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Limit Laws for Sums of Random Exponentials

Gérard Ben Arous, Leonid Bogachev, and Stanislav Molchanov

Abstract. We study the limiting distribution of the sum SN (t) =
PN

i=1 etXi

as t → ∞, N → ∞, where (Xi) are i.i.d. random variables. Attention to

such exponential sums has been motivated by various problems in random
media theory. Examples include the quenched mean population size of a
colony of branching processes with random branching rates and the parti-
tion function of Derrida’s Random Energy Model. In this paper, the prob-
lem is considered under the assumption that the log-tail distribution function
h(x) = − log P{Xi > x} is regularly varying at infinity with index 1 < ̺ < ∞.

An appropriate scale for the growth of N relative to t is of the form eλH0(t),

where the rate function H0(t) is a certain asymptotic version of the cumulant
generating function H(t) = log E[etXi ] provided by Kasahara’s exponential

Tauberian theorem. We have found two critical points, 0 < λ1 < λ2 < ∞,
below which the Law of Large Numbers and the Central Limit Theorem, re-
spectively, break down. Below λ2, we impose a slightly stronger condition of
normalized regular variation of h. The limit laws here appear to be stable,
with characteristic exponent α = α(̺, λ) ranging from 0 to 2 and with skew-
ness parameter β = 1. A limit theorem for the maximal value of the sample
{etXi , i = 1, . . . , N} is also proved.

1. Introduction

In this work, we are concerned with the partial sums of exponentials of the
form

(1) SN (t) =
N
∑

i=1

etXi ,

where X1, X2, . . . is a sequence of independent identically distributed random vari-
ables and both t andN tend to infinity. Our goal is to study the limiting distribution
of SN (t) and to explore possible ‘phase transitions’ due to various rates of growth
of the parameters t and N .

In such analysis, two cases are naturally distinguished according to whether or
not Xi are bounded above. In this paper, we assume that the random variables
Xi are unbounded above; the opposite case can be treated similarly and will be
considered elsewhere. One can also expect that the results will heavily depend on
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the structure of the distribution at infinity. In the present work, we focus on a
fairly general class of distributions with the upper tail of the Weibull-type form

(2) P{Xi > x} ≈ exp(−cx̺) (x→ +∞),

where ̺ > 1. More precisely, we assume that the log-tail distribution function
h(x) = − log P{Xi > x} is regularly varying at infinity with index 1 < ̺ < ∞. In
particular, a normal distribution is contained in this class with ̺ = 2.

One motivation for our study is quite abstract and purely probabilistic. In
fact, such a setting provides a natural tool to interpolate between the classical limit
theorems concerning the bulk of the sample, i.e. the Law of Large Numbers (LLN)
and the Central Limit Theorem (CLT), on the one hand, and limit theorems for
extreme values, on the other hand. Indeed, it is clear that the limiting behavior
of SN (t) is largely determined by the relationship between the parameters t and
N . If, for instance, one lets N tend to infinity with t fixed or growing very slowly,
then, under appropriate (exponential) moment conditions, the usual LLN and CLT
should be valid. In contrast, if the growth rate of N is small enough as compared
to t, then the asymptotic behavior of the sum SN (t) is dominated by its maximal
term. We will see that when both t and N tend to infinity, a rich intermediate
picture emerges made up of various limit regimes.

In this connection, let us mention a recent paper by Schlather (2001) who
studied the asymptotic behavior of the lp -norms of samples of positive i.i.d. random
variables,

(3) ‖Y1n‖p =

(

n
∑

i=1

Y p
i

)1/p

,

where the norm order p grows together with the sample size n. The link with
our setting becomes clear if one puts Yi = eXi , so that (3) is expressed through
an exponential sum of the form (1). Qualitatively speaking, Schlather (2001) has
demonstrated that under a suitable parametrization of the functional relation be-
tween p and n, there is a ‘homotopy’ for the limiting distributions of the norms
(3) extending from CLT to a limit law for the extreme value. However, his results
basically refer to the case where the random variables Yi are bounded above and, in
the sense of extreme value theory, belong to the domain of attraction of the Weibull
distribution Ψα with parameter α > 0, with distribution function

Ψα(x) = exp
(

−(−x)α
)

, x < 0.

