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A non-invasive acoustical method to measure the mean roughness height
of the free surface of a turbulent shallow water flow

A. Krynkin,1 K. V. Horoshenkov,1 A. Nichols,1 and S. J. Tait2
1Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD,
United Kingdom
2Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD,
United Kingdom

(Received 3 June 2014; accepted 3 November 2014; published online 24 November 2014)

In this paper, the directivity of the airborne sound field scattered by a dynamically rough free flow
surface in a flume is used to determine the mean roughness height for six hydraulic conditions in
which the uniform depth of the turbulent flow. The nonlinear curve fitting method is used to minimize
the error between the predicted directivity and directivity data. The data fitting algorithm is based on
the averaged solution for the scattered sound pressure as a function of angle which is derived through
the Kirchhoff integral and its approximations. This solution takes into account the directivity of the
acoustic source. For the adopted source and receiver geometry and acoustic frequency it is shown that
the contribution from the stationary phase point (single specular point on the rough surface) yields
similar results to those which can be obtained through the full Kirchhoff’s integral. The accuracy
in the inverted mean roughness height is comparable to that achieved with an array of conductive
wave probes. This method enables non-invasive estimation of the flow Reynolds number and uniform
flow depth. © 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4901932]

I. INTRODUCTION

Turbulent, shallow water flows form a common class of
flow typical to gravel bed rivers, overland flows and drainage
pipes. The surface of this type of flow is never flat and it is
usually composed of complex patterns that are formed by the
interaction of advecting turbulent structures with the free sur-
face which represents the water-air interface. The dynamic
pattern of this interface reflects the scale and frequency of
the turbulent flow structures which cause the flow surface to
appear rough.1 The mean roughness height is one important
characteristic of this roughness pattern which relates to the
flow velocity and depth2 and to the spatial frequency and scale
of the turbulent structures which develop in this type of flow.3

Given these relationships, accurate knowledge of this charac-
teristic allows the possibility to estimate the key hydraulic pa-
rameters non-invasively by careful analysis of the free surface
pattern.

There is a general lack or reliable airborne laboratory or
in situ methods which can be used to measure characteristics
of a dynamically rough free flow surface of a shallow water
flow. Review of some existing methods for measuring the in-
stantaneous water level elevation from air is given in Refs. 4
and 5. An alternative airborne acoustical method of roughness
height measurement is proposed in this paper. This method is
based on measuring the angular dependence of a harmonic
acoustic wave scattered by the dynamically rough flow sur-
face and fitting a mathematical model to the measured data.
In this work, the dynamic surface roughness is assumed to
be an ergodic process so that it is possible to use a sufficiently
long time observation to deduce its statistical properties which
are usually measured through a set of sufficiently large num-
ber of random realizations. This acoustical method is particu-

larly attractive because the dynamically rough free surface is
an acoustically rigid boundary so that it is relatively straight-
forward to derive an exact mathematical formulation for the
mean sound pressure in the acoustic wave scattered by this
dynamic process.

There are two major approaches that can be used to pre-
dict the scattered acoustic field. These are: (i) the small per-
turbation method, where the acoustic wavelength 2π /k needs
to be much longer than the mean roughness height σ (i.e., kσ
� 1, k being the acoustic wavenumber in air) (see p. 72 in
Ref. 6); and (ii) the Kirchhoff approximation where it is as-
sumed that the sound wave incident on the rough surface un-
dergoes only one specular reflection (see p. 183 in Ref. 6). In
this paper, it is proposed to use the latter method. This is due
to fact that the acoustic wavelength of the wave emitted by the
source can be comparable to the mean roughness height, i.e.,
kσ ∼ 1.

The Kirchhoff approximation for random surfaces is usu-
ally applied in the far field where kR � 1, e.g., in the Fraun-
hofer zone, where the ratio kσ 2/R � 1 and when kL2/R � 1.
Here R is taken as the distance between the source and specu-
lar reflection point and L is the characteristic dimension of the
illuminated surface area. These assumptions allow the expan-
sion of the integrand function in the Kirchhoff integral into
a rapidly oscillating function. The stationary phase method is
then applied so that the scattering cross section of the rough
surface can be expressed in terms of its local curvature.7 In
some cases, there are more than one stationary phase point on
the rough surface, which can contribute equally to the mean
scattered sound pressure and intensity fields. In this case, it
is possible to estimate the number of these specular points8

and to identify the dynamics of these points9 so that the

0034-6748/2014/85(11)/114902/12 © Author(s) 201485, 114902-1
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complexity of this process can still be captured without the
need to evaluate explicitly the Kirchhoff integral.

In this paper, the illuminated area of the rough surface
can be outside the Fraunhofer zone and the radial distance to
the surface is comparable with the characteristic dimension of
the illuminated patch. It is shown that for a given source and
receiver geometry and Gaussian statistics of the rough surface
process, one can estimate the mean sound pressure in the scat-
tered field through the modified expression for the contribu-
tion from one specular reflection point taken on the equivalent
smooth surface with which the rough surface can be replaced.
This transformation enables the use of a relatively straightfor-
ward minimisation procedure to retrieve the mean roughness
height from the measured angular dependence for the sound
pressure above a dynamically rough water-air interface for a
range of flow conditions.

In this paper, Sec. II describes the theoretical model and
fitting functions which are based on the Kirchhoff integral and
the single specular point approximation to it. In Sec. III, the
experimental setup is detailed. This includes a description of
the acoustic and hydraulic experiments and the data acquisi-
tion system which was used for data collection. The results of
the inversion of the statistical parameters of the rough surface
are discussed in Sec. IV.

