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Abstract 

 

Voltage-gated Na
+
 channels (VGSCs) are macromolecular protein complexes 

containing a pore-forming α subunit and smaller non-pore-forming β subunits. 

VGSCs are expressed in metastatic cells from a number of cancers. In these cells, Na
+
 

current carried by α subunits enhances migration, invasion and metastasis in vivo. In 

contrast, the β subunits mediate cellular adhesion and process extension. The 

prevailing hypothesis is that VGSCs are up-regulated in cancer, in general favoring an 

invasive/metastatic phenotype, although the mechanisms are still not fully clear. 

Expression of the Nav1.5 α subunit associates with poor prognosis in clinical breast 

cancer specimens, suggesting that VGSCs may have utility as prognostic markers for 

cancer progression. Furthermore, repurposing existing VGSC-blocking therapeutic 

drugs may provide a new strategy to improve outcomes in patients suffering from 

metastatic disease, which is the major cause of cancer-related deaths, and for which 

there is currently no cure. 

 

Introduction 

 

Voltage-gated Na
+
 channels (VGSCs) are comprised of a pore-forming α subunit 

typically in association with one or more smaller β subunits (Figure 1).
1
 The β 

subunits regulate channel expression and gating, and are immunoglobulin (Ig) 

superfamily cell adhesion molecules (CAMs).
2
 VGSCs are classically responsible for 

action potential initiation and conduction in excitable cells.
3
 Both the α and β 

subunits have been shown to interact with a range of other signaling molecules 

(Figure 1), enabling fine-tuning of channel activity on the one hand, and allowing 
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VGSCs to participate in non-conducting signaling on the other.
4
 VGSCs are also 

expressed in a range of cell types that are considered “non-excitable”, including glia, 

fibroblasts, immune cells, and metastatic cancer cells.
5
 The past 15 years have seen a 

rapid expansion in published studies documenting the expression VGSCs across a 

broadening number of cancers, their role in regulating cellular migration and invasion, 

and, importantly, their potential utility as diagnostic and therapeutic targets. In 

particular, several recent studies have started to define a mechanistic role for VGSCs 

in regulating migration and invasion. The purpose of this review is to assimilate the 

current body of evidence ascribing a malignant role for VGSCs during metastasis (the 

spread of tumor cells from primary to distant sites), and consider the clinical 

implications. 

 

VGSC expression in cancer 

 

The VGSC α subunit family contains nine members, Nav1.1-Nav1.9, encoded by 

genes SCN1A-SCN11A (Table 1A).
6
 There are four β subunits, β1-β4, encoded by 

genes SCN1B-SCN4B.
2
 VGSC expression has been predominantly reported to date in 

carcinomas (cancers of epithelial origin). The α subunits have been identified in cells 

from the following carcinomas: breast cancer,
7, 8

 cervical cancer,
9, 10

 colon cancer,
11

 

melanoma
12, 13

 mesothelioma,
14

 neuroblastoma,
15

 non-small cell lung cancer,
16

 

ovarian cancer,
17

 prostate cancer,
18-21

 and small-cell lung cancer
22, 23

 (Table 1A). α 

subunits are also expressed in gliomas,
24, 25

 lymphoma
26

 and leukemia cells,
27

 the 

latter suggesting that VGSCs may be present in hematological malignancies, in 

addition to solid tumors. Although the majority of reports published to date have 
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focused on cell lines, a number of studies now show that α subunits are also 

expressed in vivo, in patient biopsy material.
8-11, 17, 28-30

 

 

In excitable cells/tissues, different α subunits have subtly individual, but often largely 

overlapping tissue distributions, which are proposed to permit functional 

specializations as a result of subtle variations in electrophysiological properties.
31

 In 

cancer cells, there appears to be a variable pattern of expression of different α 

subunits, such that a number of cancers express multiple α subunits, but not all 

subtypes are expressed in all cancers (Table 1A). In several cancers expressing 

multiple α subunits, a predominant α subunit has been identified. For example, in 

lymphoma and breast cancer cells the most highly expressed α subunit is Nav1.5 

(gene: SCN5A),
8, 26

 whereas in prostate cancer cells the predominant α subunit is 

Nav1.7 (gene: SCN9A).
18

 

 

Alternative mRNA splicing enables further functional variation among α subunits.
32

 