Let us point out that our results are complementary to Schlather’s findings, since for
random variables Xi with the Weibull tails (2), the distribution of the maximum
of eX1, . . . , eXn can be shown to converge, as n → ∞, to the Gumbel (double
exponential) distribution Λ, with distribution function

Λ(x) = exp
(

−e−x
)

, x ∈ R.

The second motivation (and in fact the most important one) comes from prob-
lems related to the long-time dynamics in random media. In the simplest situation,
sums of exponentials arise as the expected (quenched) total population size of a
colony of non-interacting branching processes with random branching rates. In-
deed, consider a collection of N branching processes Zi(t) driven by the binary
branching rates Xi = Xi(ω) (i = 1, . . . , N). More specifically, for a fixed envi-
ronment ω (i.e., in a ‘quenched’ setting), each Zi(t) is a Markov continuous-time
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branching process evolving as follows: during infinitesimal time dt, a particle from
the ith population, independently of other particles and the past history, with
probability |Xi|dt may split into two descendants (if Xi > 0) or die (if Xi < 0);
otherwise, with probability 1 − |Xi|dt, the particle survives over the time dt. Let
mi(t) ≡ mi(t, ω) denote the expected number of particles in the ith population
at time t. One can show that mi(t), as a function of t, satisfies the differential
equation m′i(t) = Ximi(t) [see Athreya and Ney (1972), Chapter III, pages 106,
108]. Hence, assuming that Zi(0) = 1 we obtain mi(t) = etXi , and therefore the
quenched mean total population size is given by the sum (1).

A completely different example is provided by the Random Energy Model
(REM) introduced by Derrida (1980) as a simplified version of the mean-field
Sherrington–Kirkpatrick model of a spin glass. The REM describes a system of
size n with 2n energy levels Ei =

√
nXi (i = 1, . . . , 2n), where (Xi) are i.i.d. ran-

dom variables with standard normal distribution. Thermodynamics of the system
is determined by the partition function

Zn(β) :=
2n

∑

i=1

exp(β
√
nXi),

where β > 0 is the inverse temperature, which exemplifies the exponential sum (1)
with N = 2n, t = β

√
n . The free energy, first obtained by Derrida (1980) using

heuristic arguments, is given by

(4) F (β) := lim
n→∞

logZn(β)

n
=

{

β2/2 + β2
c/2 if 0 < β ≤ βc ,

ββc if β ≥ βc ,

where βc =
√

2 log 2 . Note that the function F (β) is continuously differentiable but
its second derivative is discontinuous at point βc [a third-order phase transition,
see Eisele (1983)]. Later on, Eisele (1983) and Olivieri and Picco (1984) rigorously
derived the limit (4) (in probability and also with probability one) and also extended
this result to the case where the random variables Xi have the Weibull-type upper
tail (2).1

Recently, a detailed analysis of the limit laws for Zn(β) in the Gaussian case
has been accomplished by Bovier, Kurkova and Löwe (2002). In particular, they
have shown that in addition to the first phase transition at the critical point βc,
manifested as the LLN breakdown for β > βc, within the high-temperature phase

β < βc there is the second phase transition at the critical point β̃c =
√

log 2/2 =
1
2βc , in that for β > β̃c the fluctuations of Zn(β) become non-Gaussian. In our
work, we extend these results to the class of distributions with the Weibull-type tails
of the form (2). As compared to Bovier, Kurkova and Löwe (2002) who proceeded
from the extreme value theory, we use methods of the theory of summation of
independent random variables. Moreover, we show that the non-Gaussian limit
laws are in fact stable.

