for example a very simple three-dimensional
CAwhereiy, =iy =j, =jp, =10 =1, = h =1, this produces 2°7 — 1 = 134,217,727
candidate terms. This clearly shows the complexity of the task even for a simple three-
dimensional case. Higher dimensions produce even more frightening numbers and clearly
show why there are no existing solutions to these important problems. To overcome these
problems the new CA-OLS algorithm is introduced below.

Initially using the three-dimensional case to illustrate the method, denote the states of
the neighbourhood {s@+i, i+ 0,14+t~ L),-ovy8(t—12,9 —Ja, L=t = 1), -+, s(2 +
11,7 +Ji L+t —h), oo 5(i — 49,7 — Jo, | — lo;t — h)} in equation (8) as {uy, -+, un},
where the size of the neighbourhood n = (j; + j, + 1)(é; + i3 + 1)([; + [, + 1)h. Then
expanding equation (8) into the polynomial form shown in (6) yields

s(i, 5,5t = ity + -+ Qo F oo+ Oy X o X up (9)




where NV = 2" — 1, and #,,---,0y are integer parameters to be identified. Note that
equation (9) can be readily extended from the three-dimensional case to be valid for all
binary CA's.

The CA-OLS algorithm is derived by applying a modified Gram-Schmidt orthogonal pro-
cedure to equation (9). The CA-OLS algorithm is given in the Appendix.

The simple three-dimensional example above shows the number of possible candidate
terms can be excessive but simulations by many authors show that often complex CA
patterns can be produced using simple models. If the appropriate terms that are signifi-
cant can be selected therefore the remainder can be discarded without any deterioration
in model precision or prediction accuracy and a concise CA model can be obtained. One
way to determine which terms are significant or which should be included in the model
can be derived as a by-product of the CA-OLS estimation algorithm and is very simple
to implement. From the Appendix the quantity [ct] is defined as

[et]y = 53! X Z?L e3(t)
Zi‘il Sz(iajal;t)

and measures the contribution that each candidate term makes to the updated state
s(i,j,1it) and provides an indication of which terms to include in the model. Using the
term contribution [ct] the candidate model terms can be ranked in order of Importance
and insignificant terms can be discarded by defining a value of [ct], below which terms are
considered to contribute a negligible reduction in the mean-squared error. The threshold
value of [ct] for the CA model can be set to 0 because the polynomial model is not an
approximation but an exact representation of the CA rules. The threshold value is set to
0 to ensure that sufficient terms are included and the prediction errors are reduced to zero.
Notice that the forward-regression orthogonal algorithm [12] is used in the Appendix. this
provides a [ct] test which is independent of the order of inclusion of terms in the model.
The structure of the neighbourhood is therefore defined by retaining only the significant
[ct] terms and the CA rule can then be computed by linearly combining all the selected
terms with the estimated parameters.

3.4 [Extracting the Boolean form of the CA rules

The polynomial form of the model can be determined using the orthogonal estimator which
yields both the CA neighbourhood and the model parameters. Although the polynomial
model can be used to directly reproduce the complex spatio-temporal patterns, hardware
realization of the CA may not be straightforward based on the polynomial form and
it 1s therefore important to extract the equivalent Boolean rules from the polynomial
representation.

While it is straightforward to extract canonical forms [11] of Boolean functions from truth
tables constructed on the basis of polynomial rules the canonical forms are often unwieldy
and typically more operations than are necessary are involved. However, this problem can
be solved by using the Quine-McCluskey [11] method to extract the parsimonious Boolean
expressions {rom identified polynomials and this will be illustrated using the simulated

examples.




The Boolean rules extracted using the Quine-McCluskey method involves NOT, AND
and OR operators. To obtain rules employing NOT. AND and NOR instead, see details
in Chapter 1 in [9].

4 Simulation Studies

Four simulation examples are included to demonstrate the application of the new al-
gorithm. Initially a simple one-dimensional example will be discussed to show all the
steps involved in a transparent manner. More realistic two-, three- and four-dimensional
examples will then be discussed.