An important developmentally regulated splicing event occurs in exon 6, encoding the 

domain I segment 3 (DI:S3) region, such that the 5’ “neonatal” variant is expressed at 

birth, whereas the 3’ “adult” variant is expressed later in postnatal development.
33

 In 

lymphoma, neuroblastoma, breast and prostate cancer cells, SCN5A and SCN9A are 

mainly expressed in their DI:S3 5’ neonatal splice forms.
8, 15, 26, 28

 In contrast, the 

adult SCN5A variant is expressed in colon cancer cells, and the neonatal variant is 

absent.
11

 In certain cancers, the presence of α subunits may therefore be an example 

of oncofetal gene expression, where embryonic genes are pathologically re-expressed 

during oncogenesis.
34
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In several cancers, α subunit mRNA and protein expression correlates with metastatic 

potential. For example, in breast cancer, the neonatal SCN5A splice variant is 

expressed ~1800-fold higher in metastatic MDA-MB-231 cells than weakly 

metastatic MCF-7 cells. Na
+
 currents are detectable in MDA-MB-231 cells, but not in 

weakly metastatic MCF-7 cells.
7, 8

 The expression of neonatal SCN5A mRNA in 

breast cancer biopsies correlates with occurrence of lymph node metastasis.
8
 

Furthermore, SCN5A mRNA is elevated in breast tumors from patients who had a 

recurrence, or died within five years, and associates with increased odds of 

developing metastasis.
30

 A similar pattern has been observed in prostate cancer cells, 

where VGSC expression increases in line with metastatic potential in the LNCaP 

progression model.
35

 In agreement with this, the predominant α subunit, SCN9A, is 

elevated in prostate cancer biopsies compared to non-cancerous prostate samples,
28

 

and is more highly expressed in strongly metastatic PC-3 and Mat-LyLu cells than 

weakly metastatic LNCaP and AT-2 cells.
18

 Na
+
 currents have been detected only in 

the metastatic prostate cancer cell lines.
19, 21

 The positive correlation between α 

subunit expression and metastatic potential has also been reported for colon
11

 and 

ovarian cancers.
17

 However, in gliomas, the mRNA level of α subunits is inversely 

correlated with malignancy grade.
25

 There appears to be no association between α 

subunit mRNA expression and metastatic potential of small cell or non-small cell lung 

cancer cell lines.
16, 22

 Therefore, the relationship between α subunit expression, tumor 

grade and metastatic potential may be cancer type-specific. 

 

The expression of β subunits in cancer cells has been less extensively studied. β 

subunits are expressed in prostate,
36, 37

 breast,
38

 non-small cell lung,
16

 and cervical 

cancers
10

 (Table 1B). As with the α subunits, the β subunit expression profile appears 



 6 

to vary between cancers. For example, β3 is present in prostate and non-small cell 

lung cancer cells,
16, 36

 but is absent in breast and cervical cancer cells.
10, 38

 However, 

β1 is the most abundant β subunit in breast, prostate, and cervical cancer cells.
10, 36, 38

 

Interestingly, β1 appears to be inversely correlated with SCN5A and metastatic 

potential in breast cancer cells: SCN1B mRNA (encoding β1) is significantly higher in 

weakly metastatic MCF-7 cells than in metastatic MDA-MB-231 cells.
38

 This 

suggests that β subunits may be performing certain functions in cancer cells 

independent of the pore-forming α subunits. In contrast, a recent study has shown that 

β2 expression increases in line with metastatic potential in the LNCaP prostate cancer 

progression model.
37

 Therefore, as with α subunits, different β subunits may be 

expressed at varying levels in different cancer types, and may perform distinct 

functions. 

 

Functional role 

 

VGSC α subunits potentiate a number of cellular behaviors associated with metastasis 

(Table 2). In breast, prostate and lung cancer cell lines, the VGSC pore blocker 

tetrodotoxin (TTX) inhibits behaviors including process outgrowth/extension,
39

 

galvanotaxis,
8, 40

 migration,
8, 14, 17, 41-44

 endocytosis,
8, 22, 45

 vesicular patterning,
46, 47

 

detachment from substrate,
48

 gene expression,
43, 49

 and invasion.
7, 8, 10-12, 16, 17, 19, 21, 26

 

TTX does not inhibit proliferation of cancer cells,
7, 8, 10, 16, 17, 41

 suggesting that VGSCs 

may be involved mainly in metastatic progression, rather than tumorigenesis.
50

 

However, recent evidence has shown that VGSCs also regulate angiogenic properties 

of endothelial cells, including vascular endothelial growth factor (VEGF)-induced 

proliferation, tubular differentiation, and adhesion.
51

 Therefore, the exact functional 
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contribution of VGSCs to the cancer process may depend on the cell type, fate and 

state of the tumor. 