II. THEORETICAL BASIS

Consider a rigid surface S which is dynamically per-
turbed around some equilibrium plane S0 which coincides
with the plane z = 0 as shown in Figure 1. The elevation
of the surface is given by the homogeneous and stationary
random field z = η(r, t) where r = (x, y, 0) is radius vec-
tor in Cartesian coordinates and t is the time. This surface
represents the dynamically rough water-air interface of a tur-
bulent shallow water flow. Assuming that the given random
field is an ergodic process10 with respect to time, the statistical
properties of a single, sufficiently long realisation of this field
z = η(r, t) are representative of the statistical properties of an
infinite number of realizations of the random field z = η(r).
It is also assumed that the distribution of the random field z =
η(r) obeys the Gaussian probability density function w(η, r)

R

R1

R2

z0

z1

r r1

ψ0 χψ
0

FIG. 1. Geometry of the problem.

with

η(r) = 0, (1)

η(r)η(r) = σ 2. (2)

In Eqs. (1) and (2) operation 〈·〉 stands for averaging over
all possible realisations for the pattern of η(r) which one can
observe over a representative period of time so that

η(r) =
+∞∫

−∞
η(r)w(η, r)dη, (3)

where the probability density function is given by

w(η, r) = 1

σ
√

2π
exp

(
− η2

2σ 2

)
. (4)

In this paper, the acoustic source and receiver are located
above the surface at points (0, 0, z0) and (x1, 0, z1), respec-
tively (see Figure 1). It is assumed that scattering of acoustic
waves from the given random rigid surface can be approxi-
mated by the reflection from a tangential plane at each point
r = (x, y) of this surface (Kirchhoff approximation). To sat-
isfy the Kirchhoff approximation it is required that6

(hk)1/3 sin(ψ) � 1, (5)

where h is the characteristic radius of curvature of η(r), ψ is
the angle of incidence, and k = ω/c is the wavenumber defined
through the angular frequency ω and speed of sound c.

It is also assumed that the acoustic source is a point
source which is directional, and that its directivity in the far
field is given by

A(φ) = AJ1(ka sin φ)

ka sin φ
, (6)

where a is radius of the circular aperture, φ is the zenith angle
in spherical coordinates (r, θ , φ), and A is the amplitude of
the source.11

The main axis of the directed source is in the Oxz plane
(see Figure 1) and it is inclined at angle ψ0 to the Ox axis and
π /2 − ψ0 to the Oz axis. Therefore, the angle φ is defined by

φ = arccos

(
z0

R1

)
−

(π

2
− ψ0

)
, (7)

where R1 = √
x2 + y2 + [z0 − η(x, y)]2 is distance to the

surface S from the source at a fixed point (x, y, η(x, y)). It
is noted that throughout this paper R1 will be taken as the dis-
tance from the source to the smooth surface S0.

The characteristic dimension of the illuminated area of
the rough surface L is assumed to be comparable with the dis-
tance R1, i.e.,

L ∼ R1. (8)

A. Mean value of the scattered sound field

In the far-field where the distances from the source and
receiver to a fixed point on the rough surface are much
greater than the acoustic wavelength, the scattered acoustic
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field above the rough surface S can be approximated by the
Kirchhoff integral which is taken over the illuminated smooth
surface S0, i.e.,6

ps(R) ≈ 1

4π i

∫
S0

V A(φ)nq
ei[k(R1+R2)−q

z
η(r)]

R1R2

d r
nz

, (9)

n = ez − γ (r)√
1 + γ (r)2

, (10)

q = −k∇(R1 + R2), (11)

γ (r) = ∇rη(r), (12)

where R is the radius vector pointed at the receiver, ez is
the component of a unit vector n normal to the rough sur-

face S at the fixed point r = (x, y, 0). R1 =
√

x2 + y2 + z2
0

and R2 =
√

(x1 − x)2 + y2 + z2
1 are distances to surface S0 at

fixed point r from the source and receiver, respectively. Be-
cause it is assumed that surface S is rigid, the reflection coef-
ficient in the Kirchhoff approximation is set to V = 1.

The far-field conditions can be represented as kR1 � 1
and kR2 � 1, indicating that the acoustic wavelength is much
smaller than the distance to the surface. Assuming that dis-
tances R1 and R2 are of the same magnitude compared to the
acoustic wavelength, then the far-field conditions can be de-
fined as

kR � 1, (13)

where R is referred to as the characteristic distance to the re-
flecting surface as shown in Figure 1.

It is noted that to derive Eq. (9) the source and receiver
should be in the Fraunhofer zone with respect to the elevated
point on the surface S so that

kσ 2

R
� 1. (14)

However, due to the condition (8), the far-field assumption
(13) leads to the conclusion that within the illuminated area
of the rough surface a multiple number of Fresnel zones can
be observed, i.e.,

kL2

R
� 1. (15)

This prevents the use of those approximations which only
work in the Fraunhofer zone (see p. 229 in Ref. 6).

