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Abstract

Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion.
The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold,
is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-
and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the
virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to
initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and
shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical
crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size
consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was
influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular
mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a
novel antiviral target for the picornavirus family.
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Introduction

A fundamental step in the process of viral infection is the

delivery of the virus genome across the hydrophobic barrier of the

host cell membrane. Enveloped viruses achieve this through the

fusion of viral and target-cell membranes [1,2]. However, non-

enveloped viruses must employ alternative mechanisms to deliver

their genomes into cells, such as membrane disruption or pore

formation. Cell-entry studies with diverse families of non-

enveloped viruses have increased our understanding of these

processes and revealed common themes in the mechanisms used

for membrane penetration, for example priming of virus particles

by proteolytic processing and the exposure, multimerization and

membrane interaction of hydrophobic or N-myristoylated viral

proteins reviewed in [3,4].

Human rhinovirus (HRV) is a small non-enveloped RNA virus

belonging to the enterovirus genus of the picornavirus family, and

is the most frequent cause of mild respiratory tract infections (the

common cold) [5]. In recent years, it has been recognized that

HRV infection is also associated with more serious clinical

outcomes such as severe lower respiratory tract infections of

infants and exacerbations of chronic lung diseases (asthma, cystic

fibrosis and chronic obstructive pulmonary disease) reviewed in

[6,7]. Despite decades of research there is still no vaccine or

licensed drug to prevent or reduce infection by HRV. The

picornavirus family includes many other significant pathogens

such as poliovirus (PV), enterovirus 71 (EV71), hepatitis A virus

(HAV) and foot-and-mouth disease virus (FMDV), for which new

or improved measures for disease control are also required.

The picornavirus particle comprises a molecule of single-

stranded positive-sense RNA within a capsid of approximately

30 nm diameter. The capsid contains 60 copies of each of 4

structural proteins, VP1, VP2, VP3 and VP4, arranged with T = 1

(pseudo T = 3) icosahedral symmetry. The VP4 protein is small

(predicted molecular weight of HRV VP4 approximately

7.5 kDa), hydrophobic, myristoylated at its N-terminus (post-

translationally modified by the attachment of the 14-carbon

saturated fatty acid, myristic acid [8]) and is located on the inside

surface of the virus capsid.

Experimental data from cell culture, biochemical and structural

studies have led to a proposed mechanism for entry by HRV and

PV (and other closely related picornaviruses) [9–11] in which a

‘trigger’ that can be receptor binding and/or low pH (depending

on the virus) induces major conformational changes in the virus

capsid. The resulting ‘altered’ (A) particle interacts with mem-

branes and releases the viral RNA into the cytoplasm via an
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undefined mechanism which is proposed to involve a channel

formed in the membrane by VP4 and/or the N-terminal region of

the VP1 protein. VP4 and the N-terminal region of VP1 are

internal components of the mature virus but become externalised

during conformational changes that result in the generation of the

cell entry intermediate A particle. The A particle interacts directly

with membranes without further involvement of the cellular virus

receptor [12,13]. VP1 acts to tether the particle to the membrane

[12,13] and mutagenesis of VP4 has demonstrated its involvement

in both virus induced permeability in model membranes [14] and

genome delivery during infection of cells [14,15]. The interaction

between virus and model membranes has recently been shown to

involve an ‘umbilicus’ connecting the capsid and membrane,

presumably as part of the mechanism for delivery of viral RNA

across the membrane [16]. The selective release of dextrans from

endosomes during infection of cells has provided evidence that

membrane permeability involves formation of a pore [17] but the

mechanism of pore formation remains unknown. We previously

demonstrated that recombinant VP4 as a GST fusion protein was

able to induce permeability in model membranes [18]. In the

present study, we have produced recombinant VP4 with a

minimal tag and shown that VP4 induced membrane permeability

is mediated by the formation of a homo-multimeric, size-selective

membrane pore.

Results

Recombinant VP4
Previous studies have implicated picornavirus VP4 in viral

penetration of the cell membrane and virus induced permeability

in model membranes [13,14,19]. To further investigate the

function of VP4 using biophysical approaches it was necessary to

work with isolated protein. Although native VP4 can be isolated

from purified virus, the amount of the protein derived from

laboratory-scale virus preparations was insufficient for biophysical

studies. To address this problem we previously produced

recombinant HRV16 VP4 as an N-terminally myristoylated

VP4GST fusion protein (VP4GST) which was able to induce

membrane permeability in model membranes [18]. In the present

study, the same bacterial expression system was used to produce

myristoylated VP4 with a smaller tag (six-histidines at the C-

terminus of VP4; VP4His). VP4His was overexpressed as insoluble

inclusion bodies, purified by denaturing nickel affinity chroma-

tography, precipitated and solubilised in DMSO, with a final yield

of purified protein in the order of 0.1–0.5 mg per litre of culture.

Protein purity was assessed by SDS-PAGE and silver staining and

the concentration of recombinant VP4 was confirmed by

comparison with native VP4 present in known quantities in

purified HRV16 (Fig. 1). The migration of native VP4 and

recombinant VP4His was consistent with their predicted molec-

ular weights (approximately 7.4 kDa and 8.2 kDa respectively).

Recombinant VP4His induces membrane permeability
The ability of VP4His to induce permeability in model

membranes was investigated by mixing purified recombinant

Figure 1. Purity and concentration of recombinant VP4
assessed by SDS-PAGE. Concentration of purified VP4His estimated
by protein assay was confirmed by comparison with known quantities
of native VP4 in preparations of purified virus. HRV16 (3 or 1 mg,
equivalent to 0.15 or 0.05 mg VP4 respectively) and VP4His at amounts
indicated, were subjected to SDS-PAGE and visualized by silver staining
(A) or western blot using antisera to VP4 (B). Molecular mass markers
(in kilodaltons) are indicated on the left. Arrows show expected position
of the indicated viral proteins. The migration of VP4His appears slower
with increasing concentration as a result of the increasing concentra-
tion of DMSO in these samples. The migration of VP4His was not altered
when diluted in a constant concentration of DMSO (figure S1).
doi:10.1371/journal.ppat.1004294.g001

Author Summary

Human rhinovirus (HRV) is a non-enveloped virus of the
picornavirus family and is responsible for respiratory
infections (common colds) costing billions of dollars ($)
annually. There remains no vaccine or licensed drug to
prevent or reduce infection. Related members of the
picornavirus family include significant pathogens such as
poliovirus, enterovirus 71 and foot-and-mouth disease
virus, for which improved control measures are also
required. A fundamental step in virus infection is the
delivery of the viral genetic material through the barrier of
the cellular membrane. Viruses such as HIV and influenza
are enveloped in an outer membrane which can fuse with
the host cell membrane to allow the viral genome to
penetrate into the cytoplasm. However, non-enveloped
viruses such as picornaviruses lack a membrane and the
mechanisms for penetration of the membrane by these
viruses remain poorly understood. The capsid protein VP4
has previously been implicated in the delivery of the
picornavirus genome. In this study we demonstrate that
HRV VP4 interacts with membranes to make them
permeable by the formation of multimeric, size-selective
membrane pores with properties consistent with the
transport of viral genome through the membrane. This
function of VP4 provides a novel antiviral target for this
family of viruses.

