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Research Report No 641

September 11, 1996

Abstract The frequency domain theory of nonlinear analytic input-output
maps is studied, directly in the frequency domain. By expanding the ‘Fourier
transform’ of the input-output map as a Taylor series in an appropriate function
space and applying Schwartz’ kernel theorem, we obtain a general theory of
nonlinear systems in the frequency domain. This obviates the necessity of using
‘association of variables’ in the time domain and leads to a much more general
theory.
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1. Introduction

The frequency-domain theory of nonlinear systems began with a study of the
Volterra series of a bilinear system of the form

t=Azx+uDx+bu , =z(0) =2

A typical term in the Volterra series solution of this equation is of the form

fot /OTI s -]UTk Ki(t, 7, - me)u(m) - - wlme)dm - - - dryg (1.1)




where the kernel K} has a number of possible representations; for example, in tri-
angular or regular forms (see [6]). A number of subtle transformations of the pa-
rameters 7y, - - -, T are then made in order to make (1.1) look like a k-dimensional
convolution. The theory of k-dimensional Laplace transforms can then be applied
and a k-dimensional ‘transfer function’ can be defined. These transfer functions
then form a basis for a generalization of the classical theory of linear systems in
the frequency domain (see [1],[2],[3],[4], [5]). As is pointed out in ([6]) the transfer
functions may be used to determine the response of bilinear systems to simple
inputs, using residue theory, but general inputs pose much more of a problem.

In this paper we show that by using the input-output map directly in the
frequency domain and applying Schwartz’ kernel theorem ([7]), all of the mysteries
of the time-domain approach disappear and the frequency domain kernels are
easy to obtain, but are generally distributions. By using the convolution algebra,
we can even consider general nonlinear systems and develop a truly universal
frequency domain theory.

In section 3 we consider analytic input-output maps and develop a general
frequency-domain theory of nonlinear systems, giving as examples linear and bi-
linear systems. In section 4 we apply the kernel theorem to derive directly a
frequency-domain Volterra-like representation based on kernel distributions. In
sections 5 and 6 we show how the theory applies to time-varying bilinear systems
(which may be distributed) and general linear-analytic systems.

2. Notation

F = Fourier transform

LF[a, b; X] = space of integrable functions with values in a (Banach) space X
LP[a,b] = LP[a,b; R]

Li[a, b; X] = elements of LP[a, b; X] which are zero after T

L(X,Y) = bounded operators from X into ¥

LX) = L(X, X)

f * g = convolution of f and g

6 = Dirac delta distribution

D'(X) = space of distributions on X

C°(X) = space of infinitely differentiable functions with compact support on X
(-,-) = duality in C®(X), D’'(X)

i= (i1, ,%n) (n-tuple of integers)

| =yt eodod,
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1; = (0,"',0,\1{_{,0,"‘,0)

k
If f is an analytic function,
i il
F90) = s——=—1(0)

T fed s
oz - - B,

3. Frequency Domain Theory of Nonlinear Systems

In this section we shall consider a causal nonlinear system .S defined on the Hilbert
space L2[0,00) of all measurable, square-integrable real-valued functions on the
interval [0, o) which are zero for t > T, i.e.

u(t)=0 if ¢t>T,

for some 7" > 0.

By causality, the output y = S(u) is also zero for t > T. We shall assume
that S maps L3[0, oc) into itself. (For input-output stable systems we can take
T = oc.) Let F denote the Fourier transform. As is well-known,

F: L*(—00,00) — L*(—00, o0)

is an isomorphism and so F maps L%[0, 0c) one-to-one and isometrically into a
subspace L2[0, oc) say of L?(—oc, oc). (Note that this notation does not imply
that v(w) = 0 for w > T for any v € L2[0,00) .) We define the transformed
system S by

Sw)=FSF(v) . (3.1)

Thus, S is defined by the commutative diagram

L30,00) - L2[0, )
L L F
L3[0,00) 5 I2[0,00)

Lemma 3.1 If S is an analytic function on L3[0,00), then S is analytic on
LZ[0, oc) .