Expanding the scalar product nq in Eq. (9) the scattered
acoustic pressure appears as

ps(R) = 1

4π i

∫
S0

A(φ)
eik[R1+R2−q

z
η(r)/k]

R1R2

qz

[
1 − qγ (r)

qz

]
dr,

(16)

where qz = k(z0/R1 + z1/R2).
In order to simplify the problem, the shadowing effects

on the rough reflecting surface can be neglected, which gives

qγ (r)

qz

� 1. (17)

In the case of a one-dimensional rough surface, i.e., when the
roughness function depends only on one coordinate, η = η(x),

condition (17) for the forward scattering can be transformed
into

|γ | � cot

(
ψ − χ

2

)
. (18)

The mean scattered acoustic pressure can be found by apply-
ing averaging (3) to Eq. (16). This gives

ps(R) = 1

4π i

∫
S0

A(φ)
eik(R1+R2)

R1R2

qze
−σ 2q2

z /2dr. (19)

The explicit parametric dependence of the mean sound pres-
sure on the mean roughness height can be exploited to mea-
sure the latter by minimising the difference between the
model and the measured data. This procedure is discussed in
Sec. III. The unique solution of this minimisation problem is
ensured by monotonic behaviour of the mean sound pressure
(19) as a function of the mean roughness height.

B. Method of stationary phase

The solution of Eq. (19) can be found through the nu-
merical integration which can be performed with the quadra-
ture rule. However, it is proposed to use the stationary phase
method12 which is suitable when conditions (13) and (15) are
satisfied. This method enables avoidance of the numerical in-
tegration procedure which is problematic when the integrand
function in Eq. (16) is rapidly oscillating. According to this
method the value of the integral in Eq. (16) can be approx-
imated with the sound pressure in the wave reflected by the
rough surface at the specular reflection point rs for which

∇rα(r) = ∇r [R1 + R2 − qzη(r)/k] = 0 and rs ∈ S0.

(20)

In this work, it is assumed that some realisations of the rough
surface S may contain multiple stationary phase points M. In
this case, the integral in (16) can be expanded as

ps(R) ≈ 1

2ik

M∑
m=1

f (rsm)eikα(r
sm

)+iβ
m
π/4√|D(rsm)| , (21)

where

f (rsm) =
[
A(φ)qz

R1R2

]
r=r

sm

, (22)

α(rsm) = [R1 + R2 − qzη(r)/k]r=r
sm

, (23)

D(rsm) =
[

∂2α

∂x2

∂2α

∂y2
−

(
∂2α

∂x∂y

)2
]

r=r
sm

, (24)

and

βm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if sgn
(

∂2α
∂x2

)
> 0, sgn(D) > 0,

0 if sgn(D) < 0,

−2 if sgn
(

∂2α
∂x2

)
< 0, sgn(D) > 0.

(25)

In this paper, the interval of the random realizations of rough
surface η(r) where the specular point is observed corresponds
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to the concave surface (23). The presence of the relatively
large terms, R1 and R2 in the phase function α(r) makes its
second partial derivative with respect to x as well as Gaus-
sian curvature 1/D positive which ensures that the surface is
concave. This enables us to assume that β = 2.

The above approach is based on the principle similar to
that outlined in Bass and Fuks (see p. 252 of Ref. 6) which can
be used to derive the mean intensity of the scattered acoustic
field in the Fraunhofer zone, and in Kodis7 which can be used
to derive the equivalent cross-section for scattering of elec-
tromagnetic waves by a rough surface provided that condition
(5) is satisfied. Equation (21) derived in this paper is an ex-
tension of the approach proposed in Refs. 6 and 7, because it
enables the integral to be estimated when the Fraunhofer zone
approximation is no longer satisfied.

In the far field (Fraunhofer zone) and mirror direc-
tion with respect to the main axis of the directed source
(χ0 = π − ψ0), Barrick13(Eq. (8)) showed that for an isotrop-
ically rough surface (i.e., a surface for which the correlation
radius l for the surface roughness pattern is independent from
direction) the number of specular points M within the square
with length l can be estimated from

Ml2 ≈ 1. (26)

This number shows that in the vicinity of the angle χ0 and
within the random rough surface correlation length the num-
ber of specular points tends to one. It is also noted that esti-
mation of the number of specular points in Eq. (26) is inde-
pendent from σ and, therefore, can be applied to surfaces with
arbitrary mean roughness height.

The relationship (26) indicates that if the correlation
length is comparable with the characteristic size of the illu-
minated area the sum in Eq. (21) can be truncated to a single
term which is defined by the reflection from the specular point
on the equivalent smooth surface S0, i.e.,

rsm =
(

x1z0

z0 + z1

, 0, 0

)
. (27)

It is also possible to simplify Eq. (20) to justify the choice
of a single specular point for at least the mirror angle χ0 case.
If the source and receiver have the same distance to the rough
surface (i.e., z0 = z1) and the receiver is positioned on the line
of specular reflection with angle χ0 from the smooth surface
S0 (i.e., R = R1 = R2), then the gradient of the phase (20) will
give the following approximate coordinates of the specular
point:

x ≈ x1

2
+ z0γx,

(28)
y ≈ z0γy,

where γ x and γ y are the components of the slope defined in
Eq. (12) and their orders are given by Eq. (17). In these equa-
tions for specular point coordinates (28), the items containing
η(r)/R term are neglected as they are insignificant. It can now
be seen that coordinates x and y in Eq. (28) can take values
different from the specular point of the smooth surface if the
source and receiver are elevated from the surface at a distance
much higher than that used in this paper so that z0|γ | = O(1).

