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This paper investigates the use of an actuator and sensor pair coupled via a control system to damp out oscillations in
resonant mechanical systems. Specifically the designs emulate passive control strategies, resulting in controller dynamics
that resemble a physical system. Here, the use of the novel dynamically dual approach is proposed to design the vibration
absorbers to be implemented as the controller dynamics; this gives rise to the dynamically dual vibration absorber (DDVA).
It is shown that the method is a natural generalisation of the classical single-degree of freedom mass–spring–damper vibra-
tion absorber and also of the popular acceleration feedback controller. This generalisation is applicable to the vibration
control of arbitrarily complex resonant dynamical systems. It is further shown that the DDVA approach is analogous to the
hybrid numerical-experimental testing technique known as substructuring. This analogy enables methods and results, such
as robustness to sensor/actuator dynamics, to be applied to dynamically dual vibration absorbers. Illustrative experiments
using both a hinged rigid beam and a flexible cantilever beam are presented.

Keywords: vibration absorber; bond graph; acceleration feedback control; dynamic dual

1. Introduction
The use of a secondary resonant mechanical systems to
damp out oscillations in a resonant mechanical system
by absorbing and dissipating energy has a long history
and early work is summarised in the classical textbook
by Den Hartog (1985). An alternative method for damp-
ing unwanted oscillations is to use some form of active
vibration control. To achieve this some type of actuator
and sensor system needs to be used. For example, vibra-
tions can be damped from a mechanical system using a
piezo-electric transducer and an associated electrical cir-
cuit (Hagood & von Flotow, 1991). This can have consid-
erable advantages, although, as discussed by Moheimani
& Behrens (2004) multi-modal resonant structures require
sophisticated circuit synthesis.

The adjective ‘passive’ applied to ‘system’ has two
different but related meanings: a physical system not
containing a power source and a mathematical expres-
sion imposing the corresponding property on the input
and output variables of a set of equations (Hogan,
1985; Sharon, Hogan, & Hardt, 1991; Slotine & Li,
1991). In general, this means that passive mechanical
(or electrical) vibration absorbers can be replaced by
a computer and associated sensor-actuator pairs which
emulate the physical passivity in the equivalent mathemat-
ical sense. The algorithm implemented in the computer

∗Corresponding author. Email: peter.gawthrop@unimelb.edu.au

does not have to represent a physical system and can
be designed using conventional control-theoretic meth-
ods (Balas, 1978; Fleming & Moheimani, 2005; Hong &
Bernstein, 1998; Hogsberg & Krenk, 2006; Moheimani &
Fleming, 2006), optimisation (Krenk & Hogsberg, 2009)
or via system inversion (Ali & Padhi, 2009).

However, it can be argued that there are advan-
tages in implementing physical systems within the dig-
ital computer (Gawthrop, 1995; Gawthrop, Bhikkaji,
& Moheimani, 2010; Hogan, 1985; Lozano, Brogliato,
Egelund, & Maschke, 2000; Ortega, Loria, Nicklasson, &
Sira-Ramirez, 1998; Ortega, van der Schaft, Mareels, &
Maschke, 2001; Sharon et al., 1991; Slotine & Li, 1991);
this is the approach explored in this paper. In particular,
the well-known relationship between dissipativity, passiv-
ity and physical systems (Lozano et al., 2000; Ortega et al.,
1998, 2001; Willems, 1972) is exploited. Such energy
based concepts rely on the properties of physical connec-
tions. In particular, the concept of collocation is a key
system property in the context of active vibration control
(Gawthrop et al., 2010; Preumont, 2002).

Replacing a mechanical vibration absorber by a dig-
ital computer is analogous to the well-known hybrid
numerical-experimental testing technique where the struc-
ture under consideration is split into an experimental test
piece (or physical substructure) and a numerical model

c© 2015 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.
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describing the remainder of the structure (or numerical
substructure). Although the two coupled passive sub-
systems resulting from this process are stable (Ander-
son & Vongpanitlerd, 2006; Desoer & Vidyasagar, 1975;
Lozano et al., 2000; Ortega, Praly, & Landau, 1985;
Ortega et al., 2001), this stability can be destroyed by
the digital implementation of the numerical substructure
and the corresponding actuator and sensor dynamics that
couple the substructures (Gawthrop, Wallace, Neild, &
Wagg, 2007). Fortunately, this problem of coupling the
numerical and experimental substructures using real-time
digital implementation has been solved and a suite of
techniques for robust numerical-experimental substruc-
turing is now available (Blakeborough, Williams, Darby,
& Williams, 2001; Gawthrop, Wallace, & Wagg, 2005;
Wagg, Neild, & Gawthrop, 2008). Furthermore, the sub-
structuring approach is particularly suitable for the type of
resonant systems that are the focus of this paper (Gawthrop
et al., 2007).