Picornavirus VP4 Forms a Membrane Pore
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protein with carboxyfluorescein (CF)-containing liposomes at

neutral pH and room temperature, and detecting the VP4-

induced release of encapsulated dye. VP4His induced a robust

signal for membrane permeability and both rate and extent of dye-

release were dose-dependent (Fig. 2).

VP4His-induced membrane permeability is
myristoylation and pH dependent

For many picornaviruses, endosomal protonation triggers

particle alterations involved in uncoating and membrane pene-

tration. Different HRVs exhibit a range of sensitivities to pH

mediated uncoating, depending on serotype and receptor usage.

For example, uncoating of the minor group HRV2 is entirely

dependent on low pH in late endosomes [20] while for the major

group HRV14, receptor interactions also contribute to triggering

particle alterations and this virus is therefore able to uncoat at the

less acidic pH found in early endosomes [21]. In order to

investigate the effect of pH on the function of VP4 we compared

liposome dye-release assays at neutral pH and acidic pH values

representing early (pH 6.5) and late (pH 5.5) endosomes [22].

Carboxyfluorescein (CF) fluorescence is quenched at low pH

(Fig. S2) therefore the dye-release assay was first modified to allow

the comparison of data collected at different pH values. End point

data from dye-release assays can be expressed as a proportion of

the total signal released by disruption of liposomes with detergent.

End point samples can also be normalised for pH by separating

the released fluorescence (by pelleting the liposomes) and adjusting

to the same detergent and pH conditions as the detergent-released

control. However, we wished to compare the kinetics of dye-

release (not just end points) and therefore required an alternative

procedure for normalising real-time CF dye-release assays carried

out at different pH values.

We therefore used the well-characterised pH independent pore-

forming peptide melittin [23,24] as a control for the liposome dye-

release assay. The permeability induced by melittin appeared

reduced at low pH due to the quenching of CF fluorescence at low

pH (Fig. 3A). However, when samples were separated from

liposomes and adjusted to neutral pH as described above, the

signal in all samples became equivalent to the pH 7.0 sample. This

confirmed that melittin induced permeability was indeed pH

independent and that dye-release data generated at a given pH

could be expressed as a proportion of the maximum release by a

melittin control at that same pH. This provided a method for

normalisation of data which corrected for the low-pH quenching

of CF and allowed real-time data generated at different pH values

to be directly compared.

The pore-forming peptide GALA, which only forms pores in

model membranes at pH,6 [25,26] was used as an additional

control. As expected GALA did not induce permeability at pH 7.0

or pH 6.5 but induced robust permeability at pH 5.5 (Fig. 3B).

Native VP4 is myristoylated at the N-terminus. The effect of the

myristate group on the induction of membrane permeability by

VP4His was therefore determined by comparing myristoylated

(VP4His) and unmyristoylated (DVP4His) forms of recombinant

protein in the liposome dye-release assay. Both forms of VP4

induced membrane permeability but VP4His (myristoylated)

generally induced more extensive membrane permeability with a

higher initial rate of release than DVP4His (unmyristoylated)

(Fig. 3C & D). The permeability induced by both VP4His and

DVP4His increased at more acidic pH values (Fig. 3C, D, E).

However, VP4His consistently induced more extensive perme-

ability than DVP4His at all pH values tested (Fig. 3E). Analysis of

the dye-release kinetics showed that the initial rate of release

induced by VP4His increased dramatically with decreasing pH,

but the corresponding effect was not seen with DVP4His (Fig. 3F).

No significant permeability was seen in control samples exposed

to low pH conditions in the absence of protein/peptide. Together

these findings suggest that VP4 membrane interactions are more

efficient at low pH and that the presence of myristate is required

for maximum membrane activity of VP4 under the physiological

conditions encountered during HRV entry.

VP4-induced membrane permeability is size-selective
We hypothesised that VP4-induced membrane permeability

was the result of formation of discrete pores with dimensions

sufficient for transfer of macro-molecules such as RNA across the

membrane. This was investigated by measuring the VP4-induced

release from liposomes of FITC-labelled dextrans of different sizes.

Smaller dextrans of 4 kDa (Stokes’ radius of 14 Å) and 10 kDa

(Stokes’ radius of 23 Å) were indeed released from liposomes with

higher efficiency than 70 kDa (Stokes’ radius of 60 Å) and

250 kDa (Fig. 4A). The pore forming toxin melittin was included

as a control for these studies and released only the smallest dextran

tested (Fig. 4B), in agreement with previous reports [24,27]. These

experiments indicate that VP4 permeability is via formation of

size-selective membrane pores which limit the transfer of

molecules with Stokes’ radius approaching ,60 Å. Such a pore,

with a lumen diameter #12 nm would be consistent with the size

required for passage of single-stranded nucleic acid.

VP4 multimerizes to form a pore structure
Membrane pores formed by small pore-forming proteins or

peptides often have a homo-oligomeric structure. Multimerization

seemed the likely mechanism for VP4 pore formation. We

therefore investigated the ability of VP4 to form a homomulti-

meric complex by analysing samples by PAGE. Purified VP4His

was difficult to detect when analysed directly by native PAGE

(non-denaturing conditions) and silver staining (Fig. 5A) perhaps

due to solubility or charge which did not permit efficient

electrophoresis. However, after mixing with liposome membranes

or the membrane mimetic detergent DHPC, VP4 appeared to be

readily detected (Fig. 5A), suggesting that interaction with micelles

or multimerization was able to facilitate migration into the gel.

Figure 2. Recombinant VP4 induces dose-dependent mem-
brane permeability. Liposomes containing carboxyfluorescein (CF) at
self-quenching concentration, were mixed with VP4His at the indicated
final concentrations. Membrane permeability resulting in leakage and
dequenching of CF was detected by fluorescence measurements
(excitation 492 nm/emission 512 nm) recorded every 30 seconds. Data
shown is representative of multiple experiments (n.3). The end point
fluorescent signal induced by 5000 nM VP4His was equivalent to 70–
80% of the total release induced by addition of 0.5% Triton X-100.
doi:10.1371/journal.ppat.1004294.g002

Picornavirus VP4 Forms a Membrane Pore
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Figure 3. VP4-induced membrane permeability is enhanced by low pH and VP4 myristoylation. Carboxyfluorescein (CF)-containing
liposomes at pH 7.0, pH 6.5, and pH 5.5, were mixed with the following peptides or proteins and membrane permeability resulting in leakage and
dequenching of CF was detected by fluorescence measurements (excitation 492 nm/emission 512 nm) recorded every 30 seconds. A) The pH-
independent pore-forming peptide melittin at 10 mM. AU, arbitrary units. CF fluorescence is known to be less efficient at low pH and the apparent
reduction in melittin-induced signal at low pH values (pH 6.5 and pH 5.5) could therefore be restored to the same level as the pH 7 sample by
adjusting released CF in supernatants to neutral pH (data not shown), thus confirming that melittin-induced permeability was unaffected by pH and
demonstrating a requirement to compensate for the reduced efficiency of CF fluorescence at low pH. Therefore, data in the remaining panels (B–F)
was normalized to the maximum signal induced by melittin at each pH value. B) the acid-dependent pore-forming peptide GALA at 1 mM. C) VP4His
at 5 mM. D) DVP4His (unmyristoylated) at 5 mM. E) End point and F) initial rates are shown to summarise the data in panels A–D. Data shown is
representative of multiple experiments (n.3). Error bars represent standard error of the mean of values from 3 experiments.
doi:10.1371/journal.ppat.1004294.g003

Picornavirus VP4 Forms a Membrane Pore
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In contrast to the results with native PAGE, VP4His was readily

detected by SDS-PAGE (see Fig. 1). Samples of VP4His in the

presence of liposomes were therefore treated with the amine-

reactive chemical cross-linker dithiobis (succinimidyl propionate)

(DSP), separated by SDS-PAGE and identified by western blot.