1 In fact, the class of distributions considered in these papers is subject to the condition

x−̺h(x) → c as x → ∞, where h(x) = − log P{Xi > x} and 1 < ̺ < ∞ [see Eisele (1983),
Theorem 2.3, page 130], which is more restrictive than our assumption of (normalized) regular
variation of h.
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Outline. The rest of the paper is organized as follows. In Section 2, we specify
our regularity assumption on the distribution tail of the random variables Xi and
formulate Kasahara’s exponential Tauberian theorem, which relates the asymptotic
behavior of the log-tail distribution function h(x) to that of the cumulant generating
function H(t) = log E[etXi ]. We then introduce the exponential scale eλH0(t) of
growth of N relative to t, where H0 is a certain asymptotic version of H provided
by Kasahara’s theorem, and define two critical values of the parameter λ, 0 <
λ1 < λ2 < ∞. In Section 3 we prove the LLN above λ1 (Theorem 1) and the
CLT above λ2 (Theorem 2). In Section 4, we impose a slightly stronger condition
of normalized regular variation of h, which leads to an important formula (Basic
Identity, Lemma 3) characterizing precisely the relationship between h and H0.
Section 5 contains our main result (Theorem 3, 0 < λ < λ2) on convergence to a
stable law, with characteristic exponent α = α(̺, λ) ranging from 0 to 2 and with
skewness parameter β = 1. We also address here the situation at the critical points
λ1 (LLN, Theorem 4) and λ2 (CLT, Theorem 5). Section 6 is an illustration of our
limit theorems in the model case of the Weibull distribution. In Section 7, the key
points of the proofs of Theorems 3, 4 and 5 are briefly outlined. In particular, we
explain the main idea of derivation of the Lévy–Khinchin spectral function, where
the Basic Identity plays the crucial part. Finally, in Section 8 we obtain the limiting
distribution of the maximum MN (t) = max{etXi , i = 1, . . . , N} (Theorem 6) and

discuss the relationship between SN (t) and MN (t) (Theorems 7 and 8).

General notations. We write := for ‘is defined by’ and =: for ‘is denoted by’.

The letter X is used for a generic representative of the random variables (Xi).
The indicator of an event A is denoted by 1A . Relation f(x) ∼ g(x) means that

f(x)/g(x) → 1. Convergence in probability and in distribution is denoted by
p−→

and
d−→, respectively, and the symbol op(1) denotes a random variable converging

to zero in probability. By N (0, σ2) we denote the normal distribution on R with
zero mean and variance σ2; in particular, N (0, 1) stands for the standard normal
distribution.

2. Regularity and Kasahara’s Tauberian theorem

Using the log-tail distribution function

(5) h(x) := − log P{X > x}, x ∈ R,

the upper distribution tail is represented in the form

P{X > x} = e−h(x).

We now make our basic assumption on regularity of this tail.

Regularity Assumption 1. The function h is regularly varying at infinity

with index ̺ ∈ (1,∞) (we write h ∈ R̺). That is to say, for every constant κ > 0

lim
x→∞

h(κx)

h(x)
= κ̺.

Since the random variable X has all exponential moments, the cumulant gen-
erating function

H(t) := log E[etX ]

is well defined for all t ≥ 0. The link between the asymptotic behavior of the
functions h and H at infinity is characterized by Kasahara’s exponential Tauberian
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theorem [Bingham, Goldie and Teugels (1989), Theorem 4.12.7, page 253]. Let the
generalized inverse of a function f be defined by

f←(y) := inf{x : f(x) ≥ y},
with the convention that inf ∅ = +∞ [see Resnick (1987), Section 0.2, pages 3–4].
One can show that f ∈ R̺ if and only if f← ∈ R1/̺ [see Bingham, Goldie and
Teugels (1989), Theorem 1.5.12, page 28].

Kasahara’s Tauberian Theorem. Let 1 < ̺ < ∞, and let ̺′ > 1 be such

that

(6)
1

̺
+

1

̺′
= 1.

Suppose that ϕ ∈ R1/̺ and put

(7) ψ(u) :=
u

ϕ(u)
∈ R1/̺′ .

Then

(8) h(x) ∼ 1

̺
ϕ←(x) (x→ ∞)

if and only if

(9) H(t) ∼ 1

̺′
ψ←(t) =: H0(t) (t→ ∞).

In particular, if h ∈ R̺ then H ∈ R̺′, and vice versa.

In the sequel, the following simple identity will be useful, which is just a re-
arrangement of the definition (6):

(10)
̺′

̺
= ̺′− 1.

Note that the expected value of the sum SN (t) is given by

E[SN (t)] =
N
∑

i=1

E[etXi ] = NeH(t),

suggesting that the function H(t) sets up an appropriate (exponential) scale of the

form eλH(t) for N = N(t). In fact, it is technically more convenient to use H0(t) as
a rate function [see (9)].2 More precisely, denote

(11) λ := lim inf
t→∞

logN

H0(t)

and set

(12) λ1 := ̺′− 1, λ2 := 2̺′

(̺′− 1).

These two values prove to be critical ones with respect to the scale (11). Let us
also introduce a new parameter,

(13) α ≡ α(̺, λ) :=

(

̺λ

̺′

)1/̺′

.