As discussed by Gawthrop et al. (2005), the bond-graph
approach (Borutzky, 2011; Gawthrop & Bevan, 2007;
Gawthrop & Smith, 1996; Karnopp, Margolis, & Rosen-
berg, 2012; Mukherjee, Karmaker, & Samantaray, 2006)
gives a natural and convenient formulation of substructur-
ing and control (Gawthrop, 2004; Gawthrop et al., 2005;
Vink, Ballance, & Gawthrop, 2006) and the concept of
actuator/sensor collocation has a clear bond graph inter-
pretation. For these reasons, the bond-graph approach is
adopted in this paper.

As discussed by Den Hartog (1985), choosing the struc-
ture of a vibration absorber for a single degree of freedom
system is straightforward. However, choosing the structure
for multi-degree of freedom systems such as those arising
from modal decomposition is considerably more involved
(Moheimani & Behrens, 2004). This complexity motivates
the novel approach of this paper based on the concept of of
a dynamically dual1 system.

As discussed in more detail in Section 3, a dynami-
cally dual mechanical system is obtained by interchanging
the rôles of velocity and force. This concept of duality
has been used for analysis of dynamical systems (Cellier,
1991; Karnopp, 1966; Samanta & Mukherjee, 1985, 1990;
Shearer, Murphy, & Richardson, 1971), and this paper uses
the concept to design dynamically dual vibration absorbers
(DDVA).

Although the DDVA method originated an extension of
the physically based design of Den Hartog (1985), it will be
shown that the method also includes the well-established
acceleration feedback approach (Preumont, 2002).

In summary, placing both the traditional Den Hartog
mechanical vibration absorber and acceleration feedback
into the wider context of the DDVA of this paper has
two advantages: the method immediately extends to multi
degree of freedom systems and the implementation and
theoretical results (including robustness to sensor/actuator
dynamics) from substructuring can be directly applied.

Section 2 reviews the substructuring approach to
provide a framework for the paper. Section 3 gives the
foundations of the DDVA approach; Section 3.2 focuses
on the Den Hartog (1985) absorber version and Section 3.3
focuses on the acceleration feedback controller (Preumont,
2002). Section 4 discusses a number of multi-mode exam-
ples. Section 5 gives illustrative experimental results; Sec-
tions 5.1 and 5.2 experimentally verify the approach when
applied to a rigid beam with an flexible joint and a flexi-
ble cantilever beam, respectively. Section 6 concludes the
paper.

2. The substructuring formulation
Substructuring is a novel dynamic testing technique that
allows the experimental testing of a component within
the context of a larger system. This is achieved through
the coupling of the physical component with a controller
that numerically simulates the dynamics of the remainder
of the system. Note that as the controller dynamics are
designed to simulate part of a real system, the dynamics
are physically realisable.

Figure 1 summarises the basic substructuring formula-
tion Gawthrop et al. (2005) and Gawthrop, Wagg, & Neild
(2009). For simplicity, Figure 1 will be assumed to rep-
resent a system with scalar quantities, although this can
readily be extended to vectors. The three key parts are
shown in Figure 1:

(1) Phy representing the physical component, with
transfer function p(s), to be controlled,

(2) Num representing the controller, with physically
realisable dynamics, which is implemented numer-
ically and has a transfer function n(s),

(3) Se:F0 representing a disturbing external force, F0,

where s is the Laplace domain independent variable. Firstly
the velocity feedback case is shown, Figure 1(a) as a bond
graph2 and in Figure 1(b) as a block diagram. Here, the
physical component Phy has a force input, F0 − F , and
a measured velocity output, v. In addition, the parame-
ters in the physical system are represented by a vector,
θp , Similarly, θn, represents the vector of parameters in the
numerical system.

An advantage of the bond graph representation is that it
emphasises the fact that the physical system Phy and the
controller Num are connected by power bonds and thus
the control system is collocated – meaning that the actua-
tor and sensor are located at the same point. In Figure 1(a)
the parts are joined by a common flow (velocity) junction
denoted as 1. The bond graph also indicates causality and
Phy and Num are represented by the positive real transfer
functions p(s, θp) and n(s, θn), respectively. The transfer

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sh

ef
fi

el
d]

 a
t 0

0:
58

 2
0 

Ja
nu

ar
y 

20
15

 



Systems Science & Control Engineering: An Open Access Journal 115

(a) (b)

(c) (d)

Figure 1. The substructuring formulation. The mathematically equivalent formulations (b)–(d) allow for a choice of sensors. (a)
Bond graph, (b) block-diagram: velocity formulation, (c) block-diagram: displacement formulation and (d) block-diagram: acceleration
formulation.

functions are related by the following relationships:

v = p(s, θp)(F0 − F), (1)

F = n(s, θn)v. (2)

Although it is natural to work in terms of velocity
v rather than displacement x, Figure 1(b) can be eas-
ily rewritten in terms of displacement as Figure 1(c)
where dx/dt = v or in terms of acceleration as Figure 1(d)
where a = dv/dt. The choice of formulation (displace-
ment, velocity or acceleration) does not change the theo-
retical closed-loop stability properties defined by the loop-
gain L(s) = n(s, θn)p(s, θp), but allows flexibility in the
choice of sensor and actuator. As well as providing a con-
ceptual basis for this paper, the substructuring approach
links to classical control system concepts useful for stabil-
ity and robustness analysis. Details can be found elsewhere
(Gawthrop et al., 2007, 2009; Wagg et al., 2008).