Proof Since F is invertible and linear, it is an analytic map; hence § = FSF-1
is analytic as a composition of analytic maps.O
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Since S is analytic we can expand it in a Taylor series:
Sw) =" M;(v) (3.2)
1=0

where M; is a form of order i defined on L2[0, 00) .
Example 3.1

(1). Linear Systems:

Consider the causal linear system with zero initial condition

§: g(t)= f;g(t — 7)u(r)dr
Then we have
Y (iw) = G(iw)U (iw)

so that S is simply multiplication by G(iw). Note that we can write S in an
integral form:

Y (iw) = / " 6w — )G (iU (i )de! (3.3)

with kernel the point distribution [ 6(w — o')G(iw/).
(2). Bilinear Systems:
Consider the causal single-input distributed bilinear system

t=Ar+uDz+bu , z(0)=2 , z¢c L*}Q).

The solution is given by the Volterra series

z(t) = eAt.?;o n [t eA(f.—S)bu(s)d.s—f— i/t /Tl ‘s ]Ti_l Alt=m) pA(ni-m) 1y . | .
0 ~Jo Jo 0
e DeA(‘"""l_Ti)DeAﬁwgu(Tl)u('rg) ceu(m)dr - d

+§:/ | f e f - / " A=) DeAM=m) [y .. DA(mi-1=) DAt}
=10 Jo 0 0

“(TI)U(TS!) T U(Tm-l)dﬂ o ldTot

where e is the semigroup generated by A. The association of a series of frequency
domain kernels is then a complicated procedure of extending each integral to be
a function over the rectangle [0,¢] x [0,¢] x -+ x [0,#] (i or i+ 1 factors) and then
replacing the t’s by t1,---,%; (or t;+1). The integrals then become i (or 7 + 1)-
dimensional convolutions which can be operated on by an 4 (or 7 + 1)-dimensional
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Laplace transform. Only in simple cases can the resulting expressions be related
easily to the time domain (see [6]).

We can derive a frequency-domain theory for this bilinear system directly by
taking a one-sided Fourier transform (the system is assumed causal):

in:AX-l—%U*DX-FbU-FSE(O)

since the Fourier transform takes products to convolutions. Hence, if iw ¢ o(A),

1
(1 — ool — AU D) X = (iw — A" (U (w) + 2(0))
Suppose that A is a closed linear sectorial operator (see [8],[9]) with dense domain

so that
M

liw — al

I(fw — A)~H| <
for some real a and for all iw in the sector
Sup ={N: ¢ < |arg(A—a)| <7, A #a}

where ¢ € (0, 7/2). Thus, if U € L'[0, oc), then the operator K defined by

1
2
satisfies
1 ) e
X a0y < 2 “(W — A) ”.c(Lz(n)) 1U * (DX)| 120 L2(0,00)
1 ) g )
< 3 169 = 7 ey 10T 1Pl X 520 £2(0,00)
1 M
o el Dllme a1
= an I?;w _ ﬂJ (IU' * H HE(L2(Q))“ HLZ(Q)) Lo
M 1
S o ] ”U”LI 0,00 ”D“ﬁ L2(Q Ilele(O,OO,LZ(Q
Qﬂ'l liw — a L2(0,00) (0,00) (L2()) )
M
S :ll_a,l"|UHL1{O’DO)HD“[‘(LE(Q))||XHL2(0,OO,L2(Q))
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(by Young’s inequality), i.e
M
| K] < m”U”Ll(O,oo)“DHE(LZ{Q))

Hence, if

4a|

M|D] (34

HUHLl(o,oo) <

then
Kl <1
Now, under condition (3.4) we have
X=I+K+K+E>+--)(i(-) — A7 (bU(-) + z(0))

by the Neumann series (see [9]). Let us evaluate explicitly the expression &, =
K?(iw — A)~'bU. We have

b = 5 L KP1(w — A)- ]m U(w — w;)D(iew — A) ™ bU (wy)deoy (3.5
= 2;lr) KP2(iw — / f (w — w2)U(wy — w)U(w;)D x

’[:C.UQ — A) 1D(zw1 == A) bdwldwg

A [ [V ) Ul )
D(zwp A)7'D--- D(iw; — A)~ lbdwl---dwp
= 277 / / — wp 1)U (wps1 — wp)U(wp — wp—1) -+ - U(wz — wy)U(wy) x

(zwp i=— A) ID(?qu = A) I.D _D(mrl A)Mlbdwl © -dwp*l

This gives (almost) the standard kernel used in the well-known theor V of frequency

domain representations of bilinear systems (see [6]) multiplied by e }, = O(w—wpi1),
18

1 :
K(wl, " wp+1) = W&(w—wp_;g)(iw%l*A)*ID(?ZLJP—A)_ED e D(?-Ldl_A)MIb .

