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SHORT COMMUNICATION Open Access

The sodium channel-blocking antiepileptic drug
phenytoin inhibits breast tumour growth and
metastasis
Michaela Nelson, Ming Yang, Adam A Dowle, Jerry R Thomas and William J Brackenbury*

Abstract

Background: Voltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing pore-forming α

subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in electrically excitable cells, e.g.

neurons. VGSCs are also expressed in tumour cells, including breast cancer (BCa) cells, where they enhance cellular

migration and invasion. However, despite extensive work defining in detail the molecular mechanisms underlying

the expression of VGSCs and their pro-invasive role in cancer cells, there has been a notable lack of clinically

relevant in vivo data exploring their value as potential therapeutic targets.

Findings: We have previously reported that the VGSC-blocking antiepileptic drug phenytoin inhibits the migration

and invasion of metastatic MDA-MB-231 cells in vitro. The purpose of the present study was to establish whether

VGSCs might be viable therapeutic targets by testing the effect of phenytoin on tumour growth and metastasis

in vivo. We found that expression of Nav1.5, previously detected in MDA-MB-231 cells in vitro, was retained on cells

in orthotopic xenografts. Treatment with phenytoin, at a dose equivalent to that used to treat epilepsy (60 mg/kg;

daily), significantly reduced tumour growth, without affecting animal weight. Phenytoin also reduced cancer cell

proliferation in vivo and invasion into surrounding mammary tissue. Finally, phenytoin significantly reduced

metastasis to the liver, lungs and spleen.

Conclusions: This is the first study showing that phenytoin reduces breast tumour growth and metastasis in vivo.

We propose that pharmacologically targeting VGSCs, by repurposing antiepileptic or antiarrhythmic drugs, should

be further studied as a potentially novel anti-cancer therapy.
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Findings
Despite recent advances, breast cancer (BCa) is still the

leading cause of cancer-related deaths in women [1].

Metastasis, the spread of tumours to secondary sites, is

responsible for 90% of these deaths and is rarely curable

[2]. Thus, there is an urgent need to identify new mo-

lecular targets and curative therapies. Voltage-gated

Na+ channels (VGSCs) contain a pore-forming α subunit

with smaller β subunits. There are nine α subunits,

Nav1.1-Nav1.9, and four β subunits, β1-β4. The β subunits

modulate channel function and are cell adhesion mole-

cules (CAMs) [3]. VGSCs transmit electrical activity in

cells in the nervous system and regulate neuronal growth

and migration during CNS development [4]. VGSCs are

clinical targets for a range of disorders, including epilepsy,

cardiac arrhythmias, neuropathic pain and depression [5].

VGSCs are widely expressed in traditionally non-

excitable cells, including microglia, astrocytes, immune

cells, fibroblasts and cancer cells [6]. In the latter, a

number of studies have shown that VGSCs contribute to

cellular migration and invasion [7]. Nav1.5 is up-regulated

in breast tumours, associating with recurrence, metastasis,

and reduced survival [8,9]. Nav1.5 carries a fast inward

Na+ current in triple negative (lacking estrogen receptor,

progesterone receptor and HER2) MDA-MB-231 cells

[9-11]. Pharmacological or genetic ablation of this Na+

current inhibits in vitro cell behaviours associated with

the metastatic cascade, including migration, galvanotaxis,

and invasion [9-11]. Similar results have been reported in
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Figure 1 Effect of phenytoin on breast tumour growth. (A) Tumour section stained with (i) anti-Nav1.5 or (ii) anti-Nav1.7 (red) and DAPI (blue).

T, tumour, F, fibroadipose tissue. Scale bar, 100 μm. (B) Phenytoin dosing protocol. BLI, bioluminescent imaging. (C) Weight of mice during the

assay. (D) Bioluminescent images of control and phenytoin-treated mice, 4 weeks after implantation. (E) Bioluminescence measured from primary

tumours on the indicated days post-implantation. (F) Calculated volume derived from calliper measurement of primary tumours over the same

period. Data are mean ± SEM; *P < 0.05 (n = 13 for control, n = 15 for phenytoin).
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Figure 2 (See legend on next page.)
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metastatic cell lines from other cancers, suggesting that

VGSC expression/activity in cancer may be a general

phenomenon [7,12]. Na+ current enhances invasion by

promoting cysteine cathepsin activity in caveolae via

allosteric regulation of the Na+/H+ exchanger type 1

[13], and Nav1.5 is a key regulator of a gene network

that controls invasion [14]. In addition, the widely used

VGSC-blocking Class Ib antiarrhythmic agent and anti-

epileptic drug (AED) phenytoin (5,5-diphenylhydantoin)

reduces the migration and invasion of MDA-MB-231

cells in vitro [8]. Furthermore, we have recently shown

that the VGSC β1 subunit is also expressed in BCa spec-

imens, and accelerates tumour growth and metastasis in

a mouse model [15].