4.1 Identification of one-dimensional 3-site CA Rule30

4.1.1 Complexity of spatio-temporal patterns produced by the evolution of
one-dimensional CA

The spatio-temporal patterns generated by the evolution of Rule30 on a 200 x 200 lat-
tice with four different neighbourhoods, a von Neumann neighbourhood {cell(7 —1;¢ —
1), cell(;t—1),cell(j+1:t— 1)}, a left-shift neighbourhood {cell(7-2:t—1). cell(j—1;t—
1), cell(3;t—1)}, aright-shift neighbourhood {cell(j:t—1), cell(j4+1;t—1). cell(j+2; t—1)}
and a temporal-shift neighbourhood {cell(5 —1;¢ — 2), cell(j;t = 1), cell(j+1;¢t — 1)} are
shown in Figure 4 (a). (b), (c) and (d) respectively.

(0)
Rule30(01111000) Rule30 Rule30 Rule30
left — shift right — shift  temporal — shift

Figure 4: Evolution of the one-dimensional CA Rule30 with four different neighbour-
hoods (a) a von Neumann neighbourhood (b) a left-shift neighbourhood (c¢) a right-shift
neighbourhood and (d) a temporal-shift neighbourhood

An initial inspection of Figure 4 (a). (b), (c) and (d) shows that the structure of the
neighbourhood corresponds to the pattern produced. The randomly distributed triangle
structures in Figure 4 (b) are simply the left half of the triangles in Figure 4 (a). whereas
Figure 4 (c) is composed of the right half of the triangles in Figure 4 (a). The patterns
demonstrate the difference among these three neighbourhoods. The pattern in Figure 4
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(d) is produced by operating Rule30 on a temporal-shift neighbourhood which involves
cells from both time steps ¢ — 1 and ¢ — 2. However the blurred image and the rotated
triangles that this produces barely shows any resemblance to the patterns in Figure 4 (a)
(b) or (c).

Because of the special construction of cellular automata which are synchronously updated
using the same Boolean function over the whole lattice, the data points that are available
are redundant for identification purposes and can be extracted in two ways as shown in
Figure 5 (a) and (b) respectively.

?

= E =
- - | 2
| v
Space space
‘a) ()

Figure 5: Extracting data points from one-dimensional C'A patterns

In Figure 5 (a), data points are extracted row by row/space-wise, while in Figure 5 (b),
data points are extracted column by column/time-wise. Since each cell is synchronously
updated under the same Boolean function, a change of the rows or columns when extract.
ing the data is not important. -

Assume initially that the largest possible neighbourhood is defined by {eell(j — 2:t —
1),cell(j —1;¢ — 1), cell(5: ¢ — ),cell(5+ 15t —1), cell(7 425t —1),cell(j+1;t — 2)} and
hence define the neighbourhood vector

at) = [ s(j—=2t-1) s(i-1Lit—1) s(jit—1) sU+1Lit—-1) sG+2t-1) s(j+1t-2) )" (10)
The candidate model term set (MT) will initially be constructed as

rL 00 0 0 07

00000
120000

4 5 6 0 0
12 3 4 5 0

w
(o]
[s]

3 4
123456j

where 1,2, 3,4,5,6 denote the rows in the neighbourhood vector. For example, an entry
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of ‘4’ represents the fourth row in equation (10) and is therefore associated with cell(7 +
1;¢ — 1), and so on. The full model set MT consists of N = 63 terms/rows. Each row
in this model represents a candidate term which corresponds to a term sgd=1,--- N
in equation (13) in the Appendix. For example, the first row (10000 0) represents
5(7 —2;¢ — 1) only while the last row (12345 6) corresponds to a product of six states
(7~ —=1)Rs(1— 1t =1) % o(st—1) Xs(j+1;t—1) xs(j+2;t—1) xs(j+1;t—2).
Five hundred data points were extracted from the patterns in Figure 4 (a), (b), (c) and
(d) respectively and these were used to fit the models. No a priori information regarding
the neighbourhoods or rules was assumed. In the simulation the threshold for the term
contribution [ct] values for the four models were all chosen as 0 and the CA-OLS estimator
searched through 63 possible candidate terms for each model. Finally four different models
were selected which were associated with four different neighbourhoods. The models and
the corresponding parameters @ are shown in models 1 — (a), 1=(b),1—(c) and 1 —(d).