Crosslinking in the presence of liposomes resulted in detection of a

characteristic ladder of bands, corresponding in size to monomeric

VP4His (predicted size of approximately 8.2 kDa) and cross-linked

multimers of VP4His in increasing numbers, up to a hexameric

complex migrating with apparent molecular weight of approxi-

mately 50 kDa (Fig. 5B, lanes 6 and 7). The presence of species

with uniform and incremental increases in apparent molecular

weight equivalent to the addition of VP4His monomers, suggested

multimerization of monomeric species rather than random

aggregation. Upon reversing the crosslinking with DTT, the

presence of multimers was diminished and an increase in

monomer was observed (Fig. 5B, lane 8), implying that the

multimeric units were indeed comprised of VP4His monomers.

Interestingly, VP4His multimerization was also detected in the

absence of crosslinking; in these samples a band equivalent to the

dimeric and hexameric complexes were clearly seen but interme-

diate multimers were of reduced intensity (Fig. 5B, lane 5), similar

to the appearance of samples after reversal of crosslinking. This

suggested that the putative hexameric structure was more stable

Figure 4. VP4-induced permeability is size-selective. Liposomes containing FITC-labelled dextrans of 4 kD (FD4), 10 kD (FD10), 70 kD (FD70) or
250 kD (FD250) were mixed with 5 mM VP4His (A) or 10 mM melittin (B). Release of dextrans was quantified by pelleting the liposomes and measuring
the fluorescence in the supernatant. Data is presented as percentage of total release observed by lysis of liposomes by addition of detergent. Error
bars represent standard error of the mean (n = 3) and asterisks indicate statistical significance calculated by one way Anova (p*,0.05). Data is
representative of multiple independent experiments.
doi:10.1371/journal.ppat.1004294.g004

Figure 5. VP4 forms a multimeric complex. A. VP4His was incubated in the presence of the membrane-mimetic detergent DHPC or liposomes,
or mock-treated (2), resolved by native PAGE and visualised by silver staining. The position of bands shown by arrows indicates potential migration
of VP4His into the gel. B. VP4 was incubated with (+) or without (2) liposomes and crosslinked by the addition of DSP at 0.5 mM (+) or 1 mM (++).
Samples were resolved by non-reducing SDS-PAGE and detected by western blot using antisera to VP4. DTT was used in some samples to reverse the
crosslinking prior to SDS-PAGE. Arrows indicate VP4 multimers. Molecular mass markers (in kilodaltons) are indicated on the left.
doi:10.1371/journal.ppat.1004294.g005

Picornavirus VP4 Forms a Membrane Pore
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than the intermediates, and could survive the denaturing

conditions of SDS-PAGE, reinforcing the case for this structure

as a biologically relevant assembly. VP4His multimerization was

also detectable in the absence of membranes (Fig. 5B, lanes 1–4),

suggesting that multimerization may be an intrinsic property of the

protein which is membrane-independent. Alternatively, the

detergent used in preparation for SDS-PAGE may have provided

a micellar environment which promoted multimerization. VP4

multimerization was not observed after disrupting virus with SDS

in preparation for SDS-PAGE (see Fig. 1), however, the amount of

VP4 in virus-derived samples was relatively low such that

multimers may be more difficult to detect.

VP4 multimeric structure visualized by electron
microscopy

To facilitate detection of multimeric VP4 complexes by electron

microscopy, we used recombinant VP4 fused to a larger tag, the

26 kDa glutathione S-transferase (VP4GST). This protein was

previously shown to be functional for interaction with and

induction of permeability in model membranes [18]. In the study

reported here, myristoylated VP4GST was mixed with the

membrane mimetic zwitterionic detergent dodecylphosphocholine

(DPC), protein-micelle complexes were purified by size exclusion

chromatography and examined by negative stain transmission

electron microscopy. Ring-like structures were readily observed

(Fig. 6a and 6b) consistent with ‘top-down’ views of multimeric

pores. We also initially tried to image VP4 in liposomes but in our

hands the negative stain images were of poor quality while

reconstitution of VP4 in detergent gave far superior results. We

therefore took forward the latter strategy to generate the data

shown in the manuscript. An image data set representing all

detected structures (n = 5929) was separated into seven class

averages (Fig. 6c). Several different classification schemes were

tested with varying numbers of classes, and a K-means classifica-

tion with seven classes gave the most consistent and interpretable

classes. We believe the overall micelle-pore complexes (VP4GST+
micelle) would in fact be wider than they are high, therefore

forming an overall disc shape which would preferentially lie flat on

the grid perhaps favouring orientation of the pore facing upwards

and reducing the number of alternate views. Of the seven classes,

two were selected (class 3 and 7 in Fig. 6c) as clear top-down views

(the remainder appeared to represent mis-alignments or side views

of the complex) and analysed by rotational harmonic analysis

which indicated 5- or 6-fold symmetry (Fig. 6d), consistent with a

pentameric or hexameric complex of VP4GST molecules. The

initial appearance of the class 3 average as a complex with 3-fold

symmetry may be due to the propensity of the GST fusion partner

to form dimers, thus initially presenting six GST moieties as three

dimers. However, the appearance of the class 7 average as a

pentameric structure suggested that GST dimerization was not

controlling the stoichiometry of the complex. It is conceivable that

recombinant VP4 is able to form pore structures with different

numbers of multimers; perhaps a single preferred structure for the

native virus-derived pore may be influenced by additional factors.

VP4-induced membrane permeability is comparable to
that of virus

We wished to confirm that the function of recombinant VP4

was relevant to the membrane interactions of virus particles.

Previous studies demonstrated that PV was able to induce

electrical conductance channels in planar model membranes

[19,28]. We therefore compared the membrane permeability

induced by VP4His and purified HRV16, by measuring CF

leakage from liposomes in the dye-release assay. Recombinant

VP4 and purified virus induced membrane permeability with

broadly similar characteristics (Fig. 7). However, virus-induced

permeability was more efficient at 37uC than at 25uC, while the

recombinant VP4-induced permeability was relatively unaffected

by the change in temperature. These observations demonstrate a

temperature dependence for HRV-membrane interactions, con-

sistent with previous studies with PV [19] and with a model of

temperature dependent particle breathing which controls the

exposure and membrane interactions of internal capsid compo-

nents such as VP4 [29,30]. Although studies with PV demon-

strated breathing only at physiological temperatures approaching

37uC [29], studies with HRV have shown particle breathing at

lower temperatures such as 25uC [30]. Importantly, virus samples

pre-treated at 60uC to convert virions into empty particles induced

only low levels of permeability, most likely because empty particles

would no longer contain VP4.

