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Trees of definable sets over the p-adics

By Immanuel Halupczok at Münster

Abstract. To a definable subset of Zn
p (or to a scheme of finite type over Zp) one

can associate a tree in a natural way. It is known that the corresponding Poincaré series
P

NlZ
l A Z½½Z�� is rational, where Nl is the number of nodes of the tree at depth l. This

suggests that the trees themselves are far from arbitrary. We state a conjectural, purely
combinatorial description of the class of possible trees and provide some evidence for it.
We verify that any tree in our class indeed arises from a definable set, and we prove that
the tree of a definable set (or of a scheme) lies in our class in three special cases: under weak
smoothness assumptions, for definable subsets of Z2

p , and for one-dimensional sets.

1. Introduction and results

Suppose that X HQ
n
p is a definable set in the language of fields. For lf 0, let Xl be

the image of X XZ
n
p under the projection Z

n
p !! ðZ=plZÞn. In [3], Denef proved that the

associated Poincaré series

PX ðZÞ :¼
P

y

l¼0

KXl � Zl A Z½½Z��

is a rational function in Z. Now the disjoint union TðXÞ :¼ S

lf0

Xl carries a tree structure

defined by the projections ðZ=plþ1ZÞn !! ðZ=plZÞn, thus a natural question (which Loeser
posed to me) is: can the result of Denef be refined to a result about the structure of the
trees? In other words: does there exist a purely combinatorial description of the structure
of trees which can arise from definable sets, which implies the above rationality?

The goal of this article is to conjecturally give such a description and to provide some
evidence for it. More precisely, for any d A N we will recursively define a class of ‘‘trees of
level d’’, which should correspond to sets of dimension at most d. Our conjecture is then:

Conjecture 1.1. Suppose that X HQ
n
p is a definable set. Then TðX Þ is a tree of level

dimX .
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Here, the dimension of a definable set X is the algebraic dimension of the Zariski
closure of X in the algebraic closure ~QQn

p ; see [9].

The main di‰culty of the conjecture is to show that the tree of a definable set has a
level at all. Indeed, then Lemma 4.8 implies that the level is the right one. More precisely,
we even get the following: if we define a tree to be of ‘‘strict level d’’ if it is of level d but not
of level d � 1, then TðX Þ is of strict level dimðX XZ

n
p Þ.

Whether the conjecture is interesting depends on how tight our definition of trees of
level d is. In fact, we will show that it is as tight as possible:

Theorem 1.2. For any tree T of strict level d without leaves, there exists a definable

set X HZ
n
p ( for ng 0) of dimension d such that TðX ÞGT.

The tree TðXÞ of a set never has leaves, so we might as well forbid leaves in our
definition of trees of level d; however, for technical reasons it is better to allow them.

By Theorem 1.2, our definition of level d trees is clearly precise enough to imply
rationality of the Poincaré series. However, we will also give an easy direct proof in Pro-
position 5.2.

The main results of this article are proofs of the conjecture in several special cases.
Before stating these results, let us consider an algebraic variant of the trees. For any scheme
V of finite type over Zp, we define a tree TðVÞ as follows: the set of nodes at depth l is
the image of the map VðZpÞ ! VðZ=plZÞ, and the tree structure is given by the maps
VðZ=plþ1ZÞ ! VðZ=plZÞ. Using this, we can state an algebraic variant of the conjecture:

Conjecture 1.3. Suppose that V is a scheme of finite type over Zp. Then TðVÞ is a tree

of level dimV .

(Again, this implies a version with strict level, if one takes into account only the
dimension of V ‘‘visible over Zp’’.)

If V is an a‰ne embedded scheme (in A
n, say), then we have VðQpÞHQ

n
p , and the

two definitions yield the same tree: TðVÞGT
�

VðQpÞ
�

. Once the definition of a level d tree
is given, it will be easy to verify that if the conjecture holds for each set of a finite cover of
V , then it also holds for V itself (Proposition 4.6); thus Conjecture 1.1 implies Conjecture
1.3. Therefore in most of the article we will stick to the a‰ne case and to the first definition
of trees.

From an algebraic point of view, it seems more natural to consider a tree ~TTðVÞ whose
set of nodes at depth l is the whole set VðZ=plZÞ, and not only the image of VðZpÞ. In-
deed, the Poincaré series

P

y

l¼0

KVðZ=plZÞ � Zlð1Þ

is rational, too, and at the end of this article, we will describe a variant of the conjecture
which includes both kinds of trees (and much more). However, for now let us stick to the
trees TðVÞ.

158 Halupczok, Trees of definable sets over the p-adics

Brought to you by | University of Leeds

Authenticated

Download Date | 2/27/15 4:50 PM



We now present the cases in which we will prove the conjecture. The first one is not
very di‰cult to prove. Under rather weak smoothness assumptions, the tree of a scheme is
particularly simple.