The substructuring formulation of Figure 1(a) assumes
an inertia-like physical component driven by a force;
as discussed by Gawthrop et al. (2005), compliance-like
physical components can be treated by the formulation of
Figure 2(a) where the external force F0 is replaced by an
external velocity v0 and the three components are now con-
nected by a common force, or 0, junction. To distinguish
this velocity-driven formulation from the force-driven for-
mulation in Figure 1(a) an over-bar is used:

F = p̄(s, θp)(v0 − v), (3)

v = n̄(s, θn)F . (4)

Using the definitions of Equations (3) and (4), the
block diagram equivalent of Figure 2(a) is Figure 2(b).
Once again, displacement and acceleration formulations
are given by Figure 2(c) and 2(d), respectively.

3. Dynamically dual design
As already discussed, in this paper a vibration absorber
attached to a system is considered. This vibration absorber,
while based on a physical component thus ensuring that
the system is passive, is implemented as a controller. This
setup can be considered within the substructuring frame-
work, with the vibration absorber forming Num and the
system which the vibration absorber is attached being Phy.
One possible absorber is the Den Hartog resonant vibration
absorber, which is usually represented by a conventional
mass–spring–damper schematic. However, as pointed out
by Den Hartog (1985), and discussed in greater depth by
Shearer et al. (1971), can equally well be described by an
equivalent electrical circuit analogue.

Here, the use of DDVAs is proposed as a method
for generating suitable Num dynamics. As discussed in
Section 3.2, the resonant vibration absorber of Den Hartog
(1985) is an example of a DDVA and provides the motiva-
tion for this approach. In formulating the DDVA approach
the following features of the Den Hartog resonant vibration
absorber are abstracted and generalised:

(1) it is a one-port3 passive4 physical system,
(2) it is causally compatible with the system, in that,

the output velocity of the system provides the input
to the absorber and the force output of the absorber
provides the input to the system,

(3) there is a variable coupling parameter,
(4) the absorber has the same resonant frequency as

the system, and
(5) the damping ratio of the absorber is greater than

that of system.

The DDVA design approach is to set Num to be a
dynamic-dual of the key mode or modes of the system that
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(a) (b)

(c) (e)

Figure 2. The velocity-driven substructuring formulation. (a) Bond graph, (b) block-diagram: velocity formulation, (c) block-diagram:
displacement formulation and (d) block-diagram: acceleration formulation.

the absorber is attached to (which is contained in Phy).
The method of obtaining a dynamic dual is now discussed.
This is followed by discussions of two common absorber
strategies which are DDVA; the Den Hartog absorber and
the acceleration feedback method proposed by Preumont
(2002).

3.1. A dynamic-dual
A dynamic-dual of a system is obtained by interchanging
the rôles of velocity and force, is defined in Shearer et al.
(1971). An extended version of this concept, the scaled
dual is used here and, in the context of mechanical systems
is defined as follows:

(1) Each force Fi, and each velocity vi, in the original
system has a scaled dual vD

i , and FD
i in the dual

system given by:

vD
i = 1

g
Fi, (5)

FD
i = gvi, (6)

where g is the scaling factor and g = 1 corresponds
to the unscaled dual.

(2) Each mass component with mass mi is replaced in
the dual system with a spring component of stiff-
ness Ki, each spring component with stiffness ki
is replaced in the dual system with a mass com-
ponent of mass Mi, and each damper component
with damping coefficient ri is replaced in the dual
system with a damper component with damping
coefficient Ri where:

Ki = g2

mi
, (7)

Mi = g2

ki
, (8)

Ri = g2

ri
. (9)

(3) Common force connections become common
velocity connections and common velocity con-
nections become common force connections in the
dual system.

(4) If the system transfer function h(s) has force F as
input and velocity v as output, then the dual trans-
fer function H(s) has velocity vD as input and force
FD as output and is given by:

FD = gv, (10)

vD = 1
g

F , (11)

H(s) = FD

vD = gv

(1/g)F
= g2h(s). (12)

Equations (10) and (11) are power conserving in the sense
that

FDvD = Fv. (13)

As these Equations (10) and (11) also interchange the roles
of force and velocity, they correspond to the bond graph
gyrator (GY) component of Figure 3.