 

Silencing SCN5A with siRNA reduces in vitro invasion of MDA-MB-231 breast 

cancer cells.
52

 Further, specifically targeting the neonatal splice variant of SCN5A 

reduces the migration and invasion of MDA-MB-231 cells, suggesting that the 

neonatal form itself may be responsible for VGSC-dependent potentiation of 

metastatic cell behavior in breast cancer cells.
42

 Similarly, siRNA targeting SCN8A 

(encoding Nav1.6) and SCN9A reduces invasion and endocytic activity in PC-3 

metastatic prostate cancer cells.
53

 Finally, the Nav1.6-specific toxin Cn2 inhibits the 

invasion of cervical cancer cells.
10

 Thus, in different cancers, different α subunits 

appear to promote metastatic cell behaviors. However, it is not yet clear whether 

expression of a specific α subunit in a particular cancer provides a specific functional 

advantage, or is related to the natural history of the disease. The fact that any α 

subunit is present in a cancer cell may be more important than which α subunit it is. 

For example, overexpression of Nav1.4 in weakly metastatic LNCaP prostate cancer 

cells is necessary and sufficient to increase their invasiveness, even though the 

predominant α subunit expressed in metastatic prostate cancer cells is Nav1.7.
18, 35

 

 

Several studies have indicated that a number of therapeutically relevant small 

molecule VGSC blockers can also inhibit cell behaviors associated with metastasis. 

For example, the anticonvulsants phenytoin and carbamazepine inhibit secretion of 

prostate-specific antigen and interleukin-6 by prostate cancer cells.
54

 Phenytoin and 

the local anesthetic lidocaine also inhibit endocytic activity in small cell lung cancer 

cells.
22

 In addition, phenytoin suppresses migration of prostate cancer cells.
41
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Furthermore, we have recently shown that therapeutically relevant concentrations of 

phenytoin inhibit Na
+
 current, migration and invasion in metastatic breast cancer 

cells.
30

 

 

Persistent Na
+
 current 

 

Cancer cells typically have a relatively depolarized membrane potential compared to 

terminally differentiated cells, e.g. epithelia, neurons.
55

 For example, the resting 

membrane potential of a typical neuron may be around -65 mV,
56

 whereas we and 

others have shown that metastatic MDA-MB-231 breast cancer cells have membrane 

potentials between ~ -15 to -30 mV.
7, 8, 30

 Following depolarization, VGSCs open and 

rapidly inactivate within a few milliseconds, remaining inactivated until the 

membrane repolarizes.
3
 Therefore, in cancer cells with depolarized resting potentials, 

the majority of VGSCs will be inactivated. However, several VGSCs, including 

Nav1.5, do not inactivate completely, and a steady-state Na
+
 current persists, which is 

typically a few percent of the peak transient current.
57, 58

 We recently proposed that 

the persistent Na
+
 current is likely to be predominant in cancer cells expressing 

VGSCs, and this component of the Na
+
 current may specifically potentiate the cells’ 

migration and invasion.
30

 

 

Mechanisms of action 

 

The obvious question is: how does Na
+
 influx through VGSCs potentiate metastatic 

behaviors, including invasion? Over the years, there has been much speculation in the 
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literature (reviewed in 
50

). Three models are considered below, based on recently 

published experimental data. 