It therefore provides a simple explanation for the terms in the Volterra kernels in
the frequency domain and the response to any input U(w) can easily be obtained.
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4. General Input-Output Maps and the Kernel Theorem

In this section we show that the expression (3.5) is, in fact, a special case of a much
more general result; namely, that any analytic input-output map on L2 %10, 00) can
be written in terms of an infinite sequence of kernels. To do this we use Schwartz’
kernel theorem (see [7]) which we can state in the form
Theorem 4.1 The space of distributions D'(X xY') on the product space X xY C
R™ x R"™ s isomorphic to the set of continuous linear maps {K : C=(Y) —
D'(X)}.0

Under this isomorphism, K(z,y) € D'(X x Y) corresponds to K : CY) —

D'(X) where Kwv is the distribution on X given by

Co(X) 3 u— (K(2,y), u(z)v(y)) .
This is usually written in the form
(Kv)( f K(z,y)o(
For example, 6(z —y) € D'(X x Y) and

fff(w — y)u(y)dy = v(x)

and so 6(x — y) is associated with the natural injection C(Y) — D'(X).
Now, returning to the input-output map S : L2[0,0c) — L2[0, oc) we have
seen that if S is analytic it induces a map

which is also analytic. Writing

B = iM,-(U)

in the form of a Taylor series we have

Fi5(0)
M;(v) = .1( ),®
il
where F' is the Fréchet derivative and v® =(v,.-.,v) . Thus, M; determines a
——

i
symmetric multilinear form

M?._(T_,l’ . 71,?.‘) c E(A}ﬁ(A’ S ’L‘(A’A) ;5 ))
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where A = E%[O,_oc).
Theorem 4.2 M; can be represented by a kernel distribution

K; € D'([0,00) x [0,00) x - -+ x [0, 00))
Proof This follows from theorem 4.1 by induction. For example, consider
M,y € L(A, L(A,A)) .

Restricting Ms(v1,-) to C([0, 00)) we can write

My (vy, u9)(w) = /)'Ug(wg)dwg

where K (w, wz;v1) € D'([0,00) x [0, 00)) for each v;. Again, restricting My(-,v,)
to C°([0, oc)) we have

My(vy, v3)(w) = /K(w,wl,wg)vl (w1 )vo(ws )dwdwy

for some K, € D'([0,50) x [0,00) x [0,0¢)), since K (w,ws;v;) induces a map
K': C([0,5¢)) — D'([0,0¢) x [0,00)) given by

K'(v)(w1,ws) = K(wy,wp;v) O

Example 4.1 We have seen explicit examples of the kernels in example 3.1; for
a linear system we have

K] (u.)l., UJQ) = (5((.:)1 = wg)G(iwl)
and for a bilinear system

Kp(wn, -+ wpi1) = 8(wy — wa) (iwp — A) ™ D(iws — A)'D - - Dliwye; — A)~16. O

5. Time-Varying Bilinear Systems

In this section we shall consider the time-varying bilinear system

&= A(t)z +uD(t)z + b(t)u , 2(0) = 24 € L3(Q) (5.1)




where A(t) is a sectorial operator for each ¢ > 0. Since the convolution algebra is
associative we can write the Fourier transform of this equation in the form

g . 1 -
iwX =AxX + U*D*X+?6*U+m(0) (5.2)
i

1
(27)?

where A = F(A(t)),D = F (D(t)) and b = F(b(t)), assuming they exist. Thus,
for example, we assume that A exists in the strong sense:

f ” A(t)ve™ ™ dt
0

exists in L*((2) for all v € NysoD(A(2)).
Consider the equation

(TX)(w) = iwX (w) — (A * X)(w) = S(w) (5.3)
for X in terms of S. In the time domain we have
&—Alt)z=135(t), z(0) =0

so that

sl = /; Q(t, 7)s(T)dT

where @ is the evolution operator generated by A(t). Thus,

t
el < [ 19z s dr
Now assume that
”@(f,?‘)”ﬁuz(g)) S Geg(tmﬂ.
Then, if £ > 0, we have

t
et ”x(t)“LZ(Q) < Crfo el—e+D(t-7) —er HS(T)H g

Let w = e™*" and let H, = L%([0, oc); L%(f2)) denote the space of all measurable
functions z(¢) such that

1
2

21, = 2@ 0oopazan = ([ ¢ 1@l fagaydt)* < oo

g




Then F is an isomorphism of H,, to H, and by Parseval’s theorem

1

Il = ([ X2)dw)” = X,

where - _
X.(w) = fo e | (t)|| gy ¢

Hence we have proved 5
Lemma 5.1 The operator I" defined in (5.3) maps H,, into itself, is invertible and

Iy < € [0
(Hw) 0

From (5.2) we have

1 ! T _i —17 =1,
(I (2%)2r U*D*))X*Qﬂ_f‘ bxU+T7z(0) .

