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Using common variants to indicate cancer genes

Lucy F. Stead1, Helene Thygesen1, David R. Westhead2 and Pamela Rabbitts1

1 Leeds Institute of Cancer and Pathology, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
2 Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom

The catalogue of tumour-specific somatic mutations (SMs) is growing rapidly owing to the advent of next-generation sequenc-

ing. Identifying those mutations responsible for the development and progression of the disease, so-called driver mutations,

will increase our understanding of carcinogenesis and provide candidates for targeted therapeutics. The phenotypic conse-

quence(s) of driver mutations cause them to be selected for within the tumour environment, such that many approaches

aimed at distinguishing drivers are based on finding significantly somatically mutated genes. Currently, these methods are

designed to analyse, or be specifically applied to, nonsynonymous mutations: those that alter an encoded protein. However,

growing evidence suggests the involvement of noncoding transcripts in carcinogenesis, mutations in which may also be

disease-driving. We wished to test the hypothesis that common DNA variation rates within humans can be used as a baseline

from which to score the rate of SMs, irrespective of coding capacity. We preliminarily tested this by applying it to a dataset of

159,498 SMs and using the results to rank genes. This resulted in significant enrichment of known cancer genes, indicating

that the approach has merit. As additional data from cancer sequencing studies are made publicly available, this approach

can be refined and applied to specific cancer subtypes. We named this preliminary version of our approach PRISMAD (poly-

morphism rates indicate somatic mutations as drivers) and have made it publicly accessible, with scripts, via a link at

www.precancer.leeds.ac.uk/software-and-datasets.

Cancer develops via the accumulation of somatic mutations

(SMs), some of which confer a selective advantage to the

tumour, enabling it to proliferate abnormally. Distinguishing

such driver mutations, which highlight candidate genes for

targeted therapeutics, from passenger mutations (nonpatho-

logical by-products of the underlying mutagenic process) is

an important task. Two main approaches exist: (i) prioritise

mutations predicted to detrimentally affect an encoded pro-

tein1 and (ii) identify genes repeatedly mutated within, or

across, cancer subtypes.2 The latter results from the hypothe-

sis that SMs in genes causally associated with cancer undergo

positive selection in tumours, occurring more often than

expected by chance. Scoring this requires determination of

the background mutation rate (BMR), given the commonly

hypermutated state of cancer genomes, from which to mea-

sure the significance of the mutation count in a given gene.

Often the rate of synonymous SMs, scaled by the ratio of

potential nonsynonymous:synonymous mutations, is used,

under the assumption that synonymous mutations are selec-

tively neutral (i.e., phenotypically silent).2 This is flawed: (i)

it restricts analysis to protein-coding genes and (ii) the

assumption of selective neutrality is increasingly hard to jus-

tify owing to the prevalence of functional noncoding tran-

scripts. Nonprotein coding genes include microRNAs

(miRNAs), long intergenic noncoding RNAs (lincRNAs) and

pseudogenes, all shown to have causal associations with vari-

ous cancers.3 The functionality of these transcripts results

directly from nucleotide sequence, rather than encoded

amino acids, based on binding other nucleotides or proteins

in a sequence-specific manner.4 Genetic variation within non-

coding transcripts will, therefore, alter their functionality with

potential phenotypic consequences, but the notion of nonsy-

nonymous and synonymous variation does not apply. Addi-

tionally, synonymous mutations in protein-coding genes can

exert a phenotypic effect by altering the resulting mRNA’s

ability to (i) interact with regulatory noncoding RNAs or (ii)
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fold stably, directly affecting translation.5 We hypothesise

that the amount of variation observed within a transcript in

nondiseased tissue is a measure of that transcript’s tolerance

to mutation, and that if the number of observed tumour-

specific mutations exceeds this level it suggests positive selec-

tion in the tumour and a possible role for that transcript in

carcinogenesis. This hypothesis is best tested in a tissue-

specific manner, as mutational signatures in cancer vary by

subtype owing to different mutagen exposure and disease

processes.6 However, this requires a database of known SMs

in nondiseased tissue of origin of the cancer in question.

Such a database does not currently exist as blood is most

commonly used as the matched normal for genomic sequenc-

ing. However, these data will likely be available in future

owing to RNA sequencing, which often includes a matched

nondiseased tissue of origin to provide an expression

baseline.