 

 1.  Regulation of pH. In MDA-MB-231 cells, Na
+
 influx through Nav1.5 

results in intracellular alkalinization, and extracellular acidification adjacent to the 

plasma membrane.
52

 The Na
+
/H

+
 exchanger NHE1, which is an important regulator of 

H
+
 efflux, is co-expressed with Nav1.5 in lipid rafts contained within the caveolae of 

MDA-MB-231 cells.
59

 Na
+
 influx through Nav1.5 increases H

+
 efflux through NHE1, 

thus enhancing pH-dependent extracellular matrix degradation and invasion (Figure 

2).
59

 However, the precise mechanism by which Nav1.5 activity enhances NHE1 is 

not yet clear. The resultant (Nav1.5/NHE1-dependent) perimembrane acidification is 

proposed to favor the proteolytic activity of cysteine cathepsins B and S, the function 

of which has been shown to depend, at least in part, on VGSC function.
52

 A similar 

mechanism has been identified by which Nav1.5 expressed on intracellular endosomal 

membranes of primed macrophages acts as a charge sink, permitting Na
+
 efflux from 

the endosome, resulting in H
+
 influx, likely via the vesicular ATPase, and subsequent 

endosomal acidification.
60

 

 

 2.  Regulation of gene expression. Several studies have shown that VGSCs 

regulate gene expression, both in excitable cells, e.g. neurons and cardiomyocytes, 

and in cancer cells.
38, 43, 49, 61, 62

 In silico factor graph nested effects modeling of gene 

expression in colon cancer cell lines has revealed a novel network of gene interactions 

that are implicated in cancer invasion.
11

 Strikingly, SCN5A is a key regulator of this 

invasion gene network, suggesting that VGSCs, in particular Nav1.5, may function as 

early entry points in signaling mechanisms regulating invasion. Downstream gene 
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ontology categories include Wnt signaling, cell migration, ectoderm development, 

response to biotic stimulus, steroid metabolic process, and cell cycle regulation 

(Figure 3).
11

 These data suggest that, at least in colon cancer, Nav1.5 may regulate 

invasion by mechanism(s) in addition to/instead of H
+
 efflux.

59
 The challenge now is 

to understand how Na
+
 current mediated by Nav1.5 may regulate transcription in 

cancer cells, or, indeed, whether the effect is mediated by mechanism(s) independent 

of ion conduction. 

 

 3.  Regulation of intracellular Ca
2+

. In excitable cells, Na
+
 current carried by 

VGSCs can result in an increase in intracellular Ca
2+

 level, e.g. by activating voltage-

gated Ca
2+

 channels.
63, 64

 Similar VGSC-dependent elevation of intracellular Ca
2+

 has 

been reported in non-excitable cells. For example, Na
+
 current carried by Nav1.5 is 

essential for the sustained Ca
2+

 entry into CD4
+
 T cells that occurs during positive 

selection.
65

 In addition to being expressed at the plasma membrane, α subunits are 

also present on internal membranes of cancer cells and macrophages.
12, 30, 60

 In THP-1 

macrophages and HTB-66 melanoma cells, Nav1.6 is expressed on vesicular 

structures adjacent to podosomes.
12

 Agonist-mediated activation of VGSCs in these 

cells causes Na
+
 release from cationic intracellular stores, followed by rapid Na

+
 

uptake by anionic mitochondria, and subsequent Ca
2+

 release into the cytosol.
12

 It is 

proposed that this Ca
2+

 release then enhances podosome/invadopodia formation, 

leading to increased invasion.
12

 However, it is not yet clear how VGSCs present on 

vesicular membranes are gated, and/or whether they interact with VGSCs present at 

the plasma membrane. In vascular endothelial cells, VGSC-mediated Na
+
 influx is 

required for VEGF-induced membrane depolarization and elevation of intracellular 

Ca
2+

, which in turn activates PKC and extracellular signal-regulated kinase (ERK)1/2, 
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potentiating angiogenic functions including proliferation, differentiation and 

adhesion.
51

 In contrast to cancer cells and macrophages, the Ca
2+

 rise in endothelial 

cells occurs as a result of Ca
2+

 influx through reverse mode operation of the Na
+
/Ca

2+
 

exchanger NCX.
66

 

 

In summary, several models have recently emerged, supported by experimental data, 

suggesting that VGSC α subunits may enhance cellular invasion by a variety of 

mechanisms. Further studies will no doubt contribute further data in order to clarify 

whether the mechanisms discussed above are widely applicable to all cancers in 

which VGSCs are expressed, or whether different VGSCs perform distinct functions 

in different cells in different cancers. 