(4 0 0 0 0 0 [ 1.0000 T 20 0 000 1.0000 T
2 4000 0 —2.0000 I 20000 —2.0000
2 00 000 1.0000 1 00 0 0 0 1.0000
MTI'=|2 3 0 0 0 0 =] =2.0000 MT'=]11 3 0 0 0 0 8= —2.0000
30 0000 1.0000 3 00000 1.0000
2 3 400 0 2.0000 I 23 000 2.0000
| 3 4 0 0 0 0| | —1.0000 | L2 3 0 0 0 0] [ —1.0000 |
Model 1 — (a) Model 1 — (b)
’_ 4 00 0 0 07 { 1.0000 ] ’_ 4 0 0 0 0 07 [ 1.0000 ]
34 0000 —2.0000 4 6 00 0 0 —2.0000
300000 1.0000 6 00 0 00 1.0000
MT'=]13 5 00 0 0 =1 —2.0000 MI'=13 6 0000 8= | —2.0000
5 00 00 0 1.0000 3 00000 1.0000
34 5 0 00 2.0000 3 46 000 2.0000
L4 5 0 0 0 0| | —1.0000 | L3 4 00 0 0| L —1.0000 |
Model 1— (c) Model 1 — (d)

The terms in model 1 — (b) represent the left-shift neighbourhood because all the model
entries are selected from {cell(j —2;¢t—1), cell(j — 1;¢ — 1),cell(j;t—1)}. Notice how the
CA-OLS algorithm has correctly selected only the appropriate three cells and discarded
the remainder. Combining the terms with the corresponding parameters @ , the identified
model describes the CA rule in the polynomial form

s(7it) = s(F—-1;t—1)—2s(5 — 2t —1) Xs(j—=1Lt=1)+s(j —2;t—1)
=25 =25t —1) xs(g;t —1) +s(g;t — 1) +2s(5 — 2:¢ — 1)
Xs(j—1Lit=1)xs(gt—1)—s(j —1;¢=1) X s(j;t—1) (11)

The terms in model 1 — (a) represent the von Neumann neighbourhood {cell(j — 1;¢ —
1),cell(j;t — 1), cell(j + 1;¢t — 1)} while the terms in model 1 — (¢) correspond to the
right-shift neighbourhood {cell(j;¢ —1),cell(j + 1;t — 1), cell(7+2;t—1)}. The result in
model 1 — (d) covers entry 6 which in equation (10) represents a cell at time step t — 2,
cell(j—1:t—2). Model 1 — (d) therefore defines a temporal-shift neighbourhood involving
cell(j — 1;t — 2), cell(j,t — 1), and cell(j + 1, — 1).

In each case the CA-OLS algorithm has correctly determined the appropriate neighbour-
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hood. Notice that the parameters 6 in models 1 — (a), 1 — (6), 1 = (c) and 1 — (d) are all
exactly the same but that each operates on a different neighbourhood and hence produces
a different CA pattern.

The measured output and the Model Predicted Output (MPO) for the von Neumann
neighbourhood are compared in Figure 7 where the M PO is defined by

Sm(J t) = f(‘gm(j‘*"jl; tH1)> T, §m(j_.7'25t%1)§ Ty ém(j‘l‘jl; t—h), e 'sém(j_j% t‘h)) '
The M PO is a more strict criteria for evaluating the performance of the estimator than
the One-Step Ahead prediction (OSA) which is defined as

.