As the most ideal datasets for testing our hypothesis are not

available, we opted to investigate whether the rate of common

human germline variation [i.e., the common polymorphism

(CP) rate] could provide an alternative BMR for scoring SM

rates in cancer genomes. Most oncogenes and tumour suppres-

sor genes are highly conserved within mammals, indicating the

important physiological roles of those genes. Similarly, non-

coding regions from which functional transcripts are tran-

scribed are often conserved.7 A single mutation within any

evolutionary constrained region could be responsible for detri-

mental phenotypic changes and is, therefore, unlikely to be

commonly observed within the human germline. Our adapted

hypothesis is that any genomic region in tumours that har-

bours SMs more often, relatively, than it harbours CPs is a can-

didate for carcinogenesis. To test this, we ascertained the CP

rate within humans and compared it to the SM rate, using

tumour-specific SMs identified from sequencing studies.

Material and Methods

Genome annotation

Annotations for human reference genome GRCh37 were

downloaded from GENCODE148 and transcript records

merged, via a bespoke perl script, creating a single annotation

per gene ID with nonredundant exons delineated.

Population data

A bespoke script (available online) accessed Ensembl69,9 via

its perl programming interface, and extracted the total num-

ber of basepairs, and the number of commonly polymorphic

loci, within each exon. A commonly polymorphic locus is a

variant position sequenced in germline samples at least 20

times with a minor allele frequency of 5–50% (see Supporting

Information for justification of the chosen allele frequency).

The rate (commonly polymorphic alleles per kilobase) is cal-

culated and output per gene. Ensembl69 contained informa-

tion from dbSNP137, including all data from the 1000

Genomes Project phase 1 and HapMap phase 3.

Somatic mutations

We use SM to mean a tumour-specific substitution or indel

involving less than 500 bp. Genome coordinates were con-

verted, where necessary, to GRCh37 using the University of

California, Santa Cruz (UCSC) liftOver tool. SMs were down-

loaded from catalogue of somatic mutations in cancer (COS-

MIC)62 via Biomart or extracted from Supporting Information

in additional publications (with no study overlap).10 All COS-

MIC SMs were validated from primary tumours and identified

using whole genome sequencing. All manually extracted data

were from whole genome or exome sequencing studies only.

Supporting Information Table 1 outlines all references for the

SMs collated. A bespoke perl script (available online) was used

to ascertain the SM rate using our amended genome annota-

tion files. Analysis was restricted to exon regions.

Statistical analysis

CP and SM rates were analysed in R. Attempts to ascertain

the best way to amalgamate the CP rate and SM rate infor-

mation into a single metric are given in Supporting Informa-

tion. Functional analysis was performed using the DAVID

Bioinformatics Resources, release 6.7.11 Statistical tests were

performed in R.

Comparison with other programmes

The Supporting Information contains information on a com-

parison between PRISMAD (polymorphism rates indicate

somatic mutations as drivers) and another programme that is

applicable to noncoding regions.

miRNA folding predictions

The fasta sequence for the wild-type and mutant miRNA

precursor, hsa-mir-99b, were input to RNAfold.12 Resulting

predictions are those according to the minimum free energy

and partition function. Free energy values were output for

What’s new?

Somatic mutations are important drivers of the cancerous process but identifying the key “driver” mutations remains a challeng-

ing question. The authors hypothesize that the variation level in healthy tissue represents a transcript’s tolerance to mutation

and that if the number of mutations in tumors exceeds this level, positive selection might have occurred that point to this tran-

script as a major driver in carcinogenesis. They tested their program with a large dataset of somatic mutations and obtained a

ranked list of genes significantly enriched in known cancer-associated genes. Their program called PRISMAD is publicly available

and could help identify new driver mutations in various tumors.
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each structure and used to ascertain the change between

wild-type and mutated sequences.

PRISMAD web server

The web server was written in PHP and html.

Results

We define a CP as one with a minor allele frequency of at

least 5% at a locus genotyped at least 20 times. This thresh-

old performed best amongst those tested (Supporting Infor-

mation). The CP rate per gene is the number of exonic CPs

divided by the number of exonic kilobases. Using genome

annotation files, we separated genes into functional classes:

protein-coding, antisense, long-intergenic noncoding

(linc)RNA, long noncoding (lnc)RNA, micro (mi)RNA and

pseudogene. The lncRNAs are distinct from lincRNAs in that

they are located within genes; they are on the sense strand,

making them distinct, also, from antisense genes.