2 This makes no difference in the ‘crude’ Theorems 1 and 2 below, since H0(t) ∼ H(t) as
t → ∞, but it will be crucial for the more delicate Theorems 3, 4 and 5.
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Conversely, in view of formula (10) the parameter λ is expressed through α as

(14) λ = α̺′

(̺′− 1),

and from (12) it follows that the respective critical values of α are given by

α1 = 1, α2 = 2.

We will see that α plays the role of characteristic exponent in the limit laws.

3. ‘Crude’ limit theorems above the critical points

Our first theorem asserts that if N grows fast enough then SN (t) satisfies the
Law of Large Numbers in its conventional form.

Theorem 1 (LLN, λ > λ1). Suppose that λ > λ1, and set

S∗N (t) :=
SN (t)

E[SN (t)]
=

1

N

N
∑

i=1

exp
{

tXi −H(t)
}

.

Then

S∗N (t)
p−→ 1 (t→ ∞).

Proof. It suffices to prove that for some r > 1

lim
t→∞

E |S∗N (t) − 1|r = 0.

By an inequality of von Bahr and Esseen [(1965), Theorem 2, page 301], for any
r ∈ [1, 2]

E |S∗N − 1|r ≤ 2N1−r
E |etX−H(t) + 1|r.

Furthermore, by the elementary inequality (x+ 1)r ≤ 2r−1(xr + 1) (x ≥ 0, r > 1),
which easily follows from Jensen’s inequality applied to xr, we get

(15) E |S∗N − 1|r ≤ 2rN1−reH(rt)−rH(t) +O(N1−r).

Since H ∈ R̺′ and also using (11) and the asymptotic equivalence H(t) ∼ H0(t)
[see (9)], we obtain

(16)
lim inf
t→∞

(

(r − 1) logN

H(t)
− H(rt)

H(t)
+ r

)

= λ(r − 1) − r̺′

+ r =: vλ(r).

Note that vλ(1) = 0 and v′λ(1) > 0 [due to the condition λ > λ1 = ̺′− 1, see (12)].
Hence, there exists r > 1 such that vλ(r) > 0, which implies that the exponential
term in (15) is bounded by e−cH(t) = o(1). �

Our next result concerns the fluctuations of the sum SN (t) about the expected
value. Note that

Var[etX ] = eH(2t)− e2H(t) ∼ eH(2t) (t→ ∞).

Theorem 2 (CLT, λ > λ2). Suppose that λ > λ2. Then

SN (t) −NeH(t)

(NeH(2t))1/2

d−→ N (0, 1) (t→ ∞).
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Proof. By the Lyapunov theorem [see Petrov (1995), Theorem 4.9, page 126],
we only need to check that for an appropriate r > 1,

(17) N−re−rH(2t)
N
∑

i=1

E |etXi − eH(t)|2r → 0 (t→ ∞).

Arguing as in the proof of Theorem 1, one can show that the left-hand side of (17)
is dominated by

22r−1N1−re−rH(2t)
(

eH(2rt) + e2rH(t)
)

∼ 22r−1N1−reH(2rt)−rH(2t).

Furthermore, analogously to (16) we obtain

lim inf
t→∞

(

(r − 1) logN

H(t)
− H(2rt)

H(t)
+
rH(2t)

H(t)

)

= λ(r − 1) − (2r)̺′

+ r2̺′

= 2̺′

(

2−̺′

λ(r − 1) − r̺′

+ r
)

≡ 2̺′

vλ′(r),

where λ′ := 2−̺′

λ > 2−̺′

λ2 = ̺′ − 1 [see (12)] and the function vλ(·) is defined on
the right-hand side of (16). Similarly as above, there exists a number r > 1 such
that vλ′(r) > 0, and hence (17) follows. �

4. Normalized regular variation

Below the critical points, the behavior of the sum SN (t) becomes increasingly
sensitive to subtle details of the upper tail’s structure. So to get enough control on
these, we require slightly more regularity of the distribution tail.

Regularity Assumption 2. The log-tail distribution function h is normalized

regularly varying (with index 1 < ̺ < ∞). The latter means that for each ε > 0
the function x−̺+εh(x) is ultimately increasing, whereas the function x−̺−εh(x)
is ultimately decreasing [cf. Bingham, Goldie and Teugels (1989), Section 1.3.2,
page 15].

More insight into the property of normalized regular variation is given by the
following lemma [cf. Bingham, Goldie and Teugels (1989), Section 1.3.2, page 15].