Sm(7it) = f(sm(i+d1t=1), -+, 8m(—Jas t=1); s 8m(G+ iz t—h), - - “Sm(j—ja;t—h))

The comparison in Figure 6 clearly shows that the measured output and the predicted
output using the estimated model are almost coincident. The dashed line follows the
solid line without any deviation. The variance is virtually zero because the polynomial
expression is not an approximation of the CA rules but an equivalent representation. The
M PQO’s for other neighbourhoods also match the corresponding measured outputs exactly.
For simplicity, the comparisons are not shown in this paper.

4
i

bl

|
L
ERERR]

Figure 6: Comparison of the measured (solid line) and the model predicted output (dashed
line) for Rule30 with a von Neumann neighbourhood

The Quine-McClauskey [11] method was then used to extract the minimum Boolean ex-
pression from the estimated polynomial form for Rule30 with the left-shift neighbourhood.
The steps in this analysis are given below:

(1) Expanding the polynomial in (11)to the full disjunctive normal form [11] yields

s(ist) = §(j—-2¢t—1 *5(7 —1;t—1

(ii) The numerical representation of these forms, grouped according to the number of
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1’s, is
.§(j—2;t—l)*§(j—l;t—l)*s(j;z‘—l) 001
Group (1) with one 1 §(j—2;z‘%1)*.s(j——1;1‘—1)*§(j;1‘—L) 010
S(j%?:t—l)*bﬁ(j—1;t—1)*.§(j;fﬁl) 100
Group (2) withtwol's  5(j — 2;t — )ss(j—1;t—1)*s(j;t—1) 011 -

(iii) Comparing terms in adjacent groups, the following combinations can be found where

(iv)

* represents the dropped variable

For example. combining 001 in Group (1) and 011 in Group (2) vields 0*1, while
combining 010 in Group (1) and 011 in Group (2) produces 01%.

Again comparing adjacent groupings shows that now all the numerical expressions
cannot be combined with any of the others and hence all are prime implicants.

The original four terms are numbered as 1), 2), 3),74) and the prime implicants
are lettered as A : 5(j — 2:¢ — 1) * s(j;t — 1)y B:3(j—2it—1)#a(f—1;1t 1),
Crs(j—=2:t—1)%5(j—1;t—1)*3(j;t—1). A cross x is placed in the (j,7) position
of the table if the ith term was involved in the formation of the Jth prime implicant.
Table 2 then shows the contribution of each term to the prime implicant.

Table 2. Prime implicant chart for Rule30
1) 2) 3) 4

QW e
X
X

The essential crosses, which are defined as the only cross in the column. are bracketed
and the columns deleted are A-1) and A-3), B-2) and B-3) and C-4). Thus all
columns are deleted at this stage and hence the function may be represented by the

OR combination of A, B and C, or

which corresponds exactly to the entry of the Boolean expression for Rule30 in
Wolfram [8]. Similarly applying the Quine-McClauskey method to models 1 — (a),
I —(e) and 1 — (d) will produce correct results respectively.
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4.2 Identification of a two-dimensional 5-site CA rule

The spatio-temporal patterns produced by a two-dimensional CA evolution on a 200 x 200
lattice with a von Neumann neighbourhood are illustrated in Figure 7.

-—._ﬁ—d_,—__m._l—_,___

(@ B (o
=0  t=1 t=10 t=20 =30

Figure 7: Evolution of a 2-D CA rule with & 5-site von Neumann neighbourhood

Assume initially that the largest possible neighbourhood for this two-dimensional rule is

the 9-site Moore neighbourhood. Define the neighbourhood vector as

a(t) = [s(i—1,5—1:t- 1) s(i—1,5t-1) s(i— Li+1it—1) s(i.j—1;t—1) s(i,7 4 1;¢—1)
sE+17-Lt=1) s(i+1,5t—1) s(i+1,j+1:¢— 1) s(i,jit=1) |F

The initial model was constructed as

100000000
1 2 3 4 5 6 7 8 9
where 1, 2, 8,4, 5.6, 7 8.9 represent cell(i — 1,7 — 1:¢ — ,eell(i—1,5:¢— 1), cell(z —

a0, T,
L+ 1;t—1),eceli(d,j—1;¢ — 1) eell{i, g 13t — 1),cell(i4+1,7—1:¢— 1),cell(i+1,7;t—
1),cell(i4+ 1,7 +1;t— L) eell(e, .4 — 1) respectively.