Inspecting rates of variation in cancer genes

We hypothesise that germline mutations in cancer-associated

genes are more likely to be phenotypically detrimental (owing

to effects at the RNA as well as protein level) and are, thus,

more likely to be selected against leading to a reduced CP

rate in cancer-associated genes compared with noncancer-

associated genes. This is similar to the notion that driver

SMs will undergo positive selection within the tumour lead-

ing to a higher SM rate in cancer-associated genes compared

with noncancer-associated genes in the tumour. To test this

we ascertained the list of 483 known, protein-coding cancer

genes from the Cancer Gene Census.13 The median CP rate

was 1.21 CP/kb for cancer genes and 1.61 CP/kb for non-

cancer genes. In agreement with our hypothesis, the CP rate

for cancer genes was significantly lower (Wilcoxon, p: 1.28 3

10212). The median SM rate was 0.40 SM/kb for cancer

genes and 0.31 SM/kb for noncancer genes. As expected the

SM rate is significantly higher in cancer genes (Wilcoxon, p:

1.63 3 1025) but, interestingly, the effect size is not as large

as for CP rate. We wished to use this information to rank

somatically mutated genes with respect to the likelihood that

they are causally associated with cancer. We attempted sev-

eral statistical modelling approaches (Supporting Informa-

tion), concluding that the best results were obtained using

created a metric we called the rate difference (RD), obtained

by subtracting the CP rate from the SM rate:

RD5SM rate2CP rate : (1)

The median RD for cancer genes was 20.83 variants/kb

and for noncancer genes 21.17 variants/kb. The RD is signif-

icantly higher for cancer genes and the effect is greater than

that of both SM rate and CP rate in isolation (Wilcoxon,

p: 1.04 3 10214).

Using RD to rank genes, genome-wide

Our approach is applicable genome-wide as it uses the CP

rate, which can be ascertained for any given genomic region,

as a baseline for interpreting SM rates. We calculated the RD

for each of 20,036 protein-coding genes, 6,296 lincRNAs,

3,110 miRNAs, 786 lncRNAs and 13,004 pseudogenes (Table

1 and Supporting Information Tables 2 and 3). The top

1,000 protein-coding genes (ca. 5%), ranked by descending

RD, included significantly more known cancer genes than

expected by chance (v2, p: 0.00028), whereas the top 1,000

ranked by descending SM rate did not (v2, p: 0.38). This

indicates that RD is a more powerful predictor than SM rate

alone. This enrichment was not observed if the datasets were

separated into synonymous and nonsynonymous variants (v2,

p> 0.01, Supporting Information).

Functional analysis of the top 1,000 protein-coding genes

according to RD revealed significant enrichment in the path-

ways of cadherin signalling (PANTHER P00012, adjusted

p< 0.05) in which 21 members were highlighted (Supporting

Information Table 4), and Wnt signalling (PANTHER

P00057, adjusted p< 0.05), with 34 members highlighted

(Supporting Information Table 5).

The top-ranking noncoding transcripts mostly lacked a

single exonic CP, with only 76 containing more than one SM

(Supporting Information Table 3). Literature searches

revealed a dearth of information regarding the functionality

of the top-ranking noncoding transcripts according to RD

except in the case of MIR99B. This is a miRNA with an RD

of 14.5 variant/kb owing to an SM identified in a gastric

tumour.14 The MIR99B gene produces two mature miRNAs

(hsa-miR-99b-3p and hsa-miR-99b-5p); the dysregulation of

both has been associated with carcinogenesis.15 Mutations

within miRNAs can have causal associations with cancer.16

The SM, NC_000019.9:g.52195904G>A, highlighted by our

approach resides within a predicted base-paired portion of

the hsa-mir-99b precursor hairpin from which the two

mature miRNAs are excised (Fig. 1a). The mutation is pre-

dicted to alter precursor folding in such a way that removes

local base pairing and causes a predicted reduction in folding

stability by 1.24 kcal/mol program (Fig. 1b). This altered con-

figuration and change in stability could alter the processing

of the hairpin, required to excise the mature miRNAs.

Table 1. Highlighting genes that contain candidate somatic driver
mutations in different functional classes

Class of gene Total
Mean RD

(variants/kb)
Median RD
(variants/kb)

Protein-coding 20,036 21.49 21.16

lincRNA 6,296 22.80 22.24

miRNA 3,110 22.67 0

lncRNA 786 22.43 21.96

Pseudogene 13,004 22.69 21.83

RD: rate difference (somatic mutation rate minus common polymor-
phism rate).
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Discussion

Machine learning methods that identify disease-causing nonsy-

nonymous mutations reveal that evolutionary conservation is

an, if not the most, important predictor variable.1,17 This is

because genetic variants that detrimentally alter the function of

an encoded protein undergo negative selection throughout

evolution. It follows that genetic variation that detrimentally

alters the noncoding function of a transcript will also undergo

negative selection. We tested the hypothesis that the number of

commonly occurring germline polymorphisms within a

genomic region (protein coding and/or noncoding) can be

used as a BMR from which to score SM rates in tumours and

identify potential cancer-driving genes. In support of this

theory, exonic SNP density (number of polymorphic loci) is

one of the most informative predictive features in a machine-

learning tool to predict cancer-driving mutations.1 We devel-

oped a parsimonious method for ranking genes/genomic

regions using the RD [Eq. (1)]. Our method is not restricted to

protein-coding regions and makes no prior assumptions

regarding which mutations are phenotypically silent.