Lemma 1. A positive (measurable) function h is normalized regularly varying

with index ̺ if and only if it is differentiable (a.e.) and

(18) lim
x→∞

xh′(x)

h(x)
= ̺.

If the log-tail distribution function h is known to be normalized regularly vary-
ing (with index ̺), it follows that the function H0, an asymptotic version of H
provided by Kasahara’s theorem [see (9)], is normalized regularly varying as well
(with index ̺′). Moreover, by comparing equations (8) and (9) via the relation
(7) and using that the ordinary inverses of the functions h(x) and H0(t) exist (for
large enough x and t), one can show that for all t large enough, H0(t) is the unique
solution of the equation

(19)
̺′

̺
H0(t) = h

(̺′H0(t)

t

)

.
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Let us consider two examples to illustrate the difference between the functions
H and H0.

Example 1 (Weibull’s distribution). Let X have the Weibull distribution,

(20) P(X > x) = exp(−x̺/̺), x ≥ 0,

with ̺ > 1. Then the log-tail distribution function reads h(x) = x̺/̺ and the
density function is of the form fX(x) = x̺−1 exp(−x̺/̺) (x ≥ 0). We have

(21)

eH(t) = E[etX ] =

∫ ∞

0

x̺−1 exp(tx− x̺/̺) dx

= t̺
′

∫ ∞

0

y̺−1 exp
{

t̺
′

(y − y̺/̺)
}

dy,

where we used the substitution x = t̺
′−1y and relation (10). Note that the function

g(y) = y−y̺/̺ has a unique regular maximum at point y = 1, with g(1) = 1−1/̺ =
1/̺′, g′(1) = 0, g′′(1) = 1 − ̺ < 0. Then the asymptotic Laplace method yields

eH(t) ∼
(

2π

̺− 1

)1/2

t̺
′/2 exp

(

t̺
′

̺′

)

(t→ ∞),

whence

(22) H(t) =
t̺

′

̺′
+
̺′

2
log t+

1

2
log

(

2π

̺− 1

)

+ o(1) (t→ ∞).

On the other hand, equation (19) can be easily solved to obtain [cf. (22)]

(23) H0(t) =
t̺

′

̺′
, t ≥ 0.

Example 2 (Normal distribution). Let X have the standard normal distribu-

tion N (0, 1). Here ̺ = ̺′ = 2, λ1 = 1, λ2 = 4, and α =
√
λ. The function h is

given by

h(x) = − log

(

1√
2π

∫ ∞

x

e−y2/2 dy

)

=
x2

2
+ log x+

log(2π)

2
+ o(1) (x→ ∞)

and can be shown to be normalized regularly varying. Note that for each t ∈ R

E[etX ] = et2/2,

whence

H(t) = log E[etX ] =
t2

2
, t ∈ R.

Equation (19) for H0 can be solved asymptotically. For λ /∈ {λ1, λ2}, one only
needs to find H0(t) to within o(1),

H0(t) =
t2

2
− log t− 1

2
log(2π) + o(1) (t→ ∞).

The case of the critical points is more subtle but is perfectly tractable as well.
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Let us now derive the most important implication of normalized regular varia-
tion, that is an exact identity relating the functions h and H0. For x > 0, set

(24) ηx(t) :=
log x

t
+
µ(t)H0(t)

t
,

where µ = µ(t) is a (unique) solution of the equation

(25) h
(µH0(t)

t

)

=
̺λ

̺′
h
(̺′H0(t)

t

)

.

In particular, for x = 1 we have

(26) η1(t) =
µ(t)H0(t)

t
.

Using that h ∈ R̺ and comparing the asymptotics of both parts of equation
(25) as t → ∞, with the help of relations (6) and (13) we arrive at the following
assertion.

Lemma 2. The function µ(t) has the limit

(27) lim
t→∞

µ(t) =
̺λ

α
.

Note that equation (25) combined with (19) yields

h
(µ(t)H0(t)

t

)

= λH0(t).

Hence, recalling the relation (26) we obtain our main result in this section.

Lemma 3 (Basic Identity). For all t large enough, the following identity is

true:

(28) h(η1(t)) ≡ λH0(t).

How the function ηx(t) emerges and the role of the Basic Identity will be ex-
plained later on.