In order to determine the mean sound pressure it is nec-
essary to apply the averaging procedure according to Eq. (3)
in which the probability density function is given by Eq. (4).
This yields

ps(R) ≈ 1

2k

f (rs)√|D(rs)|
eik(R1+R2)−σ 2q2

z /2. (29)

Equations (19) or (29) can be used to predict the direc-
tivity of the mean sound pressure field scattered by the dy-
namically rough surface. These predictions will be compared
against the experimental data in Sec. IV.

III. EXPERIMENTAL PROCEDURES

A. Hydraulic setup

In order to study the validity of the theoretical model pro-
posed in Sec. II, a series of hydraulic experiments was con-
ducted in which the behavior of the water surface was altered
by adjusting the general flow conditions of a range of uni-
form shallow flows over a sediment boundary. During these
tests, the dynamics of the free surface boundary were mea-
sured carefully at a number of locations. The experiments
were carried out in a 12 m long, sloping rectangular flume at
the University of Bradford (see Figure 2(a)). The flume was
459 mm wide and it was set to a fixed slope of 0.004. The
acoustic measurement section of the flume, and the section
equipped with wave probes, were located at 8.4 m and 9.6 m
from the upstream end of the flume, respectively. As shown
in Figure 2(b), the flume bed was composed of a hexagonally
packed arrangement of spheres of diameter ds = 25 mm. The
spheres in this work were manufactured by plastic injection
moulding, and had a density of ρs = 1400 kg/m3. Two layers
of spheres were used in order to give a bed thickness of hb
≈ 45 mm which allowed interfacial flows into and out of the
porous bed.

A constant head pump was used to recirculate water
in the flume. Control of the discharge from the pump was
achieved with an adjustable valve in the flume inlet pipe. The
size of the discharge was determined using a u-tube manome-
ter connected to a standard orifice plate assembly. The depth
of the flow was controlled with an adjustable gate at the down-
stream end of the flume to ensure uniform flow conditions
throughout a section as long as possible and in particular the
measurement sections of the flume. The uniform flow depth
was measured with a point gauge which was accurate to the
nearest 0.5 mm, and by wave probes accurate to 0.01 mm. The
hydraulic conditions studied in this work were designed to in-
vestigate the change in the water surface patterns as a function
of the flow depth and velocity for a range of turbulent flow
conditions typically found in gravel bed rivers. A summary of
the hydraulic properties of these flow conditions is given in
Table I. The uniform flow depth, D, and the depth-averaged
mean flow velocity, U, in these conditions were changed from
50 mm to 100 mm, and from 0.23 m/s to 0.54 m/s, (from Con-
dition 1 to Condition 6), respectively. Table I also provides a
summary of the Reynolds numbers which correspond to these
six flow conditions.
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FIG. 2. Hydraulic flume: (a) diagram of flume with main dimensions; (b) hexagonal packing of spheres forming the flume bed.

The flow surface roughness characteristics were mea-
sured with a non-equidistant array of seven calibrated,
conductance-based wave probes. This probe array was in-
stalled along the centreline of the flume to measure the in-
stantaneous elevation of the water surface. Each of the probes
in the array consisted of two vertical, parallel tinned copper
wires which were separated by a 15 mm distance oriented lat-
erally to the flow direction. The diameter of these wires was
0.24 mm. Figure 3 shows the position of the probe array with
respect to the flume upstream end and indicates the stream-
wise separations between individual probes. The wave probes
were regularly cleaned and calibrated to guarantee the accu-
racy of the wave height measurements for the adopted range
of hydraulic conditions. The calibration procedure involved
recording the voltage levels for all the probes under static, still

TABLE I. The characteristics of the 6 hydraulic conditions used for the ex-
periments along with the surface roughness characteristics.

Mean Characteristic
roughness Correlation spatial

Flow Depth, Velocity, height, radius, period,
condition D, (mm) U, (m/s) Re σ , (mm) l, (mm) L0, (mm)

1 50 0.23 9823 0.29 110 100
2 60 0.31 17 436 0.45 140 100
3 70 0.37 24 450 0.56 170 143
4 80 0.44 29 713 0.65 230 175
5 90 0.51 36 852 0.67 250 203
6 100 0.54 45 675 0.84 270 224

water conditions at six different water depths that spanned the
full range of flow depths considered in this work (see Table I).
This allowed linear regression lines to be empirically derived
that allow the instantaneous voltage recorded on a particular
probe to be converted into an accurate instantaneous water
depth.

The probes were connected to standard WM1A wave
probe control units provided by Churchill Controls. The out-
puts of the probe control units were connected through an ana-
logue 10 Hz low-pass Butterworth filter to a National Instru-
ments X-series PXIe-6356 data acquisition card. The control
units provided an analogue output to the data acquisition card,
which was capable of measuring to an accuracy of 2.5 mV.
This was over an input range of −10 V to +10 V, which was
tuned to cover depths from 0 mm to 200 mm, providing the
potential to resolve the change in the water level of 0.025 mm.
The accuracy of the wave probes was measured on still water
that resulted in peak to peak variation ± 0.030 mm and root
mean square error 0.015 mm.