The membrane permeability induced by recombinant VP4 was

enhanced at low pH (Fig. 3). We therefore investigated the effect

of pH on virus-induced permeability by comparing the perme-

ability induced by virus at pH 6.5 (representing early endosomes)

and pH 5.5 (representing late endosomes) (Fig. 8). This demon-

strated that virus-induced permeability was significantly enhanced

at pH 5.5, consistent with this lower pH contributing to the

triggering of particle alterations involved in membrane interac-

tions and uncoating. In addition, we carried out dextran release

studies to investigate if virus-induced permeability was size-

selective, as shown earlier for recombinant VP4 (Fig. 4). Virus-

induced permeability was indeed also size-selective, with the

smaller dextrans being released to a significantly greater extent

than the larger dextran (Fig. 9). This confirmed that virus-induced

permeability was not via the large scale disruption of the

membrane but was also likely to involve a defined pore. However,

while the results for the VP4 pore suggested limiting the transfer of

molecules with Stokes’ radius approaching ,60 Å, the virus-

induced permeability permitted partial release of these molecules,

appearing to have a larger size cut-off, perhaps consistent with the

involvement of additional capsid components in the virus-induced

pore such as the N-terminus of VP1.

Discussion

Previous studies have demonstrated that during picornavirus

cell entry, the internal capsid protein VP4 is released from the

virus and interacts with cell membranes. Furthermore, it has been

shown that mutations in VP4 alter both the ability of the virus to

induce permeability in model membranes and to deliver the viral

genome into the cell [14]. In the present study we have

characterised the ability of recombinant HRV VP4 to induce

permeability in model membranes and demonstrated that VP4

forms a multimeric, size-selective membrane pore, with dimen-

sions consistent with the transport of viral RNA.

Native VP4 is myristoylated at its N-terminus. This modification

is often a feature of proteins with membrane binding properties

[31,32]. Existing mutagenesis studies have implicated VP4 as

important for the formation of pores in electrophysiology

experiments and for RNA release [14], and the addition of the

N-terminal nine amino acids (including myristoylation signal) of

PV VP4 to GFP was previously shown to target the fusion protein

to membranes [33]. Myristoylation of VP4 has been shown to be

essential for the assembly of infectious virions, unfortunately

making it difficult to further probe the role of myristoylation of

VP4 in pore formation in the context of the intact virus. Although

myristoylation was not essential for the formation of functional

Picornavirus VP4 Forms a Membrane Pore
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pores by recombinant VP4, our data show that it significantly

improves pore formation and probably acts by increasing the

efficiency of initial membrane interaction.

Conditions of low pH appeared to favour both VP4 and virus

induced permeability, increasing the extent and rate of perme-

ability, suggesting that membrane activity may be optimised for

the low pH conditions encountered in acidified endosomes, the site

of membrane penetration by HRV. Permeability was greater at

pH 5.5 (the pH of late endosomes) relative to pH 6.5 (the pH of

early endosomes) which is in contrast to the early endosome as the

site of uncoating of the major group HRV14 [21]. The site of

uncoating for HRV16 (from which the recombinant VP4 was

derived) has not been determined. However, HRV16 interacts less

efficiently than HRV14 with the major group receptor ICAM-1

[34] and requires a lower pH to trigger uncoating in vitro [35],

suggesting that uncoating of HRV16 could indeed involve a

Figure 6. VP4 multimeric structure visualized by electron microscopy. A. VP4GST was reconstituted in the membrane mimetic detergent
DPC, applied to carbon coated grids and stained with uranyl formate. Scale bar = 20 nm. B. Individual ring-like structures were manually selected and
cropped from unprocessed digital images. Scale bar = 10 nm. C. Class average images of particles automatically picked from a large image data set
and classified into 7 classes. Scale bar = 5 nm. D. Class averages 3 and 7 (top-down views) analyzed by rotational harmonic analysis.
doi:10.1371/journal.ppat.1004294.g006
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cellular environment closer to that of the late endosome and

consistent with our data for optimal membrane permeability at

pH 5.5. The effect of low pH was most pronounced for

myristoylated VP4, again suggesting that myristoylation is

required for maximal activity. In these studies, low pH may act

to promote VP4-membrane interaction, multimerization, solubil-

ity or pore stability. However, not all picornaviruses penetrate the

membrane from within acidified vesicles and the increase in pore

forming ability at lower pH seen with HRV16 VP4 may not apply

universally across the virus family.

The permeability induced by recombinant VP4 was size-

selective, such that dextrans of 4 and 10 kDa were released from

liposomes efficiently, relative to larger dextrans of 70 and

250 kDa. Permeability induced by virus was also size-selective

but allowed partial release of the intermediate size dextrans (10

and 70 kDa), perhaps suggesting virus derived pores are larger,

consistent with the potential involvement of additional capsid

components such as the N-terminus of VP1. Together this strongly

suggested that release of dextrans was via a pore in the membrane

and that permeability did not involve large scale membrane

disruption or lysis of liposomes. This confirmed an earlier study in

which liposomes permeabilized by recombinant VP4 remained

intact [18] and is consistent with ion channel formation by PV

[28], the size-selective release of dextrans from endosomes during

infection of cells by the minor group HRV2 [17] and the transfer

of genome into intact liposomes by both HRV2 [36] and PV

(unpublished data). An alternative model for major group HRV14

membrane penetration has been proposed to involve endosome

disruption instead of pore formation reviewed in [11]. Although

our current findings with recombinant VP4 of HRV16 are not

consistent with membrane disruption, both models may be

possible due to subtle differences between viruses in terms of pH

sensitivities, involvement of receptor and proportion of VP4

released.

Figure 7. VP4-induced permeability is comparable to that of virus. Carboxyfluorescein-containing liposomes were mixed with VP4His at
5 mM (equivalent to approximately 5 mg/assay) or 1 mg HRV16 (equivalent to 50 ng VP4/assay) and membrane permeability detected by fluorescence
measurements recorded every 30 seconds. Assays were conducted at 25uC (A) or 37uC (B). Only a minority proportion of recombinant protein is
thought to take part in the reaction. Data is presented as % of total end-point release observed by lysis of liposomes by addition of detergent. Data
shown is representative of multiple experiments (n.3).
doi:10.1371/journal.ppat.1004294.g007

Figure 8. HRV-induced membrane permeability is enhanced by low pH. A) Carboxyfluorescein (CF)-containing liposomes at pH 6.5 and
pH 5.5 were mixed with HRV (0.5 mg) and membrane permeability resulting in leakage and dequenching of CF was detected by fluorescence
measurements (excitation 492 nm/emission 512 nm) recorded every 30 seconds (as in figure 3). B) End points of HRV induced membrane
permeability. Data in panels A and B was normalized to the maximum signal induced by melittin at each pH value. Data shown is representative of
multiple independent experiments (n.3). Error bars represent standard error of the mean (n = 3) and asterisks indicate statistical significance
calculated by one way Anova (p*,0.05).
doi:10.1371/journal.ppat.1004294.g008
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Recombinant VP4 was only visualized by native PAGE after

mixing with liposomes or detergent (Fig. 4), suggesting that VP4

was altered, or formed a complex, with the micellar environment

provided by these reagents. Based on the majority of evidence

indicating a model of pore formation by picornaviruses, we

hypothesised that VP4 permeability probably involved formation

of a discrete pore structure, which for a protein the size of VP4,

would only be possible by formation of a multimeric complex.