General cancer pathways

The top ranked genes highlighted by PRISMAD were

enriched for Wnt signalling and cadherin signalling path-

ways. Wnt signalling is involved in cell–cell communication

and its study is becoming increasingly widespread in cancer

research.18 Similarly, the role of cadherins in various types of

cancer continues to be an area of active research.19 The eluci-

dation of cancer-related pathways by our approach further

indicates its merit.

Application to noncoding genes

Attempts to investigate noncoding SMs thus far have been on

the level of specific mutations within single samples, without

reproducibility, or have been anecdotal. In those cases, though,

it has been stressed that it is likely that some drivers will lie

within noncoding regions.20,21 We applied our method to sev-

eral types of noncoding genes implicated in carcinogenesis:

lincRNAs, miRNAs, lncRNAs and pseudogenes. We revealed

few CPs in many of these genes. This is expected given that

interest in noncoding regions, and the ability to sequence them

to the required depth, has only increased in the last decade,

meaning there is a dearth of information on variation rates

therein. The 1000 genomes pilot constituted whole genome

sequencing, but thereafter the project focused on protein-

coding regions.22We believe that although economically under-

standable, negation of noncoding regions may be detrimental

to cancer research. Many whole genomes have been sequenced,

with SM data deposited in relevant databases. Similar deposi-

tion of genome-wide germline variants into dbSNP would facil-

itate the creation and use of approaches such as ours.

Our approach is to highlight some noncoding genes as

potentially harbouring driver SMs, but a lack of functional

information makes these difficult to verify. Rather, we hope

that validating our approach in protein-coding genes suggests

the noncoding genes highlighted are worthy of prioritisation

or, at least, when additional noncoding germline variation is

present in online databases, ours is an approach worth apply-

ing. We highlighted one known cancer-associated miRNA

gene, MIR99B, using PRISMAD, and predicted how the SM

identified within it may result in altered processing and

expression of two mature miRNAs.

Many methods exist to specifically identify nonsynony-

mous cancer-driving mutations. Our approach can be used

alongside these, potentially highlighting distinct genes, but we

do not propose our method replace them if the goal is to

highlight nonsynonymous variants.

It has recently been shown that additional factors, i.e.,

gene expression level and stage of replication, affect the num-

ber of tumour-specific SMs that a gene acquires, irrespective

of involvement in carcinogenesis.23 This is thought to result

from DNA repair and replication effects: genes expressed at

Figure 1. Predicted folding of the hsa-mir-99b precursor in wild-

type (a) and somatically mutated (b) form. The locations of the

mature miRNAs (had-miR-99b-3p and had-miR-99b-5p) that are

excised from the precursor are annotated. The colouring indicates

the probability of base pairing as indicated by the scale bar. The

location of the variant position is given by the block arrow, with

the change in the mutant sequence labelled on the figure. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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low levels are less exposed to transcription-coupled repair,

and those replicating late succumb to error owing to a reduc-

tion in the concentration of free nucleotides within the cell.

These factors will equally affect mutation rates in noncancer

cells, though to a lesser degree because these cells are not

aberrantly proliferating. Our original hypothesis better incor-

porates these recent findings: an RD calculated from com-

monly polymorphic sites specifically within matched normal

tissue (which will include germline and nondiseased tissue

SMs) to the tumour in question will factor in the aforemen-

tioned biases, assuming that expression profiles and replica-

tion timing of such cells are similar to the cancer cells that

originated from them. Unfortunately, there is currently insuf-

ficient publicly available appropriate sequencing data to test

this extended hypothesis, but it provides an avenue for future

research.

Whilst this manuscript was under review, an article indi-

cating how patterns of polymorphisms within noncoding

regions can be used as a basis for identifying cancer-driving

SMs has been published in Science.24 The authors describe a

method that can be used in conjunction with ours: FunSeq.

This approach filters out germline polymorphisms and then

prioritises variants according to their location in conserved

regions, binding motifs and (for protein-coding genes) hubs

of gene networks. This work further highlights that, as the

number of tumour-specific SMs increases, approaches aimed

at scoring variation in noncoding regions are sorely needed.
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