If X € H, we have, for K = —(gle—)gP‘lU * Dx

T .
1EX 5, < G2 1T gy 1012 comeed 1P s ooz X e
and so, if
L B N
(2m)2e—0 10121 -co,00 ”D LY (~coooit(z2 (@) = |
we have

1Kl 2z, <1
Hence, as in section 3, we have
1 =
X=(+K+K +K%+...) (Z—F‘lb aTr4 r—lm(O)) .
s

Consider the term i
& = _‘Kp(l—‘_l5 +U) .

27
In order to express this in integral form, note that we have the maps

C2([0,00) ® LX) — L2([0,00); LA(Q)) T L2([0, o0); LX)
< D'([0,00) ® L*())
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which are continuous and so, by the kernel theorem, their composition is given
by a kernel. Since the first and last maps are injections, this induces a kernel
representation on I'™!. We write

(X)) = [~ gew,w)X (@)dor
where v € D(([0, oc) x [0, 00)) ® L?(£2)). We have

g = 2i KPI0-Y(U « DT %+ U

= —KP 1f / / f f Y(w, ws) D(ws — wg — w3)y(ws, wy)

xb(wg — w1)U(w;)U(w5)dw1dw2dw3dw4dw5

1 o0 00 e
= = / - f Y(w, wap—2)D(wsp.2 — Wap+1 — wap)Y(wsp, wap—1)
—00 —00
3p+2
X D(wsp—1 — wip—2 — wap-3) -+ ¥(we, ws) D(ws — wy — ws)y(ws, wy)

XB(W'Z - wl)U(wngg)U(wgp,l) ek U(w5)U(w1)dw1 s dw;gp+2 .

Here, the kernel is to be interpreted in terms of the tensor product of distributions.

6. General Nonlinear Systems

We now come to consider the gerenal finite-dimensional nonlinear system

& = f(z)+ug(z) (6.1)
y = h(z)
where f, g are analytic vector fields defined on R”, and h is an analytic function
defined on R™ For simplicity of exposition we shall assume that u and y are
scalars; the general case is treated in the same way. Also we suppose that F{0)= 0.

We shall use the Carleman linearization method (see [1]) to write (6.1) as an
infinite-dimensional bilinear system. Thus, we define

By, = 3;111 £ -?Ji“ . (6.2)

e |




By Taylor’s theorem,

70) = S 700, aule) = 3 Z400) Z h0(0

e i—o !
e 70 I#D
where 1 = (ili;-’iﬂ)’ il =dgleeodnly ol = afale | F= (i, )T and
g=1(91,"",9.)". Hence
¢ = qb“ i
= sz.w . ”c 1"'35;”3;3];

= sza ; u 1 Z (.1) +”’Z§Tgi?)(0)
j=0 <

.1}‘0 70

_ Zz?k dj— 1kf(J) ZZ itj— 1; (J} 0)

R]._]O —1j=04
Jj#0 j#0
= Y A g+ 33 B -rn gy,
j=1 k=1 J_1+1) * ! _]ilk:l']_l—l_l)]k -

where 1, = (0,---,1,---,0) with 1 in the k*" place. Let ¢ = (@4, ....4,) denote the
infinite-dimensional rank-n tensor with components Qiy iy 41 2 0, and let A and
B be the tensor operators defined by

(49); = ZZ(J_1+1) O

_]lRl

(B(b)i = ZZ (,]gl-l-l );gi(rJ IAIK)(O)@J

Then equation (6.1) can be written in the form

¢ = A¢+uBo (6.3)
y = cp

where




In order to define the ‘size’ of operators involving A and B we introduce
Definition 6.1 Let 7 be the set of all tensors

T = {(Til,l..zin) LT o R ,1> O}

f3 M

such that the norm

([Co.