It is worth mentioning the sources of errors which are
associated with measuring the level of a dynamic free flow
surface with wire wave probes. There are three basic effects
which can influence the accuracy of a wire wave probe: (i) the
formation of the meniscus on the wire; (ii) the generation of
the flow run-up causing the apparent change in the flow level
in the front and behind the wire; and (iii) the finite spacing
between the wires in a wave probe. The first source of errors
relates to the formation of a meniscus on each of the two wires
in a wave probe. The maximum static height of the meniscus
on a flat surface of the wire can be as high as δh � √

2Lc,
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FIG. 3. The orientation, position, and separations of the 7 wave probes in the test section of the flume.

where Lc = 2.7 mm is the capillary length for water-air inter-
face at 25 ◦C.14 In the case when the flow surface oscillates,
this meniscus moves with the flow and in doing so its top con-
tact points are likely to become smeared over the round wire
cross-section resulting in some error in resistance measure-
ment. It can be suggested that the maximum accuracy, this
device can yield is a half of the wire diameter, which in this
particular case equates to ±0.12 mm. The second source of
errors relates to the formation of the run-up on the front of the
wire, and depression at the rear as it is shown in the case of a
vertical cylinder in a steady stream of water.15 The surface
resistance force acting on the wire is Fs = 1/2CsρwU 2d2,
where ρw = 1000 kg/m3 is the density of water, d = 0.24 mm
is the diameter of the wire and Cs is the surface drag coeffi-
cient. It has been shown that the surface drag coefficient for a
stretched wire of circular cross-section is less than 0.0471 for
flows with the Froude number15 Fr > 3. Because the Froude
number for the flow conditions considered in this work is Fr
> 4.7, it can be shown that the surface resistance force for the
fastest flow condition (condition 6 with U = 0.54 m/s) is Fs
� 4 × 10−7 N. This force is sufficient to generate pressures
which can cause the maximum displacement of a volume of
fluid with dimension that is equivalent to the wire diameter,
i.e., ±0.24 mm. The third source of errors is the discretiza-
tion error related to the finite spacing between the two wires
in the probe and it is discussed in detail in Sec. IV B.

The data acquisition card digitized the analogue wave
probe signals simultaneously at 10 kHz in 1 ms packets. Each
of these packets was acquired at a trigger rate of 100 Hz and
the water level measured within each 1 ms packet was av-
eraged to eliminate any chance of periodic high frequency
noise. The resultant 300-s 100 Hz digitized wave probe sig-
nals were detrended. The mean roughness height was calcu-
lated from

σ = 1

7

7∑
m=1

σm, (30)

where

σm =
√

1

T

∫ T

0
η2

m(t)dt, (31)

and ηm(t) being time-dependent water surface elevation mea-
sured with the wave probe m over the period T = 300 s. The
variability in the mean roughness heights for the seven wave
probes for a given flow condition was less that 10%. The mean

roughness height values calculated from Eq. (30) for the six
hydraulic conditions are listed in Table I.

The spatial correlation function was determined in two
steps. Initially, the temporal, normalized cross-correlation
function between wave probes m and n was estimated from

Wmn(t) = 1

T σmσn

∫ T

0
ηm(τ )ηn(t − τ )dτ. (32)

The temporal, normalised cross-correlation function Wmn(t)
was then presented as a function of the spatial lag, rl = U × t,
so that the extremum value (either a maximum or minimum)
in the temporal cross-correlation function that corresponded
to the maximum similarity in the water surface roughness pat-
tern transported by the water flow from probe m to probe n
within the analysis window could be determined. It has been
shown2 that the behavior of this function can be approximated
by a simple analytical expression which combines the prop-
erties of an exponentially decaying function and a periodic
process, e.g.,

W (ρ) = e−ρ2/l2
cos

(
2π

L0

ρ

)
, (33)

where ρ is the spatial lag. The parameters l and L0 in (33)
relate to the correlation radius and characteristic period in
the surface wave pattern, respectively. These two parameters
were determined using the optimization procedure described
in Ref. 2 and their values for the six hydraulic conditions are
listed in Table I. These parameters were used to estimate the
ratio l/L0 and the error in the wave probe data from the knowl-
edge of the spatial period (see Sec. IV).

B. Acoustic setup

The acoustic system was installed at the center of the
flume and at 8.4 m from its upstream end. A semi-circular
arch-shaped rig was constructed in order to precisely control
the positioning of each of the acoustic components as shown
in Figure 4. The arch was supported at each corner by a screw
thread, allowing the height to be accurately adjusted. The base
of the arch was thereby fixed at a distance of 10 mm above
the mean water surface level for all flow conditions. The cir-
cumferential length of the arch was 1.26 m. A 40 mm diam-
eter ultrasonic transducer (ceramic type 043SR750) was at-
tached to the arch at a circumferential position of 945 mm
and tilted downwards projecting downstream of the flow at
45◦ as shown in Figure 4. The distance between the center of
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Flow

10mm

Source Receiver

χ45o

FIG. 4. The experimental setup for the acoustical measurements.

the transducer to the specular reflection point on the still water
surface was 0.36 m. In this way, the specularly reflected wave
was expected to arrive at the 315 mm position in the opposite
part of the arch. Four 1/4-in. Bruel and Kjaer microphones of
Type 4930 were initially placed at circumferential positions of
205, 305, 325, 425 mm, respectively, on the part of the arch
opposite to the transducer. These four microphones were then
moved in steps to cover uniquely a range of 40 angles from
16.43◦ to 73.57◦, in increments of approximately 1.43◦. The
positions of the source and microphone array were then ex-
changed, so that the source was now projecting upstream of
the flow. The same measurement procedure was repeated at
the equivalent 40 positions on the opposite side of the arch
for the same range of angles. The ultrasonic transducer was
excited at its resonant frequency of 43 kHz with a 10 V sinu-
soidal signal generated by a Tektronix AFG 3021B function
generator. The directivity of the transducer was measured in
the free field and these data were used to predict the ampli-
tude of the acoustic field projected on the surface of the still
water as a function of the horizontal coordinate. The result of
this prediction is shown in Figure 5. It enabled estimation of
the streamwise characteristic length of the illuminated area of
the water surface using the e−1 criteria which gives L ≈ 125
mm, suggesting that the correlation radius L < l is large for
all the experimental regimes considered in this work.
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FIG. 5. The distribution of the acoustic pressure projected by the directional
source on the surface of still water. The dashed line shows the e−1 thresh-
old which was used to estimate the streamwise characteristic length of the
illuminated area.
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FIG. 6. Examples of the time histories of the amplitude of the acoustic sig-
nals recorded at χ = 45◦ for flow conditions 1, 3, and 6.