 

The role of β  subunits 

 

In breast cancer, β1 is highly expressed in weakly metastatic MCF-7 cells, where it 

enhances adhesion and retards transwell migration.
38

 β1 is expressed at a much lower 

level in strongly metastatic MDA-MB-231 cells, and stable overexpression of β1 in 

this line increases cell-cell adhesion, induces process outgrowth, and reduces 

migration in wound healing assays.
38

 β2 appears to play a slightly different role in 

prostate cancer cells. Overexpression of β2 in LNCaP cells increases adhesion, 

process outgrowth, migration and invasion
37

 However, the same study reported that 

β2-over-expressing LNCaP cells have a reduced tumor take and smaller tumor 

volume when subcutaneously injected into nude mice. Thus, not only do β1 and β2 

play subtly different functional roles in different cancer cells, these subunits may 

function differently in tumors in vivo, compared to cells in culture. This highlights the 
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critical importance of studying the functional role of VGSCs in cancer in vivo, in 

addition to using in vitro models. Nonetheless, given that β subunits are Ig family cell 

adhesion molecules, it is plausible to speculate that their major contribution to the 

metastatic behaviors of cancer cells may be through regulated adhesion/detachment. 

Of special note is that β subunits play a critical role in regulating adhesion and 

migration in excitable cells, where they are normally expressed.
2
 For example, β1 

enhances neurite outgrowth, neuronal pathfinding and fasciculation during early 

postnatal central nervous system development.
67, 68

 β1-mediated neurite outgrowth in 

cerebellar granule neurons requires fyn kinase, the cell adhesion molecule contactin, 

and is dependent on Na
+
 current carried by Nav1.6

2, 68
 (Figure 4A,B). In turn, Nav1.6-

dependent resurgent Na
+
 current and action potential firing are dependent on the 

presence of β1
56

 (Figure 4B). Thus, in neurons, there is a functional relationship 

between α and β subunits, such that both are required for neurite outgrowth, 

migration and electrical excitability. This is an interesting contrast with β1 and Nav1.5 

in breast cancer cells, which appear to play opposing, antagonistic roles in regulating 

adhesion and migration.
38

 

 

β subunits regulate the mRNA levels of α subunits, including Nav1.5, and other β 

subunits, in neurons and cardiomyocytes.
61, 69-71

 Down-regulation of SCN1B in MCF-

7 cells results in an increase in the mRNA level of the neonatal SCN5A splice 

variant,
38

 raising the possibility that β1 may regulate gene transcription, and 

supporting the notion that β1 and Nav1.5 may function antagonistically in breast 

cancer cells.
30

 However, their expression may not be mutually exclusive, and both 

subunits colocalize in lamellipodia.
30
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Less is known about the expression/function of the other β subunits (β3 and β4) in 

cancer cells. However, SCN3B contains two response elements to the tumor 

suppressor p53, and DNA damaging agents and p53 over-expression up-regulate 

SCN3B mRNA in cancer cell lines, suggesting that β3 may be involved in p53-

dependent apoptosis.
72

 The function of β4 in cancer cells has not been investigated. 

However, a recent study has shown that, together with Nav1.5, β4 is required for 

CD4
+
 T cell development,

65
 suggesting that β4 may play an as yet unexplored role(s) 

in non-excitable cells. 

 

In summary, VGSC β subunits appear to play a role in regulating a number of cell 

behaviors associated with metastasis, including adhesion, migration and gene 

expression. Importantly, some of these functions oppose the effects of α subunits
38

 

(Table 3). Further work is required to delineate the respective functions of α and β 

subunits in cancer cells. A major challenge will be to establish whether or not β 

subunits are functioning (e.g. to regulate adhesion and migration) independently of α 

subunits. 

 

Regulation of expression 

 

How are VGSCs up-regulated in cancer cells? VGSCs are macromolecular signaling 

complexes and their activity can be regulated at multiple levels by a vast array of 

different interacting partners and mechanisms, which have been studied extensively in 

excitable cells, e.g. neurons and cardiomyocytes (Figure 1; reviewed in 
2, 73

). 

However, the mechanisms by which expression of VGSC α and β subunits are 

regulated in cancer cells are not yet well understood. Serum has been shown to 
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modulate expression and activity of α subunits in Mat-LyLu prostate cancer cells.
74

 

Subsequent studies have shown that several components of serum have various effects 

on VGSC function. For example, epidermal growth factor (EGF) increases Nav1.7 

expression, Na
+
 current and VGSC-dependent migration and invasion of Mat-LyLu 

and PC-3M prostate cancer cells.
44, 75

 In addition, nerve growth factor (NGF) 

increases Na
+
 current in Mat-LyLu cells via protein kinase A (PKA) activation.