Equations (7) and (8) ensure that the scaled dual retains
the same natural frequencies as the system; in the sequel,
the value Ri given using Equation (9) is not used, instead it

Figure 3. Gyrator interpretation of dynamic-dual.
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is replaced by the user-selected value R′
i. This allows the

damping of the modified scaled dual system, which forms
the controller implemented in Num, to be adjusted.

Although not essential to the approach of this paper, the
bond graph formulation provides a clear exposition of the
notion of a scaled dual. In particular, the scaled dual system
can be described in two different but equivalent ways as:

(1) the bond graph dual where the component moduli
are given by Equations (7)–(9) or

(2) following Equation (13), the system obtained by
appending a gyrator of modulus g to the sys-
tem Phy port as in Figure 3. This point is also
discussed by Gawthrop et al. (2010).

3.2. Den Hartog absorber
In his classical text book (Den Hartog, 1985, Section 3.3),
Den Hartog considers the design of a damped vibration
absorber for an undamped mass–spring system which is
subject to a force disturbance. The specifications

(1) ‘the main mass is 20 times greater than the damper
mass’,

(2) ‘the frequency of the damper is equal to the fre-
quency of the main system’,

(3) The damping ratio of the damper is ζ = 0.1.

were considered.
In the terminology used in this paper, the physical sys-

tem requiring vibration suppression (Phy) is the undamped
mass–spring oscillator. In Den Hartog (1985) the vibra-
tion absorber was considered to be a physical mechan-
ical device but here it is considered to be a controller
(with sensor and actuator) with the same dynamics as the
absorber and forms Num. The disturbance force acts on
the undamped mass–spring oscillator Phy, as does a force
due to the presence of the absorber Num, therefore the
system can be represented by the block diagram given in
Figure 1(b).

Figure 4(b) and 4(a) gives the schematic diagram of
the damped vibration absorber Num and the undamped
oscillator Phy, respectively. A damper with r = ∞ is
included in the subsystem Phy of Figure 4(a) to allow
for the corresponding component in the subsystem Num.
Using standard manipulations, the transfer function of the
physical system, Phy, of Figure 4(a) is:

p(s, θp) = s(ms + r)
mrs2 + kms + kr

. (14)

Letting r → ∞ gives:

p(s, θp) = s
ms2 + k

. (15)

Similarly, from Figure 4(b), the transfer function for Num,
which represents the Den Hartog absorber, is

n(s, θn) = Ms(Rs + K)

Ms2 + Rs + K
. (16)

It can be shown that this absorber is a scaled dynamic-
dual of the system, Phy, it is applied to. Considering the
system Phy, given in Equation (14), and applying the dual
transforms, given in Equations (7)–(9), the parameters m,
k and r can be rewritten in terms of M ,K and D to give:

p(s, θp)

= s((g2/k)s + (g2/R))

(g2/k)(g2/R)s2 + (g2/M )(g2/K)s + (g2/M )(g2/R)

=
(

1
g2

)
Ms(Rs + K)

Ms2 + Rs + Kr
. (17)

Applying the scaling given in Equation (12), the scaled
dual of Phy is

P(s, �p) = g2p(s, θp) = Ms(Rs + K)

Ms2 + Rs + Kr
. (18)

Thus, by comparing this to Equation (16), it can be seen
that the Den Hartog absorber in Num corresponds to the
scaled dual of Phy:

n(s, θn) = P(s, �p). (19)

The first part of the Den Hartog specifications is
achieved by setting:

M = αm where α = 1
20

. (20)

The second part of the specification is achieved by setting

K
M

= k
m

. (21)

Equations (20) and (21) imply that

K = αk. (22)

Moreover, using Equations (7) and (22), the scaling gain g
is given by

g2 = Km = αmk. (23)
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Figure 4. Den Hartog absorber. The physical system (a) and its vibration absorber (and dynamic-dual) (b) are first-order mass–spring—
damper systems. (c) The closed-loop frequency response (black line) has a lower resonant peak than the open-loop response (grey line).
(d) The closed-loop impulse response (black line) exhibits more damping than the open-loop impulse response (grey line). (a) Phy: the
physical system, (b) Num: the dual physical system, (c) frequency response H(j ω) and (d) impulse response h(t).

Finally, the third part of the specification is achieved by
replacing the damping coefficient R of n(s, θn) by

R′ = 2ζ
√

MK . (24)

To illustrate the properties of this particular vibration
absorber, the unit system with m = k = 1 was used. Using
the specification described above, this gives the numerical
system parameters M = K = 0.05 and R′ = 0.01, and so
the DDVA is given by:

n(s, θ ′
n) = Ms(R′s + K)

Ms2 + R′s + K
= 0.01s2 + 0.05s

s2 + 0.2s + 1
. (25)

The corresponding closed-loop frequency response
appears in Figure 4(c); this shows the ‘split peak’ phe-
nomenon described by Den Hartog (1985). The cor-
responding closed-loop impulse response appears in
Figure 4(d); this decays exponentially over the time scales
determined by the specified damping ratio.