The microphone signals were conditioned using a Bruel
and Kjaer Nexus 2690 four-channel microphone conditioning
amplifier. The output sensitivity of the conditioning amplifier
was set to 100 mV/Pa. A National Instruments NI PXIe-6356
data acquisition card was used to digitize the acoustic signals
at 1 MHz sampling rate. The acquired data time series were
300 s long, so the data acquisition was carried out in 1 ms
packets to avoid memory overflow. These packets of data were
recorded for all 4 microphone and 7 wave probe channels and
the acquisition of each packet was triggered at a rate of 100
Hz. The resulting raw data were saved into text files, so that
analysis could be later performed.

The analysis of the recorded sound pressure signals was
carried out in 1 ms packets. This analysis involved the calcu-
lation of the amplitude A(tj, χ ) of each 1 ms packet of acoustic
pressure data recorded at the time instant, tj, and at some an-
gle along the arch, χ . Figure 6 shows an example of the time
histories of the amplitude of the reflected sound wave which
were recorded at the point of specular reflection (45◦ along the
arch) for conditions 1, 3, and 6. The mean sound pressure as
a function of angle was determined from these data according
to the following expression:

P (χ ) = 1

J

J∑
j=1

A(tj , χ ). (34)

C. The minimisation procedure

In this paper, the parameter inversion was based on the
nonlinear least square minimisation technique.16 This proce-
dure was implemented in the commercial software MATLAB
using the function lsqnonlin to determine the optimal values
of the mean roughness height σ for which the discrepancy
between the measured angular-dependent mean sound pres-
sure and that predicted with the theory proposed in Sec. II A
takes a minimum. In this procedure, the following objective
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FIG. 7. The normalized amplitude of the reflected acoustic pressure over still
water surface obtained with the Kirchhoff integral (“–”) and stationary phase
point approximation (“- -”) and compared with data (“o”).

function was formulated:

F (σ ) =
N∑

j=1

[ps(χj , σ ) − P (χj )]2, (35)

where N is the total number of angles for which the minimum
of F(σ ) is sought, ps(χ j, σ ) are the mean sound pressures pre-
dicted for these angles either by Eqs. (19) or (29) and P(χ j)
are mean sound pressures measured at these angles in ei-
ther the up- or downstream direction. The prediction of ps(χ j,
σ ) requires the knowledge of the directivity amplitude A in
Eq. (6). This parameter was determined from the same min-
imisation procedure (see Eq. (35)) in which the still water
data for either down- or upstream direction were used and
the value of the mean roughness height was set to σ = 0 in
Eqs. (19) and (29). In this paper, the minimisation was per-
formed in the vicinity of the specular reflection point of
χ = 45◦ ± 15◦. In this range, the directivity of the source
was no more than 20 dB below the maximum. For this angu-
lar range, the number of data points used in the minimisation
procedure was set to N = 20.

Figure 7 shows the theoretical predictions for the mean
sound pressure which were obtained by using Eqs. (19) and
(29) for the case of the smooth (still) water with σ = 0. This
figure also presents the measured data. It is observed that for
the angular interval χ = 45◦ ± 15◦ accuracy of the prediction
obtained with the input parameters mentioned in Sec. III is
within 5% of the data.

IV. THE RESULTS

A. The deduced mean roughness height data

Figures 8(a)–8(f) show the results of inversion which
were obtained through the application of the minimisation
procedure given by Eq. (35). These results show that the mean
sound pressure calculated in accordance with Eq. (29) agrees
with that calculated via the Kirchhoff integral to within 1%
in a relatively wide angular interval of 30◦ < χ < 60◦. The
agreement between these predictions and data is within 5% in
the angular interval of χ = 45◦ ± 15◦ for all the flow con-

ditions considered in this work. Table II presents the values
of the mean roughness height which were deduced through
the minimisation of the differences between the data and pre-
dictions by the Kirchhoff integral (σ K) and minimising the
difference between the data and predictions by the stationary
phase method (σ sp). It is reported that the difference between
two methods is within 5%. Table II also shows the value of the
mean roughness height measured with the wave probes. The
maximum relative error between the measured and deduced
standard deviation is 55%, which occurred in the case of flow
condition 2.

A good agreement between the stationary phase point ap-
proximation and integral solution shows that the directivity of
the scattered sound pressure depends strongly on the mean
roughness height and in the same way as suggested in Ref. 17
for the case of the Fraunhofer zone. Therefore, at every point
of angular pattern the reflection will be reduced by the or-
der of exp(−σ 2q2

z /2). Using Eq. (29), one can find explicitly
standard deviation in terms of the normalized data as

σ ′
sp = 1

qz(χ )

√
2 ln

(
ps(σ = 0, χ )

P (χ )

)
, (36)

where ps(χ ) is derived with Eq. (29) for σ = 0 and P(χ ) is
given by Eq. (34). Equation (36) depends on the receiver an-
gle χ . In Table II, the values quoted for the mean roughness
height derived with Eq. (36) are averaged within the angular
interval of χ = 45◦ ± 15. The results are accurate within 5%
from those obtained with minimization technique.