Chemical cross-linking and SDS-PAGE confirmed the ability of

recombinant VP4 to multimerize and suggested the formation of a

stable hexameric complex. VP4 complexes visualised by TEM

confirmed the formation of a multimeric pore and harmonic

analysis suggested a pentameric or hexameric structure. For many

years the picornavirus virion was predicted to interact with the

membrane and release its RNA at a capsid vertex at the 5-fold

symmetry axis. Furthermore, receptor binding was shown to align

the PV particle with a five-fold axis of symmetry pointing towards

the membrane [37]. It was therefore tempting to speculate that 5

copies of externalised VP4 would simultaneously insert into the

membrane and form a pentameric complex. However, both PV

and HRV2 are thought to disengage with their receptors before

membrane penetration occurs, so that an alternative alignment

with the membrane (away from the 5-fold) was also possible. In

recent years it has become clear that indeed neither the site of

RNA release or site of externalisation of capsid components is at

the five-fold axis [38–41]. A recent study has visualized PV linked

to liposome membranes by a long connector or umbilicus during

the act of RNA translocation [16]. The virus is tilted away from

the 5-fold to expose the quasi-3-fold axis (the site of externalisation

of VP1) to the membrane. The connector is likely to contain

capsid protein VP1 (the capsid footprint of the connector coincides

with the VP1 exit site). How the putative multimeric complex

formed by recombinant VP4 is related to this structure is

unknown, perhaps the VP4 structure provides the membrane

pore, while the externalised VP1 molecules provide the connector.

Chemical crosslinking revealed that VP4 forms a multimeric

complex even in the absence of membranes, this could be evidence

that VP4 multimerizes prior to membrane insertion. This

possibility is supported by a previous study which demonstrated

that two copies of VP4 could be cross-linked together on the

surface of HRV particles during the transient externalisation of

capsid components that occurs in particle ‘breathing’ [42]. In the

current study VP4 dimers were also observed as the predominant

form of multimer. In an alternative model where membranes are

required for VP4 multimerization, it is possible that detergent

micelles encountered in preparation for SDS-PAGE were able to

provide a membrane-like environment which promoted VP4

multimerization. Although perhaps counter-intuitive that such a

multimer would survive boiling in SDS, similar highly stable

multimers have been reported for other small hydrophobic viral

pore forming proteins such as the hepatitis C virus p7 protein [43].

The release of fluorescent dyes from liposomes by recombinant

VP4His appeared to share similarities to that induced by virus.

The comparison of directly equivalent amounts of VP4His and

virus particles was difficult due to the expectation that the very

hydrophobic nature of VP4His would cause it to have low

solubility when diluted into the assay, making it likely that only a

minor proportion of the recombinant protein would take part in

the membrane interaction. However, we speculated that if the

active proportion of VP4His was only 1% of the total (5 mg), this

would be equivalent to 50 ng of active VP4His per assay,

approximately equivalent to the amount of native VP4 provided

by 1 mg of virus. Virus induced permeability was more temper-

ature sensitive, but this could be entirely consistent with virus-

membrane interactions and induction of permeability being

related to particle ‘breathing’ which are increased at physiological

temperatures. The similarities between the VP4- and virus–

induced permeability could be interpreted as suggesting that VP4

is solely responsible for membrane permeability during virus entry.

However, the finding that virus-induced permeability allowed

release of larger dextran molecules relative to VP4His, suggests

that the virus-derived pore might be larger, consistent with the

potential involvement of additional capsid components in the pore,

such as the N-terminus of VP1.

The size-selective pore formed by recombinant VP4, which

permits transfer of dextrans of 4 kDa (Stokes’ radius of 14 Å) and

10 kDa (Stokes’ radius of 23 Å) but restricts dextrans of 70 kDa

(Stokes’ radius of 60 Å) or above would suggest a pore with lumen

diameter of between approximately 4.6 nm and 12 nm. Multi-

meric VP4 pore complexes visualized by TEM were consistent

with this size. For the virus derived pore, which restricts the

passage of dextrans of 250 kD (Stokes’ radius of 105 Å) the lumen

diameter would be predicted to have an approximate dimension of

between 12 nm and 21 nm. These potential channel dimensions

can only be considered as approximate estimates. However, since

the potential role of the pore is transfer of the viral genome, we

were encouraged to consider the dimensions of existing channels

capable of transporting RNA. Structural models of cellular RNA

polymerases include an approximately 30 Å long, 15 Å wide

channel, known as the ‘‘RNA-exit-channel,’’ through which the

nascent single strand of RNA exits the polymerase [44,45]. Alpha-

hemolysin is a bacterial heptameric transmembrane pore through

which single stranded molecules of DNA or RNA can be driven by

an applied electric field. During this process, nucleotides can be

detected passing through the channel pore in sequential order due

to the limiting diameter of the pore, which at its narrowest point is

14 Å in diameter [46]. Therefore a channel 14–15 Å in diameter

could be considered the absolute minimal size required for active

transport of unstructured single stranded RNA. In the case of

Figure 9. HRV-induced permeability is size-selective. Liposomes
containing FITC-labelled dextrans of 4 kD (FD4), 10 kD (FD10), 70 kD
(FD70) or 250 kD (FD250) were mixed with 0.5 mg HRV or preheated
HRV. Release of dextrans was quantified by pelleting the liposomes and
measuring the fluorescence in the supernatant (as in figure 4). Data is
presented as percentage of total release observed by lysis of liposomes
by addition of detergent. Error bars represent standard error of the
mean (n = 3) and asterisks indicate statistical significance calculated by
one way Anova (p*,0.05). Data is representative of three independent
experiments.
doi:10.1371/journal.ppat.1004294.g009
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genome delivery by a picornavirus our findings suggest the

involvement of a much larger pore, perhaps not surprising

considering both the lack of energy for active transport of a long

molecule through a constricted channel and the potential for

secondary structure in the genomic RNA.

In recent years, entry inhibitors have been developed that

prevent exposure, multimerization or membrane insertion of the

viral fusion proteins of enveloped viruses such as dengue virus and

HIV [47,48] and as reviewed in [49,50]. For picornaviruses, the

exposure, multimerization and membrane insertion of VP4

appears to be the equivalent process. The findings in this study

present the first direct evidence of multimerization and pore

formation by picornavirus VP4. This provides a novel molecular

mechanism for VP4-mediated membrane permeability during

picornavirus entry and suggests that VP4 be considered as an

antiviral target for this family of viruses.

Materials and Methods

Construction of VP4 expression plasmid
The sequence encoding HRV16 VP4 was amplified from

pET23d VP4GST [18] by PCR using primers VP4F (59-TAT-

ACCATGGGCGCTCAAGTATCTAGACAGAATG-39) and

VP4HisR (59-TATACTCGAGTCAATGGTGATGGTGAT-

GGTGTTGCAGAGTG-39). The resulting sequence encoded

VP4 with an additional six histidines at the C-terminus and

flanked by start and stop codons (indicated in bold) and restric-

tion sites (underlined). This DNA was cloned into pET23d

(Novagen) to create pETVP4His. Insert integrity was confirmed by

sequencing.