[

[ —1.0000 7]
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—1.0000
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Model 2 — (a)

One thousand data points were extracted from the CA patterns in Figure 7 and the
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threshold for the [ct] cutoff was set to 0. The CA-OLS estimator produced a model with
only 17 rows after searching through the whole model set of N =2°—1 =511 candidate
terms.

The identified model 2 — (a) clearly shows that the CA-OLS algorithm has correctly
selected cells 2, 4, 5, 7. 9 which correspond to the von Neumann neighbourhood {cell(; —
Lgit=1),cell(i.j— 15t — 1), cell(i, j; t — 1), eell{d,7 4 1;¢ = 1),cell(i +1.j:t — 1)}. The
Model Predicted Qutput M PO superimposed on the measured output over the first 100
data points is illustrated in Figure 8.

a L=

4

Lop g
/I T T |

sl afli

0

—=.= L = =
S o et poaira

Figure 8: Comparison of measured (solid line) and model predicted output (dashed line)
for the 2-D CA rule in Figure 7

Applying the Quine-McClauskey method to mode] 2 — (a), the following final prime im-
plicants were obtained

A:.§(z}j;t—1)*S(i.j+l;i—l)*s(iﬁl,j;t‘1),B:§(1fjjﬁ1;t—l)*s(i,j-i—l;f—l}*s?(z'—l,j;t—1)
C:g(i.j;i—I]*s(i,qu-l;t—1)*5(2'*1,_)‘;{*1),19:E(i-%l.j;t—1)*5(i,j;t—1)*§(i—~l,j;iﬁl)
E:E(ij—l;tﬁl)*s(i.j;t—l)*s‘(i,j—{-l;i—1),F:5'(£+1,j;t—l)*s(i,j—l;t-l)*ir(i,j—l—l;t—l)
G:s(iJ—l;tHl)*E(i.j;t—1)*E(i,j—i—l;t-l),H:§(i+l,j;t—1)*s(i5j—l;tﬁl)*.§(i-1.j;t—l)
f:.s(z',j—1:t-l)*.§(zf,j;£~1)*E(i—l,j;t—l),J:s(-r',j—i;t—l}*é(i,j;t—1)*.§(i‘j+1;t%l)

Ro:s(i j—l;tﬁl)*sT(i.j—i-I;t—1}*3(1‘—l,j;t—l),L:s(i—l—I,j;t—1)*§(i,j+1:1‘—1)*5(:"l,j;t—l)
;1'[:.9(-1f+l,j;'tﬁl)*é(i‘j—l;r—l)*s(i,_}';t—1)

Finally therefore the Boolean expression of this 5-site two-dimensional rule is the OR
combination of all the above 4 — M 13 items.

4.3 Identification of higher-dimensional CA’s

4.3.1 Identification of a three-dimensional CA

Assume initially the neighbourhood for a three-dimensional cellular automaton with null
boundary conditions, that is the states of the boundary cells are permanently zero, covers
{cell(i—1,7,1;t—1), cell(i+1,7,5;t—1),cell(,5—1, 1 t—1),cell(i,741,1;t-1), cell(z, j, 1 —
L8 = 1),eail{s, 5,4+ 1; ¢~ 1), cell(z,7,0;¢ — 1)}. This in turn defines the neighbourhood
vector as
a(t) = [ s(i=1,7.5t~1) s(i+1,j,l:t~- 1) s{i,j—1.4¢-1) s(i.j+LEt— 1)
s(iv il = Lit=1) s(ijl+1t—1) s(i,jlt—1) ]
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The initial model was constructed as