3.3. Acceleration feedback
The acceleration feedback method has been proposed by
Preumont (2002). This section rederives the algorithm
from the DDVA point of view. In particular, the undamped
physical system of Figure 4(a) (with 1/r = 0) can equally
well be represented in Figure 5(a) with r = 0. This sys-
tem has a different modified dual and thus gives a different
form of control; this turns out to be a form of acceleration
feedback.

As with the last example the vibration absorber is act-
ing on an undamped mass–spring oscillator. The undamped
oscillator forms Phy as shown in Figure 5(a). Note that a
damper with r = 0 is included to allow a dynamic-dual to
be formulated. Using standard manipulations, the transfer
function of the physical system Phy of Figure 5(a) is

p(s, θp) = s
ms2 + rs + k

. (26)
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Figure 5. Acceleration feedback. Like the Den Hartog absorber of Figure 4, the physical system and the dual are mass–spring–damper
systems, but the configuration is different. The closed and open-loop responses are similar to those of the Den Hartog absorber of Figure 4,
but the split peaks are more symmetrical. (a) Phy: the physical system, (b) Num: the dual physical system, (c) frequency response H(j ω)
and (d) impulse response h(t).

Setting r = 0 gives

p(s, θp) = s
ms2 + k

. (27)

The controller transfer function, forming Num, for
the acceleration feedback method (Preumont, 2002) is
given by

n(s, θn) = g2p(s, θp) = g2s
ms2 + rs + k

. (28)

Using Equation (12), it can be seen that the numerical sys-
tem Num is the scaled dynamic-dual of Phy. Figure 5(b)
gives a physical representation of the acceleration feedback
controller, where the component values R, K and M can be
calculated using Equations (7)–(9) but are not required.

To give a direct comparison with Section 3.2, the same
system and design considerations are used to give the
DDVA:

n(s, θ ′
n) = 0.05s

s2 + 0.2s + 1
. (29)

This is similar to the DDVA of Equation (25) except that
the numerator s2 term is not present.

The corresponding closed-loop frequency response
appears in Figure 5(c); this is similar to Figure 4(c) except
that the peaks have a more similar amplitude. The corre-
sponding closed-loop step response appears in Figure 5(d);
again, this decays exponentially over the time scales deter-
mined by the specified damping ratio.

4. Systems with multiple modes of vibration
The examples discussed in the previous section demon-
strate that the DDVA approach gives the same type of
vibration absorber for the well known cases associated
with mass–spring–damper systems. The real advantage of
the DDVA approach is when using it to reduce vibrations
in systems with multiple modes of vibration. The steps
involved are the same as above: (i) define a physical model
of the system Phy, (ii) set Num as the modified scaled
dual of Phy, and (iii) connect the systems via a single
(one-port) connection. As discussed in Section 3.1, step (ii)
can either be accomplished directly or indirectly using the
GY approach of Figure 3. In this paper, attention is focused
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Table 1. Modal system: resonant fre-
quencies.

n ωn (rad/s)

1 1.0
2 2.0

on linear models thus giving rise to transfer-function rep-
resentations.

Two examples are considered here. The first is a two
degree-of-freedom lumped mass system which is shown
schematically in Figure 6(a) and 6(b). Figure 6(a) and 6(b)
are similar to Figure 5(a) and 5(b) except that there are two
coupled mass–spring damper systems involved. Thus Phy
can be regarded as the modal decomposition of a 2DOF
system and Num the corresponding vibration absorber.
For the purposes of illustration, each subsystem of Num
has the same parameters as in the example of Figure 5 of
Section 3.3 (Table 1).

Figure 6(c) shows the open (without the vibration
absorber) and closed-loop (with the vibration absorber)
frequency response magnitudes. The magnitude of the
closed-loop response (black line) is clearly smaller than
the corresponding open-loop response (grey line) at the
two resonant frequencies. Figure 6(d) shows the equivalent
impulse response; as predicted by the frequency responses,
the closed-loop impulse response decays more rapidly than
the equivalent open-loop response.

As a second example, a uniform Euler-Bernoulli5 can-
tilever beam (with one end fixed and the other free)
modelled using a 10 element, finite-element bond graph
model (Karnopp, Margolis, & Rosenberg, 2000; Margo-
lis, 1985) is considered. Such beam models are undamped;
but the DDVA approach needs to include damping in
Num. For the purposes of this example, Rayleigh damp-
ing is assumed; in particular, each compliant element in the
lumped model has an associated damping term represented
by a damper connected across the ends of the compliant
elements.