Expression and purification of recombinant VP4
Recombinant VP4 was expressed in E. coli (BL21 DE3 pLysS)

as myristoylated protein (VP4His) by co-transformation of bacteria

with pETVP4His and a plasmid encoding N-myristyltransferase

(pET-NMT), or as unmyristoylated protein (DVP4His) by

transformation with only pETVP4His. The myristoylation of

recombinant VP4 in this system was previously confirmed by mass

spectrometry [18]. Expression was induced by the addition of

0.2 mM isopropyl b-D-1-thiogalactopyranoside (IPTG). Myristic

acid was added to a final concentration of 5 mg/ml to cultures co-

transformed with pET-NMT. Bacteria were lysed in denaturing

lysis buffer (7M urea, 1% Triton X-100, 20 mM HEPES pH 7.5),

sonicated and the clarified supernatant applied to a pre-packed

nickel affinity column (GE Healthcare). Proteins were eluted with

increasing concentrations of imidazole and fractions analysed by

SDS-PAGE and Coomassie staining or western blot. Fractions

containing VP4 were pooled and dialysed sequentially against

decreasing concentrations of urea after which precipitated VP4His

was collected by centrifugation and resuspended in DMSO.

Recombinant myristoylated VP4 tagged with GST (VP4GST) was

similarly expressed using pET23d-VP4GST and pET-NMT [18]

and purified as described above for VP4His.

Purification of virus
HRV16 derived from an infectious cDNA plasmid [51] was

propagated in HeLa Ohio cells and purified using standard

methods [52]. Briefly, infected cell cultures were lysed by freeze/

thawing and clarified supernatants concentrated by precipitation

with ammonium sulphate. Virus particles were purified by

pelleting through a cushion of 20% (w/v) sucrose in PBS followed

by sedimentation in a sucrose density gradient comprising 15–45%

(w/v) sucrose in PBS. Purified virus was quantified by absorbance

at 260 nm, where an optical density of 7.7 = 1 mg/ml. For some

membrane permeability experiments virus was preheated at 60uC
for 10 min to convert native virus into empty particles.

Preparation of liposomes
Liposomes comprising of phosphatidic acid, phospatidylcholine,

cholesterol and rhodamine-labelled phosphatidylethanolamine

(Avanti Polar Lipids) (molar ratios 44.5:44.5:10:1 respectively)

were prepared as previously described [13] by rehydration of dried

lipid films in 107 mM NaCl, 10 mM Hepes pH 7.5 and extrusion

through 400 nm pore-size membranes using a mini-extruder

(Avanti Polar Lipids). The lipid concentration of liposome

preparations was estimated by comparing the level of rhodamine

fluorescence in the liposome sample relative to samples of

rehydrated lipids of known concentration. The expected diameter

(average 400 nm) and size distribution of liposomes was confirmed

by dynamic light scattering (Malvern Zetasizer mV). Liposomes

containing carboxy-fluorescein (CF) (Sigma) were prepared by

rehydrating lipids in the presence of 50 mM CF, 10 mM Hepes

pH 7.5. Liposomes containing FITC-conjugated dextrans (FD;

Sigma) were prepared by rehydrating lipids in the presence of

25 mg/ml FD, 107 mM NaCl, 10 mM Hepes pH 7.5. Liposomes

containing CF or FD were purified from external fluorescence by

multiple cycles of ultracentrifugation [18] and resuspended

in107 mM NaCl, 10 mM Hepes pH 7.5.

Membrane permeability assays
Membrane permeability was measured by detecting the release

of fluorescent material from within liposomes. Purified liposomes

containing CF or FD were added to test substances (recombinant

protein, peptide, virus or mock controls in typical volume 5 ml) to

give typical final concentrations of 50 mM lipid,107 mM NaCl,

10 mM HEPES pH 7.4 and total volume of 100 ml. Reagents and

plastic-ware were pre-equilibrated to the reaction temperature

(25uC or 37uC).

For CF release, reactions were assembled in 96-well plates and

membrane permeability detected in real time by the release,

dequenching and increase in fluorescence of CF. Measurements

were recorded every 30 s for 1 hr using a fluorescence plate reader

with excitation and emission wavelengths of 485 nm and 520 nm

respectively (Plate CHAMELEON V, Hidex). Initial rates were

calculated from the linear slope of lines generated from the initial

four data points.

For FD release, permeability reactions were incubated for 1 hr,

liposomes pelleted at 100,0006g for 30 mins and fluorescent signal

in the supernatant measured using the plate reader as above. The

signal released by the addition of 0.5% (v/v) Triton X-100 was

taken as 100% and all supernatants were adjusted to 0.5% (v/v)

Triton X-100 prior to recording fluorescent measurements, to

normalise for fluorescence quenching by presence of detergent.

For experiments investigating the effect of pH on the induction

of membrane permeability, CF release reactions were assembled

with 10 mM sodium citrate/citric acid buffer at pH 5.5, 6.5 or 7.0

(instead of HEPES). CF fluorescence is quenched at low pH.

Experiments to confirm this were carried out by adjusting a stock

solution of CF (50 mM CF, 10 mM Hepes pH 7.5), to different

pH values by 100-fold dilution in the citrate/citric buffers

described above. After 1 hour, samples were re-adjusted to pH 8

by addition of small volumes of 1M NaOH. Fluorescence was

measured as described above. The quenching of CF fluorescence

at low pH clearly presented a problem for comparing real time

data at different pH values. Thus, real time CF release induced by

the pH independent pore forming peptide melittin appeared to be

reduced at low pH but the true signal in end point supernatants

were all revealed as equivalent values if adjusted to neutral pH.

Picornavirus VP4 Forms a Membrane Pore
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We therefore normalised CF release at each pH value relative to

the endpoint value induced by melittin at that pH.

DSP cross-linking
VP4His was incubated in the presence or absence of liposomes

(50 mM lipid) at 25uC for 1 hr, before addition of the membrane

permeable cross-linker DSP (Thermo scientific) to final concen-

tration of 0.5 mM or 1 mM and incubation for a further 20 min at

25u. The reaction was terminated by the addition of 1 M Tris

pH 7.5. Samples were analysed by SDS-PAGE under non-

reducing conditions. If required, cross-linking was reversed by

the addition of 50 mM DTT and incubation at 37uC for 30 min.,

before analysis by SDS-PAGE.

Polyacrylamide gel electrophoresis (PAGE) and western
blot

For native PAGE, purified VP4His (5 mg) was vacuum dried

and rehydrated by shaking at 25uC in either liposomes (equivalent

to 50 mM lipid) in 107 mM NaCl, 10 mM HEPES pH 7.4, or

300 mM diheptanoyl-sn-glycero-3-phosphocholine (DHPC) in

20 mM HEPES pH 7.4. Samples were mixed with an equal

volume of 30% glycerol, 0.05% bromophenol blue, 150 mM Tris-

HCl pH 7.0, prior to native PAGE using a 4 to 20% gradient gel

(TGX, Bio-Rad). Samples were not heated prior to electropho-

resis. Protein was visualised by silver staining (Pierce). For SDS-

PAGE, samples were heated at 96uC for 10 min in 10% glycerol,

2% (w/v) SDS, 0.01% (w/v) phenol red, 62.5 mM Tris-HCl

pH 6.8 (@ 25uC). Proteins were separated using 12% or 16.5%

polyacrylamide gels and detected by staining with Coomassie

brilliant blue R-250 (Sigma) or by silver staining (Pierce).