Together, these data highlight the potential for VGSCs

as novel molecular targets. However, there remains a

paucity of clinically relevant in vivo data exploring their

potential therapeutic value. The aim of the present study

was to study the effect of phenytoin on tumour growth

and metastasis in a mouse model of triple negative BCa.

We found that systemic phenytoin treatment reduces

cellular proliferation, tumour growth, local invasion and

metastasis. This is the first in vivo study demonstrating

the potential therapeutic value of pharmacologically tar-

geting VGSCs in BCa using an AED.

Phenytoin reduces tumour growth

Nav1.5 is expressed on cancer cells from breast tumours

in clinical specimens, and in MDA-MB-231 cells cultured

in vitro [8-11]. Here, we studied VGSC expression in

tumours following orthotopic implantation of luciferase-

expressing MDA-MB-231 cells into the mammary fat pad

of female Rag2-/- Il2rg-/- mice, a robust model of BCa

growth and metastasis [15]. All methods are described in

detail in Additional file 1. Nav1.5 expression, detected

by immunohistochemistry, was retained in the tumours

in vivo (Figure 1Ai). Nav1.7 was also present in the

tumours, although expression was weaker (Figure 1Aii).

These data agree with previous in vitro studies showing

that although Nav1.5 is the predominant VGSC in MDA-

MB-231 cells, accounting for >80% of Na+ current, there

may be a small contribution from other isotypes, e.g.

Nav1.7 [9,11]. We have previously shown that phenytoin

inhibits Na+ current and VGSC-dependent migration in

MDA-MB-231 cells in culture, suggesting that pharmaco-

logical targeting of VGSCs may have therapeutic utility in

BCa [8]. In order to test the effect of phenytoin on BCa

progression in vivo, we next treated tumour-bearing mice

with 60 mg/kg phenytoin or vehicle (by daily intraperito-

neal injection) for three weeks, starting one week after

orthotopic implantation of MDA-MB-231 cells (Figure 1B).

This dosing regimen gave a phenytoin trough level of

9.0 ± 1.0 μg/ml plasma, measured by liquid chromatog-

raphy-mass spectrometry with single reaction monitoring

(LC-SRM-MS) on samples taken 16 h after the last dose,

which is within the therapeutic range for epilepsy treat-

ment in rodents (6-23 μg/ml) [16]. We have previously

shown that a similar concentration (50 μM) blocks Na+

current in MDA-MB-231 cells by 43% [8]. Importantly,

there were no obvious signs of toxicity associated with the

phenytoin treatment, and animal weight remained con-

stant throughout the experiment (Figure 1C). Photon flux

from tumours increased more slowly in phenytoin-treated

animals than control-treated animals, indicating that the

drug reduced the rate of tumour growth (Figure 1D,E).

We also analysed tumour growth by calliper measure-

ment. As with the bioluminescent data, the volume of

tumours increased more slowly in phenytoin-treated ani-

mals than in control animals, indicating that phenytoin

slowed the rate of tumour growth (Figure 1F).

Phenytoin reduces invasion and proliferation

We next studied the effect of phenytoin treatment on

the structure and composition of the primary tumours.

At the tumour periphery, there was some local invasion

into surrounding skeletal muscle and fibroadipose tissue,

and this invasion was moderately reduced (indicated by

arrows) in phenytoin-treated animals compared to control

(Figure 2A). Various MMPs, e.g. MMP9, are expressed in

carcinomas, correlating with local invasion [17]. We found

that the density of MMP9-expressing cells was signifi-

cantly reduced by 51.9% in the tumours of phenytoin-

treated animals (P < 0.01; Figure 2B,F). Together, these

data suggest that phenytoin reduces local invasion from

tumours in vivo, as it does in the same cells cultured

in vitro [8].

We found that the prevalence of Ki67-expressing cyc-

ling cells was reduced by 62.6% in the tumours of

phenytoin-treated animals (P < 0.001; Figure 2C,G). How-

ever, the number of apoptotic cells expressing activated

caspase-3 was unchanged (Figure 2D,H). Similarly, the

phenytoin treatment had no effect on the density of

(See figure on previous page.)

Figure 2 Effect of phenytoin on invasion, proliferation, apoptosis and angiogenesis. (A) Tumour sections stained with H&E showing (i)

mammary fat pad and (ii) skeletal muscle invasion. Arrows, infiltration of tumour cells (T) into fibroadipose tissue (F) or skeletal muscle fibres (M).