76
 

Although NGF also increases migration in these cells, its effect is independent of 

VGSC activity,
76

 suggesting that different growth factors may regulate different pools 

of VGSCs, which may in turn have different downstream effects on metastatic cell 

behavior. 

 

Steroid hormones have also been shown to regulate VGSC expression and activity in 

cancer cells. In MDA-MB-231 breast cancer cells, the estrogen β-estradiol increases 

Na
+
 current via the G-protein-coupled estrogen receptor GPR30 and PKA.

77
 In 

addition, SCN1B expression is negatively regulated by the androgen 

dihydrotestosterone (DHT) in LNCaP and PC-3 prostate cancer cells.
36

 However, 

there is no association between SCN5A expression and estrogen receptor α (ER), 

progesterone receptor (PR), or human epidermal growth factor 2 (HER2) status in 

clinical breast cancer specimens,
30

 suggesting that any relationship between serum 

factors and VGSC expression in vivo may be highly complex. 

 

Finally, α subunit expression and activity in metastatic cancer cells appears to be 

auto-regulated via a positive feedback mechanism. In Mat-LyLu cells, Na
+
 current 

activates PKA, which in turn up-regulates SCN9A mRNA levels, and promotes 

externalization of α subunits to the plasma membrane.
43

 Similarly, in MDA-MB-231 
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breast cancer cells, expression of the neonatal Nav1.5 splice variant is maintained by 

positive feedback involving PKA.
78

 In both cases, inhibition of Na
+
 current with TTX 

effectively collapses the positive feedback loop, suppressing VGSC-dependent 

migration.
43, 78

 In summary, expression and function of VGSC α and β subunits in 

cancer cells is regulated by serum components, including steroid hormones and 

growth factors. 

 

Therapeutic potential 

 

The observation that VGSCs play a pro-invasive role in metastatic cells, together with 

patient data associating α subunit expression with poor clinical outcome, suggests that 

VGSCs may be important diagnostic and/or therapeutic targets in the metastatic 

setting. Given that α subunits are regulated by activity-dependent positive feedback, 

pharmacological blockade of channel conductance may be an ideal intervention to 

inhibit VGSC-dependent metastatic cell behaviors. Indeed, a recent study shows that 

local injection of TTX into subcutaneous tumors of Mat-LyLu cells in the 

Copenhagen rat significantly reduces lung metastases and improves overall survival.
79

 

However, the toxicity of TTX would preclude its use as a systemic anti-metastatic 

treatment. 

 

We have proposed that VGSC-blocking drugs FDA-approved for treating other 

conditions, e.g. anticonvulsants, antiarrhythmics, local anesthetics, and tricyclic 

antidepressants, may warrant investigation for repurposing to metastatic disease.
30

 In 

support of this, several of these agents inhibit metastatic cell behaviors in vitro 

models.
8, 22, 30, 41, 54

 Application of local anesthetics during radical prostatectomy 
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surgery associates with significantly reduced recurrence and metastasis.
80

 In addition, 

a recent retrospective case-control analysis using the General Practice Research 

Database suggests that use of tricyclic antidepressants may have potential for 

prevention of glioma and colorectal cancer.
81

 Furthermore, riluzole, which is both a 

VGSC blocker and metabotropic glutamate receptor inhibitor, reduces breast cancer 

tumor volume in mice, and suppresses metabolic activity of tumors in patients with 

resectable stage III and IV melanoma.
82, 83

 Finally, a mexiletine analog (RS100642) 

reduces oxidative stress associated with tumor burden, and increases overall survival 

in the experimentally induced 7,12-dimethylbenz(a) anthracene (DMBA) rat breast 

cancer model 
84

. In summary, several studies suggest that VGSC α subunits may be 

useful therapeutic targets in cancer. 