Equation (36) shows that small errors in the value of ps(σ
= 0, χ ) which can be caused by the change in the source
amplitude, A, are amplified because of the log function in
Eq. (36) and contribute significantly to the error in the pre-
dicted mean roughness height of the surface. It can be seen
from Figure 9 that variation of 5% in amplitude can cause
more than 20% decrease/increase in the mean roughness
height recovered with this acoustical method. This effect is
similar to that encountered in the remote sensing techniques
and it is related to ill-posed problems (see Ref. 18) so that care
should be taken while estimating the source amplitude, A and
related angular spectrum of ps(σ = 0, χ ).

Figure 10 compares graphically the values of the mean
roughness height data measured with the wave probes and de-
duced using the acoustical method. This figure also shows the
regression line σK = Cσ with regression coefficient C = 0.77
obtained to fit σ K and with the coefficient of determination
R2 = 0.86. A straightforward substitution of σ sp or σ ′

sp for
σ K in the regression analysis does not change the value of
C by more than ±1.5%. This suggests that the acoustical
method can be calibrated and used to deduce the mean rough-
ness height with the relative error of 5% for the hydraulic
conditions studied in this work. This acoustic instrumenta-
tion is particularly attractive to use in the case when the ra-
tio σ /L0 becomes large. In this case, the accuracy of the wave
probes reduces because of the increased discretisation error
caused by the finite value of the spacing between the wires
in the probe, or in situ when the use of the wave probes is
impractical.
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FIG. 8. The normalized amplitude of scattered acoustic pressure over rough surface generated by the water flow with the depth: (a) 50 mm, (b) 60 mm, (c)
70 mm, (d) 80 mm, (e) 90 mm, (f) 100 mm. Data (“o”) are compared against predictions based on the Kirchhoff integral (“–”) and stationary phase point
approximation (“- -”).

B. The discretization error in wire wave probe
measurements

The problem of the discretization error in the case of wire
wave probe measurement is easy to illustrate when the sur-

face roughness pattern can be approximated as η(r) ∼ σeiK0r ,
where K0 = 2π /L0 is the characteristic wavenumber in the sur-
face roughness. In this case, the wave probe resistance is the
mean between the two instantaneous water level elevations,
η(r1) and η(r2), at the positions of the two wires spaced by the
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TABLE II. The values of the mean roughness height derived through the
Kirchhoff integral (σK), stationary phase point approximation (σ sp) and as
an average for Eq. (36). The directly measured values of the mean roughness
height (σ ) are also quoted to enable a comparison.

Flow Flow
condition depth, mm σK, mm σ sp, mm σ ′

sp , mm σ , mm

1 50 0.15 0.15 0.14 0.29
2 60 0.2 0.19 0.21 0.45
3 70 0.41 0.4 0.4 0.56
4 80 0.57 0.57 0.56 0.65
5 90 0.58 0.57 0.57 0.67
6 100 0.66 0.66 0.65 0.84

distance �r = r2 − r1. The instantaneous water level mea-
sured with this wave probe is η̂(r1) ∼ σeiKr1

(
1 + eiK�r

)
/2,

which will underestimate the true water level at the position
r1 by the term |(1 + eiK�r)/2|. It is of interest to estimate this
term for the hydraulic regimes studied in our work. The value
of this term depends on the characteristic spatial period of
the roughness (L0) and wire spacing (�r). In the streamwise
direction, the characteristic spatial period (100 ≤ L0 ≤ 224
mm). However, the separation between the wires in the wave
probes is in the lateral direction. The work by Roy et al.19

suggests that the lateral dimension of the turbulent flow struc-
tures is 0.5–1.0 of the flow depth which was 50 ≤ D ≤ 100
mm. Therefore, we can assume that the characteristic spatial
period of the turbulence-generated surface roughness in the
lateral dimension is comparable to that in the streamwise di-
rection and we consider the range of 50 ≤ L0 ≤ 224 mm. The
lower value here is taken as the minimum depth of the wa-
ter flow which, according to the work by Roy et al.19) can be
taken as a lateral dimension of the turbulent structures causing
this roughness to occur.

It is necessary to know the spatial spectrum of the rough-
ness pattern in order to estimate the actual error in the wave
probe readings caused by the finite value of �r. This power
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FIG. 10. The correlation between the mean roughness height measured with
the wave probe array and mean roughness height deduced with the proposed
acoustical method.

spectrum can be estimated for a given hydraulic regime
through the knowledge of the spatial correlation function
(Eq. (33)) and Wiener-Kinchin theorem, i.e.,

W̃ (K) =
∫ +∞

−∞
W (ρ)e−iKρdρ. (37)

The application of the Fourier transform results in a simple
analytical expression

W̃ (K) = 1

2
[G̃(K − K0) + G̃(K + K0)], (38)

where

G̃(s) =
∫ +∞

−∞
e−ρ2/l2

e−isρdρ = √
πle−l2s2/4. (39)

The above arguments enable us to suggest that the relative
measurement error due to the finite distance between the wave
probes can be expressed as the following:

e
(
K0

) =
(

1 −
√

v̂

v

)
× 100%, (40)

where

v̂ = σ 2

√
πl

2π

∫ +∞

−∞

1

8
|1 + eiK�r |2

× [e−l2(K−K0)2/4 + e−l2(K+K0)2/4]dK

= σ 2

2
[e−�r2/l2

cos(K0�r) + 1] (41)

and

v = σ 2

√
πl

2π

∫ +∞

−∞

1

2
[e−l2(K−K0)2/4 + e−l2(K+K0)2/4]dK = σ 2

(42)
are the variance in the roughness height estimated with the
wave probe and variance of the actual height, respectively.