1000000
MT = :
1 234567

where 1, 2, 3, 4. 3, 6, 7 represent {cell(i—1,7,[;t—1),cell(i+1, 7. ;t—1).cell(i,j—1,1;t—
1), cell(z, 741, =1),cell(z, 75,1 —1;t—1), cell(i, 5,1+ 1;t—1), cell(i. j. l;t—1)} respectively.
The [ct] threshold was set as 0 and after searching through a set of 2" —1 = 127 candidate
terms, the CA-OLS estimator produced a model with 53 rows and associated integer

parameters.

"3 6 4 1 2 2215881112182 1138355223811?+2
0053034265 2233446236503 40535
0004005306 353455603 4000435050
MT=|00035006400000GO0O0O0O0SG6 5000350000
0 00G60O0DO0S50000000O0O0O0O0O0O0O0G6 0000
00000006 000O0O0O0O0ODO0O0O0O0O0D0O00O000O0O0 0
L0 0O O0O0DO0ODO0DD0DO0OOODOO0O0O0O0O0OOOOOO0O0O0O0O0TO0 0
1 3122 4211121112111112234111]"
34 2 3 4042 4233233222 42344€6 3 2
4 0 3 4005460604543 34034605066
6 04 00006 0O0UO0GO0S5 65 4500460600 0
000 00DO0O0O0OODOO0O0O0DO0O0OS50006 000000
000 0O0O0O0OO0DOOO0O0O0O0O0O0O0OO0O0O0O0O0O0 0
0 0000D0OOOOO0O0O0OOOOO®OOOOO0O0 0|

4= [ 1.0000 1.0000 -1.0000 1.0000 1.0000 -1.0000 -1.0000 -1.0000 -1.0000
2.0000 2.0000 1.0000 3.0000 1.0000 1.0000 2.0000 -1.0000 -—1.0000
—3.0000 -1.0000 -2.0000 1.0000 1.0000 3.0000 -1.0000 2.0000 -—1.0000
—3.0000 -2.0000 -4.0000 3.0000 -—2.0000 1.0000 2.0000 -—2.0000 1.0000
—1.0000 1.0000 -1.0000 -2.0000 -1.0000 -3.0000 4.0000 -2.0000 2.0000

—1.0000 4.0000 —3.0000 2.0000 -—2.0000 —1.0000 1.0000 1.0000 ]T
Model 3 — (a)

Inspection of model 3 —(a) shows that only terms defined by 1, 2. 3, 4, 5, 6 are involved in
the identified model which in turn represent the correct neighbourhood {cell(i—1,7,1;t—
1), cell(i+1,7,;t—1),cell(i, j—1,1;t=1), cell(z, j+1,1;t=1), cell(i, j, {—1;t—1), cell(i, j, [+
1;¢ — 1)} shown in Figure 3.

Figure 9 shows that the model predicted output follows the measured output almost per-
fectly and demonstrates that the CA-OLS estimated CA model exhibits excellent perfor-
mance even for this three-dimensional cellular automata. Applying the Quine-McClauskey
method to the polynomial in model 3 — (a) produced the correct Boolean expression of
the OR combination of 28 prime implicants. For simplicity the prime implicants are not

listed.
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Figure 9: Comparison of measured (solid line) and model predicted output (dashed line)
for a three-dimensional CA rule

4.3.2 Identification of a four-dimensional CA

Data extracted from a four-dimensional 12 x 12 x 12 x 12 cellular automaton with null
boundary conditions will be used to illustrate the identification. The initial neighbourhood
was assumed to encompass {cell(i—1.7,(, k; t=1),cell(i+1, 7,1, kit—1),cell(i,j—1,1 kit —
1), cell(i,j+1,0,k;t—1),cell(i, -1, kit —1),cell(i. j,0+ 1, k; t—1), cell{ic 3, L, b~ 171 —
1), cell(d, 7,0,k + 15¢ — 1), cell(d, 5,1, k: t — 1)}. This in turn defines the neighbourhood
vector as

a(t) = [ s(i—1,j,0,kit—1) s(i+ 14,0 kit=1) s(i,j—1,0,kt—1) s(L,J+ 1,0kt —1)