Alternatively, proteins were transferred to polyvinyl difluoride

(PVDF) membrane and identified using anti-VP4 sera (raised

against a peptide corresponding to the C-terminus of VP4), a

peroxidase-conjugated secondary antibody (Sigma) and ECL

substrate (Thermo scientific).

Electron microscopy (EM)
EM grids bearing a carbon support were glow discharged for

15 s using an EMS 1006 (EMS). VP4GST was reconstituted in

DPC micelles by rehydrating in 100 mM DPC, 150 mM NaCl,

20 mM sodium acetate pH 5.5 and micelles containing VP4GST

were purified by size exclusion chromatography (Superose 6

1/300, GE Healthcare), adsorbed onto grids and stained using

0.75% uranyl formate. Images in Fig. 6A were collected on a

JEOL 1200EX operating at 80 kV. For large image data sets,

zero-loss filtered images were collected on a Zeiss Cs-TEM MC

Libra200 operating at 80 kV equipped with an in-column filter set

to 10 eV, and an Ultrascan 4000 CCD camera (Gatan).

Image processing
Particles were picked with a semi-automated algorithm imple-

mented in EMAN2 [53], e2boxer.py. All further processing was

done in SPARX [54]. The particles were aligned, and classified

using a K-means algorithm, which produced 7 classes. These

classes were then used as references in a multi-reference

alignment. To obtain an estimate of the rotation symmetry

present in each of the classes, each class average was rotated and

cross-correlated with the original for all angles ranging from 0 to

359 degrees in increments of 1 degree. The cross-correlation

coefficient was then plotted versus the rotation angle, and number

of peaks and peak separation inspected for likely n-fold symmetry.

Supporting Information

Figure S1 Migration of VP4His is not altered when
diluted in a constant concentration of DMSO. The

indicated amounts of VP4His were diluted in a standard volume

of DMSO, subjected to SDS-PAGE and visualized by silver

staining. Molecular mass markers (in kilodaltons) are indicated on

the left.

(TIF)

Figure S2 Carboxyfluorescein (CF) fluorescence is
quenched by low pH and detergent. A. CF-containing

samples were adjusted to pH 5.5, 6.5 or 7.0 and fluorescence

recorded, samples were re-adjusted to pH 8 (‘recovered’) and

fluorescence recorded again. B. CF released from liposomes by the

pH dependent peptide GALA (1 mM) or the pH independent

peptide melittin (10 mM), or by 0.5% (v/v) detergent TX-100.

(TIF)

Figure S3 Micrograph image of DPC micelles in the
absence of VP4. Prepared as described in materials and

methods except samples were not subjected to size exclusion

chromatography. The difference in appearance and contrast in

this figure (relative to figure 6) may therefore be due to a higher

sample concentration. Scale bar = 20 nm.

(TIF)

Author Contributions

Conceived and designed the experiments: AP MS DJR JMH TJT.

Performed the experiments: AP MS SG HW. Analyzed the data: AP MS

JMH TJT. Contributed reagents/materials/analysis tools: TJ JJC. Wrote

the paper: AP MS TJ DJR NJS JMH TJT.

References

1. Plemper RK (2011) Cell entry of enveloped viruses. Current Opinion in

Virology 1: 92–100.

2. Harrison SC (2008) Viral membrane fusion. Nature Structural & Molecular

Biology 15: 690–698.

3. Moyer CL, Nemerow GR (2011) Viral weapons of membrane destruction:

variable modes of membrane penetration by non-enveloped viruses. Current

Opinion in Virology 1: 44–49.

4. Johnson JE (2010) Cell Entry by Non-Enveloped Viruses. In: Johnson JE, editor.

Cell Entry by Non-Enveloped Viruses. pp. 1–229.

5. Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, et al. (1998)

Viruses and bacteria in the etiology of the common cold. Journal of Clinical

Microbiology 36: 539–542.

6. Gern JE (2010) The ABCs of Rhinoviruses, Wheezing, and Asthma. Journal of

Virology 84: 7418–7426.

7. Jackson DJ, Johnston SL (2010) The role of viruses in acute exacerbations of

asthma. Journal of Allergy and Clinical Immunology 125: 1178–1187.

8. Chow M, Newman JFE, Filman D, Hogle JM, Rowlands DJ, et al. (1987)

Myristylation of picornavirus capsid protein VP4 and its structural significance.

Nature, UK 237: 482–486.

9. Hogle JM (2002) Poliovirus cell entry: Common structural themes in viral cell

entry pathways. Annual Review of Microbiology 56: 677–702.

10. Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ (2010) Picornaviruses. Curr

Top Microbiol Immunol.

11. Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Reviews in Medical

Virology 20: 281–297.

12. Fricks CE, Hogle JM (1990) Cell-induced conformational change in poliovirus -

externalization of the amino terminus of vp1 is responsible for liposome binding.

Journal of Virology 64: 1934–1945.

13. Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM (2006) Characterization of early

steps in the poliovirus infection process: Receptor-decorated liposomes induce

conversion of the virus to membrane-anchored entry-intermediate particles.

Journal of Virology 80: 172–180.

14. Danthi P, Tosteson M, Li QH, Chow M (2003) Genome delivery and ion

channel properties are altered in VP4 mutants of poliovirus. Journal of Virology

77: 5266–5274.

15. Moscufo N, Yafal AG, Rogove A, Hogle J, Chow M (1993) A mutation in VP4

defines a new step in the late stages of cell entry by poliovirus. Journal of

Virology 67: 5075–5078.

Picornavirus VP4 Forms a Membrane Pore

PLOS Pathogens | www.plospathogens.org 11 August 2014 | Volume 10 | Issue 8 | e1004294

@


16. Strauss M, Levy HC, Bostina M, Filman DJ, Hogle JM (2013) RNA Transfer

from Poliovirus 135S Particles across Membranes Is Mediated by Long
Umbilical Connectors. Journal of virology 87: 3903–3914.

17. Brabec M, Schober D, Wagner E, Bayer N, Murphy RF, et al. (2005) Opening

of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo
uncoating monitored by single-organelle flow analysis. Journal of Virology 79:

1008–1016.
18. Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, et al. (2008)

Recombinant VP4 of human rhinovirus induces permeability in model

membranes. Journal of Virology 82: 4169–4174.
19. Tosteson MT, Wang H, Naumov A, Chow M (2004) Poliovirus binding to its

receptor in lipid bilayers results in particle-specific, temperature-sensitive
channels. Journal of General Virology 85: 1581–1589.

20. Prchla E, Kuechler E, Blaas D, Fuchs R (1994) Uncoating of human rhinovirus
serotype-2 from late endosomes. Journal of Virology 68: 3713–3723.