(B) Tumour stained with anti-MMP9 (red) and DAPI (blue). (C) Tumour stained with anti-Ki67 (red) and DAPI (blue). (D) Tumour stained with

anti-activated caspase-3 (red) and DAPI (blue). (E) Blood vessels stained with anti-CD31 (red) and DAPI (blue). (F) MMP9+ cells/mm2 (n = 40) (G)

Ki67+ nuclei/mm2 (n = 40). (H) Activated caspase-3+ cells/mm2 (n = 40). (I) CD31+ blood vessels/mm2 (n = 40). Data are mean + SEM; **P < 0.01;

***P < 0.001. Scale bars, 100 μm.
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CD31-expressing vascular structures (Figure 2E,I). To-

gether, these data suggest that phenytoin inhibited growth

of primary tumours by reducing the number of prolif-

erating cancer cells, rather than by inhibiting angio-

genesis or promoting apoptosis. Interestingly, previous

studies have indicated that VGSCs do not regulate

proliferation of MDA-MB-231 cells in 2D cultures in vitro

[9,10]. However, the VGSC blocker tetrodotoxin reduces

colony growth in 3D Matrigel matrices [18]. Thus, the

contribution of VGSCs to tumour growth in vivo appears

complex, and may be dependent on multiple factors, in-

cluding heterotypic signalling interactions with adjacent

cells or the extracellular matrix [15]. In addition, VGSCs

may regulate proliferation via reverse Na+/Ca2+ ex-

change, as has recently been shown in astrocytes after in-

jury [19].

Phenytoin reduces metastasis

When we monitored metastasis 3 weeks after onset of

drug treatment, following post mortem resection of the

primary tumour (Figure 3A), photon flux was signifi-

cantly reduced across the whole body, chest and abdo-

men of phenytoin-treated animals compared to control

animals (P < 0.01; Figure 3B). Similarly, there was a not-

able reduction in photon flux across metastatic sites

measured ex vivo (P < 0.01; Figure 3C). In order to fur-

ther study metastasis to these sites at the cellular level, we

next measured the number of GFP-expressing tumour

cells within tissue sections. We have previously shown

that GFP expression is retained in MDA-MB-231 cells at

metastatic sites in this mouse model [15]. The number of

GFP-expressing cells was moderately reduced in the

liver of phenytoin-treated animals by 35.4% (P < 0.05;

Figure 3D,G). Phenytoin treatment caused a more robust

reduction in the density of metastatic cells in the lungs

and spleen, of 66.3% and 92.4%, respectively (P < 0.001;

Figure 3E,F,H,I). In summary, phenytoin treatment re-

duced BCa metastasis in vivo.

Therapeutic potential

We have previously shown that phenytoin inhibits Na+

current and significantly reduces migration and invasion

of BCa cells in vitro [8]. Together with the present data,

these findings suggest that targeting VGSC-mediated

Na+ current with phenytoin may have therapeutic

value. Phenytoin also inhibits migration and secretion

in prostate cancer cells [20,21], suggesting that it may

have broad utility in other cancers. In support of this,

tetrodotoxin has been shown to reduce metastasis in

a rat prostate cancer model [22]. In the present study,

we provide, for the first time, clinically relevant in vivo

data showing that pharmacological targeting of VGSCs

with phenytoin significantly reduces tumour growth, local

invasion and metastasis in a mouse model of BCa. Indeed,

given that the membrane potential (Vm) of cancer cells is

relatively depolarized [23], and that phenytoin displays

robust use-dependent and tonic channel block at depolar-

ized voltages [8], our data suggest that phenytoin may be a

highly effective VGSC blocker in tumours.

We propose that VGSCs may be useful molecular targets

for BCa therapy, and that repurposing FDA-approved,

VGSC-targeting AEDs and Class I antiarrhythmic agents,

e.g. phenytoin, carbamazepine, flecainide, to cancer may

therefore improve outcome. It is possible that phenytoin

may be effective in combination with existing conventional

therapies, e.g. in the adjuvant setting, which would need to

be tested in a randomised controlled clinical trial. In sup-

port of this notion, application of VGSC-targeting local

anaesthetics during radical prostatectomy associates with

substantially reduced recurrence and metastasis [24]. In

addition, the FDA-approved ALS drug, riluzole, which in-

hibits both metabotropic glutamate receptors and VGSCs,

reduces tumour growth [25]. Furthermore, given that

VGSCs favour an invasive/metastatic phenotype [9,13-15],

it is possible that the adjuvant prescription of AEDs,

which cross the blood-brain-barrier, may reduce and/or

delay metastasis formation in patients. This would trans-

form the landscape of cancer treatment considerably, with

very little added cost, while leading to healthier patients

and huge financial savings.

Additional file

Additional file 1: Supplementary materials and methods.
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(See figure on previous page.)

Figure 3 Effect of phenytoin on metastasis. (A) Bioluminescent images of metastases in control and phenytoin-treated mice. (B) Bioluminescence

measured from the indicated anatomical sites (n≥ 10). (C) Bioluminescence measured ex vivo from the liver, lungs and spleen (n = 11). Liver (D),

lungs (E), and spleen (F) stained with anti-GFP (green) and DAPI (blue). (G,H,I) GFP+ cells/mm2 at each site (n≥ 249). Data are mean + SEM; *P < 0.05;

***P < 0.001. For (B) and (C), P < 0.01 between control and phenytoin (two-way ANOVA). Scale bar, 100 μm.
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