Following Balas (1978, Section V) who considers a
‘unit beam’, the cantilever beam is normalised to have unit
mass per unit length and unit compliance per unit length.
Phy is assumed to have a small (but non-zero) damping
of 10−6 per unit length. The 10 modal frequencies appear
in Table 2. For the purposes of illustration, the vibration
absorber was applied to the beam using a collocated point
Force/Velocity actuator/sensor halfway along the beam. As
discussed in the sequel, this point corresponds to a nodal
point of the third-resonance and thus this mode cannot be
controlled with this choice. The choice of actuator/sensor
location is an interesting topic not considered in this paper.

Two versions of DDVA were used. The first DDVA
was obtained by considering the complete dynamic-dual
of Phy. The scaled dual Num was obtained using the GY
approach of Figure 3. A feature of this approach is that

Table 2. Cantilever beam model modal fre-
quencies.

n ωn (rad/s)

1 2.919
2 18.28
3 50.37
4 95.59
5 150.4
6 210.0
7 269.1
8 322.0
9 363.9
10 390.8

Note: Not all frequencies appear in Figures 7
and 8 due to coincident zeros.

there are only two control parameters. These were cho-
sen as the gyrator gain g2 = 0.05 and the damping of the
cantilever beam model in Num as 2 per unit length.

Figure 7(a) shows the open (without the vibration
absorber) and closed-loop (with the vibration absorber)
frequency response magnitudes. This figure has been
expanded to show the frequency responses close to the
first–fourth resonances in Figure 7(c)–7(f), respectively.
Near the first two resonances (Figure 7(c) and 7(d)), the
magnitude of the closed-loop response (black line) is
clearly smaller than the corresponding open-loop response
(grey line) at the two resonant frequencies. The third reso-
nance corresponds to a node at the sensor/actuator and the
fourth is well damped anyway. Thus this controller design
naturally applies control authority at the important reso-
nances. Figure 7(b) shows the equivalent impulse response;
as predicted by the frequency responses, the closed-loop
impulse response decays more rapidly than the equivalent
open-loop response. As noted above, the third resonance
is not controlled using this approach. However, it could be
controlled either by moving the sensor/actuator away from
the node or by having a second sensor/actuator away from
the node.

The second approach is to use the scaled dynamic-dual
of a two mode modal model (as in Figure 6(b)), capturing
the dynamics of the first two modes of the cantilever. This
is then connected to the same cantilever beam. The parame-
ters of Num are the same as in the example of Figure 6 and
those of Phy the same as those of the example of Figure 7.

Figure 8(a) shows the open (without the vibration
absorber) and closed-loop (with the vibration absorber)
frequency response magnitudes. This figure has been
expanded to show the frequency responses close to the
first–fourth resonances in Figure 8(c)–8(f), respectively.
Near the first two resonances (Figure 8(c) and 8(d)), the
magnitude of the closed-loop response (black line) is
clearly smaller than the corresponding open-loop response
(grey line) at the two resonant frequencies; these Fig-
ures are not the same as Figure 7(c) and 7(d) because
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Figure 6. Modal system. Both the physical system and its dual are coupled mass–spring–damper systems and are thus fourth-order. (c)
The closed-loop frequency response (black line) has both resonant peaks lower than the open-loop response (grey line). (d) Again, the
closed-loop impulse response (black line) exhibits more damping than the open-loop impulse response (grey line). (a) Phy: the physical
system, (b) Num: the dual physical system, (c) frequency response H(j ω) and (d) impulse response h(t).

the controller is different; but the effect is similar. The
third and fourth resonances are explicitly not controlled
with this method; but, in this case, the effect is the same
as that of the controller of the example of Figure 7.
In particular Figure 8(b) shows that the closed-loop
impulse response decays more rapidly than the equiva-
lent open-loop response in a similar fashion to that of
Figure 7(b). In this particular example, the performance of
the two controllers is quite similar.

5. Experimental results
As indicated in Figure 9, the experiments were based on the
Quanser (Apkarian, 1995) SRV02 rotational servo-motor
and associated UPM-15-03-240 power and instrumentation

module. The SRV02 was firmly clamped to a rigid
bench and interfaced to a Intel CoreTM 2 Duo Proces-
sor (2.66 GHz) based computer via a National Instruments
PCI-8024E analogue-digital conversion card and cable and
the corresponding Quanser interface board.

In the experiment described here, the computer used the
real-time Linux operating system RTAI together with the
control-orientated software RTAI-Lab (Bucher & Balemi,
2006) running at a sampling frequency of 500 Hz. Using
this software, the SRV02 rotational servo motor, rota-
tional position sensor and associated power supply were
controlled to give high-gain position control using a pro-
portional and derivative (PD) controller. The servo angle
was measured using a potentiometer and scaled within the
computer to measure angular position in radians.
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Figure 7. Cantilever beam with dual feedback. (a) Frequency responses H(j ω), (b) impulse responses h(t), (c) H (j ω) – first resonance,
(d) H(j ω) – second resonance, (e) H(j ω) – third resonance and (f) H(j ω) – fourth resonance.