5. Limit theorems below the critical points

In addition to regularity, more accuracy is now needed in specifying the rate of
growth of N . Henceforth, we impose the following

Scaling Assumption. The number N = N(t) of terms in the sum SN (t)
satisfies the condition

(29) lim
t→∞

N exp
{

−λH0(t)
}

= 1,

where λ is a parameter such that 0 < λ <∞.

Theorem 3 (Convergence to a stable law, 0 < λ < λ2). Suppose that 0 < λ <
λ2, i.e. 0 < α < 2. Set

(30) B(t) := exp
{

µ(t)H0(t)
}

and

(31) A(t) :=



























NeH(t)

B(t)
if λ1 < λ < λ2 (1 < α < 2),

NB1(t)

B(t)
if λ = λ1 (α = 1),

0 if 0 < λ < λ1 (0 < α < 1),
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where B1(t) is a truncated exponential moment ,

(32) B1(t) := E
[

etX1{X≤η1(t)}

]

.

Then
SN (t)

B(t)
−A(t)

d−→ Fα ,

where Fα is a stable law with characteristic exponent α = α(̺, λ) defined in (13)
and with skewness parameter β = 1. The characteristic function φα of the law Fα

is given by

log φα(u) =















−Γ(1 − α)|u|α exp

(

− iπα
2

sgnu

)

(α 6= 1)

iu(1 − γ) − π

2
|u|
(

1 + i sgnu · 2

π
log |u|

)

(α = 1)

where Γ(s) =
∫∞

0
xs−1e−x dx is the gamma-function, sgnu := u/|u| for u 6= 0 and

sgn 0 := 0, and γ = 0.5772 . . . is the Euler constant.3

Remark 1. The scaling relation N ∼ exp
{

λH0(t)
}

implies

B(t) = exp
{

µ(t)H0(t)
}

∼ Nµ(t)/λ .

By Lemma 2, we have

µ(t) ∼ ̺λ

α
(t→ ∞).

Hence, N is being raised to the power

µ(t)

λ
∼ ̺

α
>

1

α
.

This should be compared to the classical results in the i.i.d. case [see, e.g., Ibragi-
mov and Linnik (1971), Theorem 2.1.1, pages 37, 46], where the normalization is
essentially of the form N1/α. As we see, the sums of random exponentials (1) have
the limit distribution by virtue of a non-classical (heavier) normalization.

Let us now describe what happens at the critical points. In fact, the Law of
Large Numbers and the Central Limit Theorem prove to be valid at the critical
points λ1 and λ2, respectively; however the constants now require some truncation.

Theorem 4 (LLN, λ = λ1). If λ = λ1 (α = 1) then

SN (t)

NB1(t)

p−→ 1,

where B1(t) is given by (32).

Theorem 5 (CLT, λ = λ2). If λ = λ2 (α = 2) then

SN (t) − E[SN (t)]

(NB2(t))1/2

d−→ N (0, 1),

where B2(t) is a truncated exponential moment of ‘second order ’,

(33) B2(t) := E
[

e2tX1{X≤η1(t)}

]

.

3 See Gradshteyn and Ryzhik (1994), 8.367, page 955.



LIMIT LAWS FOR SUMS OF RANDOM EXPONENTIALS 11

6. Model example: Weibull’s distribution

For illustration purposes, let us give more explicit versions of the above limit
theorems in the particular situation where X has the Weibull distribution (20).

Example 3 (Weibull’s distribution revisited). As shown in Example 1, in the

Weibull case we have H0(t) = t̺
′

/̺′ [see (23)]. It is then easy to verify that the
function µ(t), the root of equation (25), is given by

µ(t) ≡ ̺λ

α

[cf. (27)]. So, from (30) using (13) we get

(34) B(t) = exp
(

α̺′−1t̺
′)

.

Furthermore, according to (26) we have

(35) η1(t) = (αt)̺′−1.

If α = α1 = 1 then (35) yields η1(t) = t̺
′−1, so for the function B1(t) defined

in (32) we obtain similarly to (21)

(36)
B1(t) =

∫ t̺′
−1

0

x̺−1 exp(tx− x̺/̺
)

dx

= t̺
′

∫ 1

0

y̺−1 exp
{

t̺
′

(y − y̺/̺)
}

dy.