The initial model was constructed as

1 0000O0GO0O0O0
MT = ;
123456789

where 1, 2, 3, 4, 5, 6, 7. 8, 9 represent feell(i — 1, 4,1 kit — 1),cell(v + 1,7,0, kit —
1), cell(i,j—1,,k;t—1), cell(i, j + L kst—1),cell(i, 3,0 — 1, k;t —1), cell(i, 5,0+ 1, kit —
1), cell(i, 7,0, k—1;t = 1), cell(v, 7, L, k+1;¢ — 1), cell(i, 7,0, k; t — 1)} respectively. The [ct]
threshold was again set to 0 and the number of possible candidate models was 2°—1 = 511.
The CA-OLS estimator produced a model with only 14 rows and the associated integer
parameters given in model 4 — (a).
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Model 4 — (a)
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A comparison of the measured output and the M PO is shown in Figure 10 and again these
are virtually coincidental showing that the correct model of the CA has been estimated.

JWLIV T UYY

Figure 10: Comparison of measured (solid line) and model predicted output (dashed line)

for a 4-D CA rule

Comparing the estimated model 4 — (@) with model 2 — (a) shows that the structure in
model 4 — (a) is much simpler than that in model 2 — (a) although the former is extracted
from a 4-D CA while the later is from a 2-D CA. The computation time for both are
approximately the same. It can be seen that the efficiency of the CA-OLS estimator
relies largely on the size of the neighbourhood, that is the number of cells within the
neighbourhood. rather than the order or dimension of the CA and this can dramatically
simplify the problem of identifying higher-dimensional cellular automata.

Applving the Quine-McClauskey method to the polynomial produced from model 4 — (a)
the correct Boolean expression of the O R combination of 9 prime implicants was obtained.
For simplicity the prime implicants are not listed.

5 Conclusions

While many authors have demonstrated that simple CA models can produce complex
spatio-temporal patterns few investigators have studied how to recover such models given
only the data patterns. One possible solution to this important problem has been intro-
duced in this study using the new CA-OLS estimator.

The new estimator exploits the observation that binary CA rules can be exactly rep-
resented as polynomial models which collapse to relatively simple forms even for high-
dimensional CA’'s. This transforms the problem from a nonlinear-in-the-parameters to a
linear-in-the -parameters formulation. The neighbourhood of the CA can then be deter-
mined using a modified orthogonal least squares estimator. Identifying the neighbourhood
of the CA is critical if the underlying rules are to be estimated and it has been shown
that the term contribution test is an efficient solution to this problem. Once the neigh-
bourhood and the polynomial model parameters have been obtained the model can then
he mapped back to a Boolean form using the Quine-McClauskey method.

The only information required is to set the range of the largest expected neighbourhood
over which the algorithm searches for candidate model terms. The CA-OLS estimator
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then searches through all the possible terms and discards all terms below the [ct] thresh-
old to yield the estimated model. The mcdel predicted output is used as a metric of
performance to validate the model.

Several simulated examples show the power of the new approach and demonstrate for the
first time how CA models can be extracted from data generated from high-dimensional
CA systems.
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Appendix

The CA-OLS algorithm

Consider the polynomial expression for three-dimensional CA’s in equation (9) for ex-
ample. Denote (w1, -, tn, -+, U1 X -+ X u,) as (s1.-++,8n5). Equation (9) can then be
written as

N
s(,0,57) =) sa(T) x 8 =s(7) x 0 (13)
d=1
where 7 indicates the order of the data point and

i=[6 0 - o5]

and

s(r) = | s1(r) sar) oo+ sn(r) ]