5.1. Flexible joint
The Quanser cantilever beam experiment (Apkarian, 1995)
has two parts that may be considered using the substruc-
turing configuration shown in Figure 2(c). The physical
component, Phy, consists of a rigid arm which is mounted
to a platform via a pivot. This pivot exhibits a stiffness
due to two linear springs mounted between the platform
and the arm. A position disturbance is provided to the sys-
tem via the rotational servo motor on which the platform
is mounted (the pivot is directly above the motor). The
vibration absorber, Num, has a torque input F . Because of
the springs in Phy, this torque is proportional to the joint
deflection angle θ (the arm rotation relative to the platform
rotation), and so is generated from this measurement. The
output of Num is a rotational displacement x which, along
with the disturbance x0, is imposed on Phy using the servo
motor by setting the servo motor PD controller demand to
x0 − x (Figure 10).

The open-loop properties of the system were investi-
gated by applying a square-wave reference signal with a
period of 10 s to the servo and measuring both the servo
angle xa and the joint angle θ for 5 periods. Because all
of the signals are periodic, the methods of Pintelon &
Schoukens (2001) were used to generate the frequency
response of the system at the discrete frequencies cor-
responding to the periodic input. Figure 11 gives two
measured frequency responses:

(1) + indicates the response from servo angle xa to
joint angle θ .

(2) ◦ indicates the response from servo reference
to θ .

These responses match at low frequencies, but the gain of
the second transfer function falls at the higher frequencies
due to the limited servo bandwidth of about 10 Hz.
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Figure 8. Cantilever with dual modal feedback. (a) Frequency responses H(j ω), (b) impulse responses h(t), (c) H (j ω) – first resonance,
(d) H(j ω) – second resonance, (e) H(j ω) – third resonance and (f) H(j ω) – fourth resonance.

With reference to Figures 2(c) and 10(a) the physical
system Phy relating input displacement to output force is
of the form

sp̄(s, θp) = g0s2

s2 + 2ξ0ω0s + ω2
0

. (30)

The parameters θp were fitted to the first mea-
sured frequency response with ω0 = 15.1 rad s−1 and
ξo = 0.02.

Following the methodology of Section 3.3 in the dual
version of Figure 2(c), the feedback transfer function was
chosen to be of the form:

n̄(s, θn)

s
= gc

s2 + 2ξcω0s + ω2
0

, (31)

where gc = g2g0 is a variable positive gain factor and the
damping ratio ξc = 0.3.

The periodic input experimental method described
above was used. Figure 12 shows the experimental fre-
quency results for three values of gc: gc = 0, gc = 20, and
gc = 40. gc = 0 corresponds to Figure 11. The height of
the resonant peak is reduced in the two non-zero cases and
the peak splitting of Figure 5(c) is evident in Figure 12 for
the highest gain of gc = 40. Figure 13 shows the periodic
data corresponding to the joint angle θ for the three gain
values. The five consecutive periods have been superim-
posed to form the figures; the variability between periods
is essentially high-frequency noise. As indicated by the
frequency responses, the time responses show damping
increasing with gain.
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Figure 9. Experimental systems. Experimental systems. The SRV02 servomotor module is in the bottom right-hand corner and the
associated power module in the top left-hand corner. The computer display is at the top right and the computer interface board near the
centre. The flexible joint module is shown mounted on the SRV02 and rotates about a vertical axis driven though the two springs. The
cantilever beam module is shown unmounted and replaces the flexible joint module in the second set of experiments.

(a) (b)

Figure 10. Rotational joint experiment. (a) With the components interpreted in a rotational sense and r → ∞, Phy represents the
rotating arm with the attached springs. (b) Num is the modified scaled dual of Phy. (a) Phy: the physical system and (b) Num: the dual
physical system.
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Figure 11. Flexible joint: open-loop frequency responses. Flex-
ible joint: open-loop frequency responses. + indicates the
response from servo angle x to joint angle θ ; ◦ indicates the
response from servo reference to θ . The solid line is the fitted
frequency response.

Figure 12. Flexible joint: closed-loop frequency responses.

5.2. Cantilever beam
The flexible joint module was replaced by the cantilever
beam module in Figure 9. A strain gauge measures the cur-
vature at the root of the cantilever beam. In the same way
as the joint potentiometer of Section 5.1 provided a voltage
proportional to torque F , the strain gauge sensor provides a
voltage proportional to torque F . The open-loop response
was measured using the same methods. Two resonances
and one anti-resonance appear in the measured frequency
response and similarly to Section 5.1, this was fitted by a
transfer function of the form:

sp̄(s, θp) = g0

[
κ1s2

s2 + 2ξ1ω1s + ω2
1

+ κ2s2

s2 + 2ξ2ω2s + ω2
2

]

(32)

with ω1 = 23.25 rad s−1,ω2 = 159.00 rad s−1, ξ1 = ξ2 =
0.04, κ1 = 0.36 and κ2 = 1 − κ1 = 0.64. Because of the
10 Hz servo bandwidth, the discrepancy between measured
and fitted transfer function is large above 10 Hz.