As shown in Example 1, the function g(y) = y − y̺/̺ has a regular maximum at
point y = 1, which happens to be the right endpoint of the integration interval
in (36). Hence, the Laplace method implies that, asymptotically, B1(t) makes up
exactly one-half of the full integral [cf. (21)]

t̺
′

∫ ∞

0

y̺−1 exp
{

t̺
′

(y − y̺/̺)
}

dy = E[etX ],

that is to say,

B1(t) ∼
1

2
E[etX ] (t→ ∞).

Similarly, from (35) with α = α2 = 2 we have η1(t) = (2t)̺′−1. Hence, the
function B2(t) defined in (33) is represented as

(37)
B2(t) =

∫ (2t)̺′
−1

0

x̺−1 exp
(

2tx− x̺/̺
)

dx

= (2t)̺′

∫ 1

0

y̺−1 exp
{

(2t)̺′

(y − y̺/̺)
}

dy

[via the substitution x = (2t)̺′−1y ], and exactly the same argument as before shows
that

B2(t) ∼
1

2
E[e2tX ] ∼ 1

2
Var[etX ].
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As a result, we can combine the LLN of Theorems 1 and 4 as follows: If the

random variables Xi have the Weibull distribution (20) then, as t→ ∞,

(38)
SN (t)

E[SN (t)]

p−→











1 if λ > λ1 (α > 1),
1
2 if λ = λ1 (α = 1),

0 if 0 < λ < λ1 (0 < α < 1).

The last statement in (38) (for 0 < λ < λ1) readily follows from Theorem 3 for
0 < α < 1 [see also (39) and (40) below] using the fact that B(t)/E[SN (t)] → 0 as
t→ ∞. Indeed, note that

B(t)

E[SN (t)]
= exp

{

α̺′−1t̺
′ − logN −H(t)

}

and, by the Scaling Assumption (29) and regularity of the functions H(t) ∼ H0(t)
with index ̺′,

lim
t→∞

α̺′−1t̺
′ − logN −H(t)

H0(t)
= ̺′α̺′−1 − λ− 1 < 0,

where the last inequality follows, by the substitution (14), from the elementary
inequality [see Hardy, Littlewood and Pólya (1952), Section 2.15, Theorem 41,
page 39]

1 − α̺′

> ̺′α̺′−1(1 − α) (0 < α < 1, ̺′ > 1).

Analogously, Theorems 2 and 5 yield the following united assertion: If the

random variables Xi have the Weibull distribution (20) then, as t→ ∞,

SN (t) − E[SN (t)]
(

Var[SN (t)]
)1/2

d−→
{

N (0, 1) if λ > λ2 (α > 2),

N
(

0, 1
2

)

if λ = λ2 (α = 2).

Finally, Theorem 3 takes the following form: If Xi have the Weibull distribution

(20) then, as t→ ∞,

(39)
SN (t) − Ã(t)

exp(α̺′−1t̺
′

)

d−→ Fα ,

where the stable law Fα is described in Theorem 3 and Ã(t) is of the form

(40) Ã(t) :=











E[SN (t)] if λ1 < λ < λ2 (1 < α < 2),

NB1(t) if λ = λ1 (α = 1),

0 if 0 < λ < λ1 (0 < α < 1),

with B1(t) given by (36).

7. Sketch of the proofs

Theorems 3, 4 and 5 can be proved using the known methods for sums of
independent random variables [see Gnedenko and Kolmogorov (1968) and Petrov
(1975)]. However, the actual proofs are technically quite involved, because we have
imposed only very minimal smoothness conditions on the distribution of X. So the
full details are not given here, but rather will be published elsewhere. Nevertheless,
it is not difficult to explain the main points behind the calculations. In particular,
it is important to clarify the central role and power of the Basic Identity (28).
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The key step in the proofs is the evaluation of the tail probability [cf. Petrov
(1975), Chapter IV, § 1, 2]

(41)

P
{

etX > xB(t)
}

= P

{

etX > x exp
[

µ(t)H0(t)
]

}

= P

{

X >
log x

t
+
µ(t)H0(t)

t

}

= P{X > ηx(t)}

= exp
[

−h(ηx(t))
]

,

where we used the notations (5) and (24). This expression needs to be compared to
the sample size, N ∼ eλH0(t), and therefore we have to relate the function h(ηx(t))
to the canonical scale determined by the rate function H0(t). In so doing, equation
(28) plays the major role, as well as the following lemma.

Lemma 4. For each x > 0,

lim
t→∞

[

h(ηx(t)) − h(η1(t))
]

= α log x.