Equation (40) enables us to estimate the error in the wave
probe measurements due to the finite value of �r = 15 mm
for a range of flow regimes. The largest error occurs when
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the value of the characteristic period is the shortest. If we as-
sume that that the minimum characteristic spatial period in
the lateral direction L0 = 50 mm and l ≈ 1.4L0 (which is
true for all the hydraulic regimes considered in this work, see
Table I), then the relative error given by Eq. (40) is 41%. This
error is 11% for flow condition 1 (L0 = 100 mm and l = 110
mm), 6% for flow condition 3 (L0 = 143 mm and l = 170
mm) and 2% for flow condition 6 (L0 = 224 mm and
l = 270 mm). The values of these errors are comparable
with the differences between the values of the mean rough-
ness height deduced with the acoustical method and measured
with the wave probe array. The data shown in Table II suggest
that the relative difference between the acoustically deduced
roughness and that measured with the wave probes is below
15% for flow conditions 4 and 5 for which the ratios �r/L0
and kσ 2/R remain much smaller than 1. This difference in-
creases to 20% for flow condition 6 which can be explained
by the fact that the condition for the Fraunhofer zone, kσ 2/R
� 1 is no longer satisfied.

C. The relationship with the hydraulic parameters

The deduction of mean roughness height without sub-
merging any instrumentation in water carries significant im-
portance and offers the opportunity to estimate some of the
hydraulic properties of a given open channel flow based on the
non-invasive acoustic measurements with a stationary source
and several stationary receiver points or with a roaming re-
ceiver as described in this paper. The vertical scale of free sur-
face features is inherently linked to the degree of kinetic en-
ergy within the flow, resulting in a clear dependence between
mean roughness height and mean flow velocity as proved
previously with data presented in Chap. 5 of Ref. 3 and in
Table I in Ref. 2. Figure 11 shows a clear relationship between
the normalised mean water surface roughness height and the
depth-based flow Reynolds number for all the flow conditions
examined in this work. This relationship follows closely a lin-
ear dependence for the range of flow conditions considered in
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FIG. 11. The mean roughness height plotted as a function of the Reynolds
number.

this work. The acoustical method which is able to estimate
the flow Reynolds number within a 5% accuracy, provided
the acoustic setup is calibrated. This technique is more sim-
ple than others such as acoustic phase tracking20 or Doppler
backscattering technique21 which requires more sophisticated
data analysis.

Further to the velocity and Reynolds number measure-
ments, it has also been shown that the mean roughness height
carries information regarding the longitudinal length scales of
turbulent structures beneath the flow surface.3 This is thought
to be due to larger turbulent structures exhibiting a greater
propensity to deform the free surface. In this manner, a remote
acoustical method for determining mean roughness height can
facilitate the deduction of the length scales of dominant tur-
bulent processes within the flow. This information is critical
for understanding the mixing properties of turbulent flows, for
example, when assessing the behavior and impact of pollu-
tant and sediment transport. The properties of turbulent pro-
cesses within shallow flows are inherently linked to the bed
roughness shape, so that a non-invasive measurement of these
properties can facilitate the estimation of the hydraulic rough-
ness coefficient,2 a quantity important for predicting the flow
capacity of rivers and man-made infrastructure and its poten-
tial to cause flooding. Higher flow depths generally allow the
formation of larger scale turbulent structures (see Chap. 5 in
Ref. 3), and therefore larger surface roughness.

V. CONCLUSIONS

In this paper, the airborne acoustic waves generated by
the source with directivity pattern of a piston in the rigid baffle
are applied to study the statistics of the rough surface of shal-
low water flow in open channels. It is shown that a straightfor-
ward inversion technique based on the single stationary phase
point approximation can be used to deduced the mean rough-
ness height of the surface of a turbulent flow. Either the non-
linear curve fitting method (35) or explicit formulation (36)
can be used for this inversion process. The proposed tech-
niques have been tested for several flow conditions and the
results of inversion have been compared with the data ob-
tained with conductance-based wave probes. It is concluded
that the mean roughness height can be estimated acoustically
with a ±5% error, provided the acoustic setup is calibrated
and the χ = χ0 ± 15◦ (χ0 being the angle of specular reflec-
tion) range of angles is adopted for the inversion. It is also
shown for the given flow conditions that the roughness mean
hight can be used to estimate the Reynolds number and uni-
form flow depth.

The ability to measure the mean roughness height with-
out submerging any instrumentation in water carries signif-
icant importance. This method offers the opportunity to es-
timate the Reynolds number and flow velocity in a given
open channel flow using a stationary sound source and sev-
eral receiver points arranged in the forward scattering di-
rection. It allows for non-invasive monitoring of shallow
flows in environments ranging from natural rivers to urban
drainage systems and offers an opportunity for low-cost and
low-maintenance monitoring of hydraulic flows on a very
large scale, thus enabling proactive maintenance and better
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resilience against asset degradation, blockage formation, and
flooding.
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