Following the methodology of Section 4 a two-mode
transfer function corresponding to Equation (33) was

(a)

(b)

(c)

Figure 13. Flexible joint: time responses. (a) gc = 0, (b)
gc = 20 and (c) gc = 40.

Figure 14. Cantilever beam: open-loop frequency responses.
Cantilever beam: open-loop frequency responses. + indicates the
response from servo angle x to joint angle θ . The firm line is the
fitted frequency response.
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Figure 15. Cantilever beam: closed-loop frequency responses
for the cases where gc = 0, 50 and 100.

(a)

(b)

(c)

Figure 16. Cantilever beam: time responses. (a) gc = 0, (b)
gc = 50 and (c) gc = 100.

chosen as:

n̄(s, θn)

s
= gc

[
κ1s2

s2 + 2ξcω1s + ω2
1

+ κ2s2

s2 + 2ξcω2s + ω2
2

]

(33)

with ξc = 0.3.

The periodic input experimental method described
above was used. Figure 15 shows the experimental fre-
quency results for three values of gc: gc = 0, gc = 50, and
gc = 100. gc = 0 corresponds to Figure 14. The height
of the first resonant peak is reduced in the two non-zero
cases and the peak splitting of Figure 8(a) is evident in
Figure 15 for both cases. The second resonance is largely
unaffected; we attribute this to the limited actuator band-
width. Figure 16 shows the periodic data corresponding
to the measured strain voltage σ for the three gain val-
ues. As with Figure 13, five consecutive periods have been
superimposed to form the figures showing that the vari-
ability between periods is essentially high-frequency noise.
Again, as indicated by the frequency responses, the time
responses show damping increasing with gain.

6. Conclusion
The DDVA approach has been shown to provide a novel
method to design vibration absorbers in the physical
domain. In particular, the method is a natural generalisation
of not only the classical single-degree of freedom vibra-
tion absorber of Den Hartog (1985, Section 3.3) but also
of acceleration feedback (Preumont, 2002). Placing these
two well-known design methods into the wider context of
the DDVA of this paper has the following advantages: the
methods immediately extend to multi degree of freedom
systems and the implementation and theoretical results
(including robustness to sensor/actuator dynamics) from
substructuring can be directly applied.

The DDVA approach has been illustrated using numer-
ical simulations of single mode and multi-mode systems
and verified using two experimental systems: a rigid beam
with an flexible joint and a flexible cantilever beam. Future
work will apply the results to more complex dynami-
cal systems including those with multiple sensor-actuator
pairs.

The location of the sensor-actuator pairs has not been
considered in this paper even though it certainly affects
controllability and observability issues (Balas, 1978).
Future work in this area will extend bond graph approaches
(for example those of Marquis-Favre & Jardin (2011) and
Gawthrop & Rizwi (2011)) to sensor/actuator placement
in this context.

In principle, the method is equally applicable to the
control nonlinear vibrations where dynamical dual of the
nonlinear physical system provides the basis for a nonlin-
ear controller. This is also an area for future work.
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Notes

1. As the word ‘dual’ has many meanings, the term dynamically
dual is used for the specific meaning of this paper.

2. The bond directions have been changed for this paper to cor-
respond to the usual sign convention for feedback control
block diagrams.

3. ‘One-port’ refers to the single energy port associated with
force and velocity

4. In the sense that it consumes but does not produce energy.
5. Other models such as the Timoshenko model, as well as

non-uniform beams, could similarly be handled using this
approach
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Appendix. Derivation of Equation (14)
Equation (14) can be derived directly from the bond graph of
Figure 4(a). Letting F and v be the force and velocity at the com-
ponent interface, letting Fmr be the force acting on the mass and
damper and Fc the spring force, it follows that the components
represented by I:m, C:k and R:r have equations:

m
dvm

dt
= Fmr, (A1)

dFc

dt
= kv, (A2)

vr = 1
r

Fmr. (A3)

Taking Laplace transforms (with zero initial conditions) it follows
that:

v = vr + vm

=
[

1
r

+ 1
ms

]
Fmr

=
[

1
r

+ 1
ms

]
(F − Fc)

=
[

1
r

+ 1
ms

] [
F − k

s
v

]

= ms + r
mrs

[
F − k

s
v

]
. (A4)

Collecting terms in Equation (A4) gives:

k(ms + r) + mrs2

s(ms + r)
v = F . (A5)

Hence, rearranging Equation (A5):

v

F
= s(ms + r)

mrs2 + kms + kr
. (A6)

The right-hand side of Equation (A6) corresponds to the transfer
function of Equation (14).
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