Proof. Note that, as t→ ∞,

ηx(t) − η1(t) =
log x

t
→ 0

and

η1(t) =
µ(t)H0(t)

t
→ ∞.

By Taylor’s formula and normalized regular variation of the function h [see (18)]
we have, as t→ ∞,

h(ηx(t)) − h(η1(t)) ∼ h′(η1(t))
[

ηx(t) − η1(t)
]

∼ ̺h(η1(t))

η1(t)
· log x

t
.

Using the Basic Identity (28), the right-hand side can be rewritten as

̺λ

µ(t)
log x→ α log x (t→ ∞),

according to (27), and the lemma is proved. �

Let us now obtain the main ingredient of the limiting infinitely divisible law —
the Lévy–Khinchin spectral function L, using the formula

(42) L(x) =







lim
t→∞

N P{etX ≤ xB(t)}, x < 0,

− lim
t→∞

N P{etX > xB(t)}, x > 0

[see Petrov (1975), Chapter IV, § 2, Theorem 8, pages 81–82]. First of all, note
that L(x) = 0 if x < 0. For x > 0, using the Scaling Assumption (29) and formula
(41) we have

(43) N P
{

etX > xB(t)
}

∼ exp
{

λH0(t) − h(ηx(t))
}

.

The Basic Identity (28) and Lemma 4 imply

(44)
λH0(t) − h(ηx(t)) = h(η1(t)) − h(ηx(t))

→ −α log x (t→ ∞).
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Hence, returning to (42) we obtain

−L(x) = lim
t→∞

exp
{

λH0(t) − h(ηx(t))
}

= exp{−α log x}
= x−α,

and therefore α is indeed the characteristic exponent of the limiting law.

8. Limit distribution of the maximum

Consider the partial maximum

MN (t) := max
{

etXi , i = 1, . . . , N
}

= exp
(

tX1,N

)

,

where

X1,N := max{Xi, i = 1, . . . , N}.
Recall the notation (30),

B(t) = exp
{

µ(t)H0(t)
}

.

Theorem 6. For all λ > 0, as t→ ∞,

MN (t)

B(t)

d−→ Φα,

where Φα is the Fréchet distribution, with distribution function

Φα(x) =

{

exp(−x−α) if x > 0,

0 otherwise.

Proof. As before [cf. (41)], for x > 0 we have

P{MN ≤ xB(t)} = P{X1,N ≤ ηx(t)}

=
(

1 − exp
{

−h(ηx(t))
}

)N

∼ exp
(

−N exp
{

−h(ηx(t))
}

)

→ exp(−x−α) (t→ ∞),

as shown in (43) and (44). �

Remark 2. The Fréchet distribution Φα is one of the three types of possible
weak limits for maxima of i.i.d. random variables [see Galambos (1978), Sections 2.1
and 2.4]. However, the known general theorems about convergence of the maximum
to Φα are not directly applicable in our case.

From Theorem 6, it is easy to derive a logarithmic Law of Large Numbers for
the maximum.

Theorem 7. For all λ > 0, as t→ ∞,

logMN (t)

H0(t)

p−→ ̺′
(

̺λ

̺′

)1/̺

.
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Proof. Taking the logarithm of MN (t) and dividing by H0(t) → ∞, from
Theorem 6 we deduce that

logMN (t)

H0(t)
− µ(t) = op(1) (t→ ∞),

whence our claim follows. �

It is interesting to compare the maximal termMN (t) with the entire sum SN (t).
In fact, Theorem 3 implies the following Law of Large Numbers for logSN (t), which
can be seen as providing an analogue of the limiting free energy F (β) in the Random
Energy Model [see (4)].

Theorem 8. For all λ > 0, as t→ ∞,

logSN (t)

H0(t)

p−→











̺′
(

̺λ

̺′

)1/̺

if 0 < λ ≤ λ1,

λ+ 1 if λ ≥ λ1.

Comparing Theorems 7 and 8, we note that in the case 0 < λ ≤ λ1

(45)
logMN (t)

logSN (t)

p−→ 1 (t→ ∞),

which indicates that the contribution of the maximal term MN to the sum SN is
logarithmically equivalent to the whole sum. In the opposite case where λ > λ1,
the limit in (45) is strictly less than 1, so that the maximum MN (t) is negligible as
compared to the sum SN (t). This observation is supported by the LLN being valid
for λ ≥ λ1 (see Theorems 1 and 4).
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