Equation (13) can also be represented in a matrix form as

s(i.j,l) =8 %0 (14)
where "
s(i, 0,0) = | s(i,5,6:1) s(i,5,5;2) - s(i,5,; M) |
B [ s (1) Y o~ sT(M) JT: { S; '+ Sy J

and M denotes the number of data points in the data set.
Matrix S can be decomposed as S = E x Q, where

er(l) -+ en(1)
E= 5 : = [ €1 ey ]
ex(M) -+ en(M)
1s an orthogonal matrix,
ET % E = Dmg{elxel e:{rxe,\r}




and Q is an upper triangular matrix with unity diagonal elements

1 Q12 Q3 - @y |
L g -+ gy
Q s F . .
1 gN_1N
I 1]
Equation (14) can then be represented as
s(i,/, ) =ExQx0=E x 8 (15)
where _ ) i .
g:QXH:[@I 9\’]

Therefore, equation (13) can be written as
s(i, ,5;7) =Y eq(r) x 4, (16)

The contribution each term f8g. d =15 , NV} in equation (14) makes to s(z,7,() can then
be calculated as

%Xzﬁﬁﬂﬂ
> 82(i, 4,4 7)

The sum of all the [ct] values will be unity so if [et] were multiplied by 100 this would
give the percentage contribution that each term makes to s(7,7,1). The orthogonalization
of S simplifies the term selection process and allows each relevant term to be added to
the identified term set MT independently of other terms. The parameter vector f can
then be estimated by computing each @, one at a time. However in the term selection
process, [ct]; may depend on the order in which 84(7) enters equation (13). A change of
the position of s4(7) in equation (13) may result in a change of the associated [ct]s value.
Consequently simply orthogonalizing the columns in S into equation (15) in the order
in which s4(7)’s happen to appear in equation (13) may produce the wrong information
regarding the corresponding contributions. To avoid this problem the following forward
regression algorithm is used. This algorithm will forward add terms instead of forward
deleting terms and will therefore disregard the order that s4(T) enters equation (13).

{Cf]d = (17)

The forward regression CA-OLS algorithm is given by:

(i) Consider all the 54(7) as possible candidates for ei(r). Ford =1,---, N, calculate

M d i @
My e(r)s(i. . 7)

M o 9
M (el(r))2

a(d)
0, =

O]
o




[Cﬂ{d) _ (é(d))z ¢!1(e§d)(7))2
' M 82 (2. 3,dz7)

Find and denote the maximum of [t as (1] = maz {[ct]1 Wl g " N} The
first relevant term e,(7) is selected as el¥) (7) and 4, = §®), [t = [ct]™). The
corresponding s,(7) is then included in the identified model set M7

All the sy(7), d =1, ... IV, d # v are considered as possible candidates for e%”)(r).
Ford=1,--- N, d+# v, calculate

es’(7) = s4(7) — gDy (r)

50 _ Ty e (r)sti, g, )
2 - X
Toly(e5”(7))?

(9"&@)2 M (egd)(r))z

(d) T=1
ct =
let] Zi‘f_lsz(i.j,f;r)
where ”
o&) = Zr=1 €1(7)s4(7)
- 24(1 ef(”r)

Find and denote the maximum of [ct]gd) as [ct]? = maz {[ 84 1 <d< N,d+# }

The second term ey(7) is therefore selected as egg)(T) = 5,(1) — ¢¥ey( 7) and g5 =
qlg 0, = §la), [ct]; = [cz‘](g), The corresponding s,(7) is then included in the
identified model set MT,

The procedure is terminated at the Nsth step either when 1 — i ety < Cors
(desired tolerance), N, < N or when N, = N.

From the selected orthogonal equation

N
s(i,7,0;7) :Zed

d=1

it is then straightforward to calculate the corresponding N, parameters § using

QNS = 9;\73

Cb.'

Z kagku m_NS_I:‘""Jl
k=m+1
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