 

Conclusion and perspectives 

 

A growing body of evidence suggests that VGSCs play an important pathological role 

during cancer progression towards metastasis. However, the role of individual α and 

β subunits appears to be complex. Nonetheless, a common theme is that Na
+
 current 

carried by α subunits favors an invasive phenotype, whereas β subunits may regulate 

adhesion. Future work is required to establish how widely VGSCs are expressed 

across different types of cancer, and the extent of contribution(s) of different α and β 

subunits to disease progression. The ultimate goal should be to definitively evaluate 

the potential for both α and β subunits as diagnostic and therapeutic targets. In respect 

of the former, repurposing FDA-approved channel blockers may be a cost-effective 

intervention in metastatic disease, which is the major cause of cancer-related deaths 
85, 

86
, and treatment of which is still largely limited to palliation 

87
. 
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Figure 1. Multifunctional interactions of VGSCs. Basic topology of the pore-forming 

α subunit is shown, consisting of four homologous domains each containing six 

transmembrane segments. Segment 4 contains the voltage sensor.
6
 The smaller β 

subunits contain an extracellular immunoglobulin (Ig) loop, transmembrane domain, 

and an intracellular C-terminal domain.
88

 β1 and β3 are non-covalently linked to the α 

subunit, whereas β2 and β4 are covalently linked through disulfide bonds.
2
 The 

alternative splice variant, β1B, lacks a transmembrane domain.
89

 α subunits interact 

with a number of other signaling molecules, including p11,
90

 protein kinase A 

(PKA),
91

 protein kinase C (PKC),
92

 ankyrin G,
93

 MOG1,
94

 fibroblast growth factor-

homologous factor 1B (FHF1B),
95

 calmodulin,
96

 NEDD4,
97, 98

 syntrophin,
99

 and 

dystrophin.
100

 Several of the β subunits interact with other cell adhesion molecules 

and regulatory proteins, including tenascin C,
101

 tenascin R,
101, 102

 contactin,
103

 N-

cadherin,
104

 neurofascin (NF)155,
105

 NF186,
105

 NrCAM,
105

 ankyrin G,
104

 receptor 

protein tyrosine phosphatase β (RPTPβ),
106

 PKA,
107

 and fyn kinase.
68

 The β subunits 

are substrates for proteolytic cleavage by α-secretase, BACE1, and γ-secretase.
108, 109

 

The intracellular domain of β2 is proposed to regulate gene expression in the 

nucleus.
71

 ψ, glycosylation sites. Figure was produced using Science Slides 2006 

software. 
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Figure 2. α subunit involvement in pH-dependent cellular invasion. Na
+
 influx 

through Nav1.5 is proposed to activate the Na
+
/H

+
 exchanger NHE1, co-expressed 

with Nav1.5 in lipid rafts contained within the caveolae of invasive breast cancer 

cells.
59

 Increased NHE1 activity results in increased H
+
 efflux, which in turn enhances 

proteolytic activity of cysteine cathepsins B and S, which degrade the extracellular 

matrix, permitting invasion.
52, 59

 The mechanism by which Nav1.5 enhances NHE1 is 

not yet clear. Figure was produced using Science Slides 2006 software. 
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Figure 3. Nav1.5-regulated gene transcriptional network controlling invasion. Oval 

nodes represent regulatory genes, gray boxes represent effector genes, and white 

boxes represent gene ontology categories. Arrows indicate activation, and tees show 

repression. Reprinted by permission from the American Association for Cancer 

Research: House CD et al, Voltage-gated Na
+
 channel SCN5A is a key regulator of a 

gene transcriptional network that controls colon cancer invasion, Cancer Research, 

Sep 1, 2010, 70, 17, 6957-67, 10.1158/0008-5472.CAN-10-1169. 
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Figure 4. Neurite outgrowth and excitability regulated by β1 and Nav1.6. (A)  

β1-mediated neurite outgrowth is inhibited by the Scn8a null mutation. Neurite 

lengths of wild-type and Scn8a null cerebellar granule neurons grown on monolayers 

of control β1-expressing fibroblasts. Data are mean and SEM. ***P < 0.001. (B) 

Proposed model for Na
+
 current reciprocal involvement in β1-mediated neurite 

outgrowth. Complexes containing Nav1.6, β1, and contactin are present throughout 

the neuronal membrane in the soma, neurite and growth cone. Na
+
 influx is required 

for β1-mediated neurite extension and migration. VGSC complexes along the neurite 

participate in cell-cell adhesion and fasciculation. β1 is also required for Nav1.6 

expression at the axon initial segment, and subsequent high-frequency action potential 

firing. Electrical activity may further promote β1-mediated neurite outgrowth at or 

near the growth cone. Figure reproduced with permission.
56
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Table 1. VGSC subtype expression in cancer. 

(A) α subunits. 