’ o] [es] ‘7’. ) “2 %
= L) w50, O
ilzz:o inz—o (ir!- -+ in!)
Lemma 6.1 7 is a Banach space. O
Since o (o 2
oo 1 2
.EI Ll .’L',nn D
- =exp(z? + - +2a2)
7:23 z:nzzjo ((ALERRE ) ' "
we see that tensors of the form (6.2) belong to a subset S (not, of course, a linear
subspace) of 7.

Suppose that P is a map from S into S . We define the norm of P by

1Pg]
P = e
P13 o

Now consider the unforced equation
d= flz) ; ={0) = (6.4)
which has the linear representation
b= Ad.

Suppose that f(0) = 0 that 2z = 0 is an exponentially stable equilibrium point of
(6.4) and that B 3 0 is a subset of the basin of uniform exponential stability of
(6.4). It can be seen that the solution of (6.4), for zo € B is given by

&(t) = Mo , ¢o = (2'(0))
where ¢(t) = (2'(t)) and z(¢) is the solution of (6.4). Since 2 € B we have

|lzi(t)| < L ||zol| €™, for each i€ {1,---,n}
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for some L,a > 0. Hence,

eAtgﬁ
o) = g ” umf“
< o (L2l uxgnz) |

We have therefore proved:
Theorem 6.1 If the conditions above hold and B is bounded then

l'eAtHo(s,S) < Me™

for some M where O(S, 8) is the space of (nonlinear) operators from S into S.
O

Remark If the system (6.4) is only asymptotically stable (but not exponen-
tially stable) a similar inequality holds for some function v(t) replacing e~* with
v(t) — 0 ast — ox.

Corollary 6.1 The Fourier transform

}_‘(eAt) an / eAtefiwtdt

0

exists in O(S,S) with

From (6.3) we have

Hence,
B(iw) = F(e™) (i) b(0) + %f(eAt)(iw)(U(zm) + B&(iw))
and so
(1 - %F(e"”)(iw)[f(iw) ; B) (i) = F(e)(iw)$(0) . (6.5)
Let 1
K= ﬂf(em)(iw)U(iw) %8

14




Then
M
“K”Lz([o,co);S) = LQ.;TE “UHLI(G,oo) “BH.S‘ :

If g
ma
i < e
190 < 37T,
then

€1l 22 10,0015 < 1
and we have, from (6.5),

P(iw) = (I + K+ K* + ) F(e™) (iw)$(0) .

In a similar way in which (3.5) was obtained, we have

p AW _ 1 o0 *® x i
N0 = Gl [ [ by 0
R(iw,; A)B - BR(iwy; A)p(0)U(wp..1 — wp)U(wp — wp—1) X
e Ulwy — wy)dw - - e (6.6)

where we have written

R(iw; A) = F(e*) (iw) .

Example 6.1 In order to illustrate the theory in this section, we shall consider
the scalar system
i=—2+zu

keeping it as simple as possible to make the computations clear. Thus,

00 -1 0 -
00 0 -2 0
A= 00 0 0 =30
and so
L0 —t 0 35 0 -3 0o 32u4
el — 01 0 =2t 0 %# 0 _'2_.3-.4!._6153 0 2.44.!6.8t4

15




1 1 S T
mr 0 3gy 0 =535k 0

L
0 0 -y 0 2 0 < L (87)

- Bl o

& =—2®, #(0) =g
has solution given by
2
22(t) = — 9
1+ 2t}

and it follows that “e‘”“ < (1th%ng72 A bound on H]—"(e’“)“ can easily be found
as

o z2coswt o z2ginwt
F(ett < / M—dt / 0 g
H i )H = A o (14 2tz3)3/? + o (14 2tx3)3/2
=
Hence if N 5
U < s 2R , (since ||Bl|le = |z
“ HLl{O,oo) QHBHS UCICEOJ ( “ HS JUD
the series in (6.6) exists with
1 0
2
B: 3

and R(iw; A) given by (6.7).0

7. Conclusions

In this paper we have considered the general frequency domain theory of nonlinear
systems and have shown that by working directly in the frequency domain the
need for complicated ‘association of variables’ is not necessary. We have seen
that Schwartz’ kernel theorem gives a sequence of distributional kernels which
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have a direct relation to the kernels obtained from the Volterra series approach
in the time domain. By applying global linearization techniques we can even
derive explicit expressions for these kernels. The application of these methods to
resonances in general nonlinear systems is an important step in understanding the
frequency domain behaviour of nonlinear equations. We shall examine this in &
future paper.
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