21. Bayer N, Prchla E, Schwab M, Blaas D, Fuchs R (1999) Human rhinovirus

HRV14 uncoats from early endosomes in the presence of bafilomycin. Febs
Letters 463: 175–178.

22. Huotari J, Helenius A (2011) Endosome maturation. Embo Journal 30: 3481–
3500.

23. Bello J, Bello HR, Granados E (1982) Conformation and aggregation of melittin

- dependence on pH and concentration. Biochemistry 21: 461–465.
24. Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid

vesicles by leakage of co-encapsulated markers: Pore formation by melittin.
Biophysical Journal 72: 1762–1766.

25. Parente RA, Nir S, Szoka FC (1990) Mechanism of leakage of phospholipid
vesicle contents induced by the peptide GALA. Biochemistry 29: 8720–8728.

26. Nicol F, Nir S, Szoka FC (2000) Effect of phospholipid composition on an

amphipathic peptide-mediated pore formation in bilayer vesicles. Biophysical
Journal 78: 818–829.

27. Park SC, Kim JY, Shin SO, Jeong CY, Kim MH, et al. (2006) Investigation of
toroidal pore and oligomerization by melittin using transmission electron

microscopy. Biochemical and Biophysical Research Communications 343: 222–

228.
28. Tosteson MT, Chow M (1997) Characterization of the ion channels formed by

poliovirus in planar lipid membranes. Journal of Virology 71: 507–511.
29. Li Q, Yafal AG, Lee YM, Hogle J, Chow M (1994) Poliovirus neutralization by

antibodies to internal epitopes of VP4 and VP1 results from reversible exposure
of these sequences at physiological temperature. J Virol 68: 3965–3970.

30. Lewis JK, Bothner B, Smith TJ, Siuzdak G (1998) Antiviral agent blocks

breathing of the common cold virus. Proc Natl Acad Sci U S A 95: 6774–6778.
31. Resh MD (1999) Fatty acylation of proteins: new insights into membrane

targeting of myristoylated and palmitoylated proteins. Biochimica Et Biophysica
Acta-Molecular Cell Research 1451: 1–16.

32. Yalovsky S, Rodriguez-Concepcion M, Gruissem W (1999) Lipid modifications

of proteins - slipping in and out of membranes. Trends in Plant Science 4: 439–
445.

33. Martin-Belmonte F, Lopez-Guerrero JA, Carrasco L, Alonso MA (2000) The
amino-terminal nine amino acid sequence of poliovirus capsid VP4 protein is

sufficient to confer N-myristoylation and targeting to detergent-insoluble
membranes. Biochemistry 39: 1083–1090.

34. Xiao C, Tuthill TJ, Kelly CMB, Challinor LJ, Chipman PR, et al. (2004)

Discrimination among rhinovirus serotypes for a variant ICAM-1 receptor
molecule. Journal of Virology 78: 10034–10044.

35. Hooverlitty H, Greve JM (1993) Formation of rhinovirus-soluble ICAM-1
complexes and conformational-changes in the virion. Journal of Virology 67:

390–397.

36. Bilek G, Matscheko NM, Pickl-Herk A, Weiss VU, Subirats X, et al. (2011)

Liposomal Nanocontainers as Models for Viral Infection: Monitoring Viral
Genomic RNA Transfer through Lipid Membranes. Journal of Virology 85:

8368–8375.

37. Bubeck D, Filman DJ, Cheng NQ, Steven AC, Hogle JM, et al. (2005) The

structure of the poliovirus 135S cell entry intermediate at 10-Angstrom

resolution reveals the location of an externalized polypeptide that binds to

membranes. Journal of Virology 79: 7745–7755.

38. Lin J, Lee LY, Roivainen M, Filman DJ, Hogle JM, et al. (2012) Structure of the

Fab-Labeled ‘‘Breathing’’ State of Native Poliovirus. Journal of Virology 86:

5959–5962.

39. Bostina M, Levy H, Filman DJ, Hogle JM (2011) Poliovirus RNA Is Released
from the Capsid near a Twofold Symmetry Axis. Journal of Virology 85: 776–

783.

40. Wang X, Peng W, Ren J, Hu Z, Xu J, et al. (2012) A sensor-adaptor mechanism

for enterovirus uncoating from structures of EV71. Nature Structural &

Molecular Biology 19: 424–429.

41. Ren J, Wang X, Hu Z, Gao Q, Sun Y, et al. (2013) Picornavirus uncoating

intermediate captured in atomic detail. Nature communications 4: 1929–1929.

42. Katpally U, Fu TM, Freed DC, Casimiro DR, Smith TJ (2009) Antibodies to the

Buried N Terminus of Rhinovirus VP4 Exhibit Cross-Serotypic Neutralization.
Journal of Virology 83: 7040–7048.

43. Clarke D, Griffin S, Beales L, Gelais CS, Burgess S, et al. (2006) Evidence for the

formation of a heptameric ion channel complex by the hepatitis C virus p7

protein in vitro. Journal of Biological Chemistry 281: 37057–37068.

44. Andrecka J, Lewis R, Bruckner F, Lehmann E, Cramer P, et al. (2008) Single-

molecule tracking of mRNA exiting from RNA polymerase II. Proc Natl Acad

Sci U S A 105: 135–140.

45. Korzheva N, Mustaev A, Kozlov M, Malhotra A, Nikiforov V, et al. (2000) A

structural model of transcription elongation. Science 289: 619–625.

46. Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999)

Microsecond time-scale discrimination among polycytidylic acid, polyadenylic

acid, and polyuridylic acid as homopolymers or as segments within single RNA

molecules. Biophys J 77: 3227–3233.

47. Poh MK, Yip A, Zhang S, Priestle JP, Ma NL, et al. (2009) A small molecule

fusion inhibitor of dengue virus. Antiviral Research 84: 260–266.

48. Schmidt AG, Lee K, Yang PL, Harrison SC (2012) Small-Molecule Inhibitors of

Dengue-Virus Entry. Plos Pathogens 8. e1002627. doi:10.1371/journal.ppat.

1002627

49. Liu S, Wu S, Jiang S (2007) HIV entry inhibitors targeting gp41: From

polypeptides to small-molecule compounds. Current Pharmaceutical Design 13:

143–162.

50. Zhou G, Chu S (2013) Discovery of Small Molecule Fusion Inhibitors Targeting
HIV-1 gp41. Current Pharmaceutical Design 19: 1818–1826.

51. Lee WM, Wang WS, Rueckert RR (1995) Complete sequence of the RNA

genome of human rhinovirus-16, a clinically useful common cold virus belonging

to the ICAM-1 receptor group. Virus Genes 9: 177–181.

52. Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, et al. (2009) Equine

rhinitis A virus and its low pH empty particle: clues towards an aphthovirus

entry mechanism? PLoS Pathog 5: e1000620.

53. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, et al. (2007) EMAN2: An

extensible image processing suite for electron microscopy. Journal of Structural
Biology 157: 38–46.

54. Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z, et al. (2007) SPARX, a

new environment for Cryo-EM image processing. Journal of Structural Biology

157: 47–55.

Picornavirus VP4 Forms a Membrane Pore

PLOS Pathogens | www.plospathogens.org 12 August 2014 | Volume 10 | Issue 8 | e1004294