Protein Gene TTX sensitivity Cancer type References 

Nav1.1  SCN1A  Sensitive Ovarian 
17

 

Nav1.2  SCN2A Sensitive Cervical, mesothelioma, 

ovarian, prostate 

9, 14, 17, 18
 

Nav1.3  SCN3A Sensitive Ovarian, prostate, small cell 

lung cancer 

17, 18, 22
 

Nav1.4  SCN4A Sensitive Cervical, ovarian, prostate 
9, 17, 110

 

Nav1.5  SCN5A Resistant Breast
1
, colon

1
, lymphoma

1
, 

neuroblastoma
1
, non-small 

cell lung cancer, ovarian, 

small cell lung cancer 

8, 11, 15-17, 22, 26
 

Nav1.6  SCN8A Sensitive Breast, cervical, lymphoma, 

melanoma, mesothelioma, 

non-small cell lung cancer, 

prostate, small cell lung 

cancer 

8-10, 12, 14, 16, 18, 22, 26
 

Nav1.7  SCN9A Sensitive Breast, cervical, lymphoma, 

mesothelioma, non-small 

cell lung cancer, ovarian, 

prostate
1 

8, 9, 14, 16-18, 26
 

Nav1.8  SCN10A  Resistant - - 

Nav1.9  SCN11A Resistant Lymphoma, small-cell lung 

cancer 

22, 26
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(B) β subunits. 

Protein Gene Cancer type References 

β1 SCN1B Breast
1
, cervical

1
, non-small cell lung 

cancer, prostate
1 

10, 16, 36, 38
 

β2 SCN2B Breast, cervical, non-small cell lung 

cancer, prostate 

10, 16, 36-38
 

β3 SCN3B Non-small cell lung cancer, prostate 
16, 36

 

β4 SCN4B Breast, cervical, non-small cell lung 

cancer, prostate 

10, 16, 36, 38
 

1
Cancers in which the indicated subunit has been reported as predominant. 
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Table 2. Metastatic cell behaviors regulated by VGSCs. 

Cellular activity Cancer Subunit(s) implicated Reference(s) 

Process extension Breast, prostate Nav1.7, β1 
38, 39

 

Galvanotaxis Breast, prostate Nav1.5, Nav1.7 
8, 40

 

Lateral motility Breast, 

mesothelioma, 

prostate 

Nav1.5, Nav1.7, β1, β2 
14, 30, 37, 38, 41

 

Transwell 

migration 

Breast, prostate Nav1.5, Nav1.7 
8, 17, 42-44

 

Endocytic 

membrane 

activity 

Breast, prostate, 

small cell lung 

cancer 

Nav1.5, Nav1.7 
8, 22, 45

 

Vesicular 

patterning 

Breast, prostate Nav1.7 
46, 47

 

Adhesion Breast, prostate Nav1.5, Nav1.7, β1, β2 
37, 38, 48

 

Gene expression Breast, colon, 

prostate 

Nav1.5, Nav1.7, β1 
11, 38, 43, 49

 

Invasion Breast, cervical, 

colon, 

lymphoma, 

melanoma, non-

small cell lung 

cancer, prostate 

Nav1.5, Nav1.6, 

Nav1.7, β2 

7, 8, 10-12, 16, 17, 19-21, 26, 

37, 42
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Table 3. Complementary functions of VGSC α and β subunits in neurons and cancer 

cells. 

Role α subunit β subunit 

In neurons Action potential 

initiation/conduction.
3
 

Activity-dependent axon 

guidance, dendrite growth, 

synapse formation, and neurite 

outgrowth during development.
5
 

Modulate Na
+
 current, electrical 

activity.
111

 

Enhance cell-cell adhesion.
112

 

Enhance neurite outgrowth, 

migration, pathfinding, fasciculation 

during development.
68

 

Reciprocal regulation of α subunit 

expression.
56

 

In cancer 

cells 

Highly expressed in strongly 

metastatic cells.
50

 

Enhance metastatic behaviors 

including invasion, migration.
5
 

Activity-dependent regulation of 

α subunit expression by positive 

feedback.
43, 78

 

Highly expressed in weakly 

metastatic cells. Modulate Na
+
 

current.
37, 38

 

Enhance adhesion.
37, 38

 

Enhance process extension.
37, 38

 

Regulate migration.
37, 38

 

Regulate α subunit mRNA 

expression.
38

 

 

 