Theorem 1.4. Suppose that V is a scheme of finite type over Zp, and suppose that for

every Zp-valued point x : specZp ! V , V is smooth at xðhÞ, where h is the generic point of

specZp. Then TðVÞ consists of a finite tree, with copies of TðZd
p Þ, de dimV attached to its

leaves (d may depend on the leaf ). In particular, TðVÞ is a tree of level dimV .

More generally, if V is a non-smooth scheme, then the tree still looks like TðZd
p Þ close

to any smooth point. On the other hand, we will see on an example (Subsection 3.3) that
close to singular points, the trees do get complicated. (In fact trees of definable sets are not
essentially more complicated than trees of varieties.) Thus the information contained in a
tree of a scheme describes its singularities; this should be closely related to the structure of
arc spaces above singularities, as studied in [8].

The more interesting cases of the main conjecture which we will verify are the fol-
lowing.

Theorem 1.5. Conjecture 1.1 holds if X HQ
2
p .

Theorem 1.6. Conjecture 1.1 holds if dimX e 1.

The present proofs of these results crucially rely on the theorem of Puiseux, which is
valid only for curves. Thus to generalize them to higher dimension, one will need some new
ideas.

Let me mention one more reason for which the trees seem interesting to me. Suppose
X1 and X2 are two definable subsets of Z

n
p which are closed in p-adic topology. Then

isometric bijections between X1 and X2 correspond exactly to isomorphisms of the corres-
ponding trees (see Lemma 3.1). Thus one can interpret trees as a step towards classification
of definable sets up to isometry. Indeed, if the main conjecture is true, then up to p-adic
closure any definable set is isometric to a set of the form constructed in the proof of Theo-
rem 1.2.

The remainder of this article is organized as follows.

In the next section, we fix our notation.

In Section 3, we compute the first trees: we prove Theorem 1.4 and we give an exam-
ple of a tree of a singular curve. To be able to do that, we first prove a key lemma (Corol-
lary 3.3) which relates the tree of a set to the trees of its fibers.

The trees of Section 3 give an idea of how level d trees should look like; in Section 4,
we will actually define them. We will give two versions of the definition: a restrictive one
and a more relaxed one; then we will show that both are equivalent. At the end of that
section, we will verify some first properties of level d trees.

In Section 5, we will prove statements about given trees of level d, namely Theorem
1.2 and the rationality of the Poincaré series of such a tree.
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Section 6 is devoted to the proof of the main conjecture for subsets of Q2
p and for one-

dimensional sets. The section starts with a sketch of the principal ideas; then we introduce
the main tools we need, namely cell decomposition and a way to understand definable func-
tions on small balls. In Subsection 6.5, we prove a parametrized version of the conjecture
for subsets of Qp, and finally we finish the actual proofs.

To conclude, we will present some possible generalizations of the conjecture in
Section 7.

2. Notation

2.1. Notation concerning model theory and Qp. We fix a prime p once and for all
and work in Qp. We will use a two-sorted language, with one sort for Qp and one for the
valuation group G. As usual, we take the ring language on Qp, the ordered group language
on G and a valuation map v : Qp ! GW fyg. Note that G and v are interpretable in the
pure field language (see e.g. [4], Lemma 2.1), so using the two-sorted language is not really
di¤erent from using the pure field language.

By ‘‘definable’’ we will always mean definable with parameters.

We will sometimes identify G with Z. In particular, we will write 1 for the valuation
of p, and we will often use the cross section G ! Q

�
p , l 7! pl.

For X HQ
n
p , we denote by X the closure of X in the p-adic topology.

For x ¼ ðx1; . . . ; xnÞ A Q
n
p and l A G, Bðx; lÞ :¼ xþ plZ

n
p denotes the ball around x

of ‘‘radius’’ l. Moreover, vðxÞ :¼ minfvðxiÞ j 1e ie lg is the minimum of the valuations
of the coordinates. (In other words: vðxÞf l , x A Bð0; lÞ.) Note that for us a ball always
has the same radius in each coordinate.

The following non-standard notation will be very handy:

Definition 2.1. For d A G>0 and x; x 0 A Q
�
p , we write xAd x

0 if x and x 0 have the
same image under the canonical homomorphism Q

�
p !! Q

�
p =Bð1; dÞ. Equivalently,

xAd x
0 :, vðx� x 0Þf vðxÞ þ d:

Occasionally, we will work in the algebraic closure ~QQp of Qp. Write ~ZZp for the valua-
tion ring and ~GG for the value group of ~QQp. The definitions of vðxÞ and xAd x

0 also make
sense in this context. 1 A ~GG will still denote the valuation of p.

Let e A Nf1. The e-th power residue of x A Q
�
p is the set fye � x j y A Q

�
p g. The follow-

ing statements are well known (and not di‰cult to prove):

Lemma 2.2. Suppose e A Nf1.

(1) If df vðeÞ þ 1, then the map z 7! ze induces a bijection 1þ pdZp ! 1þ pdþvðeÞZp.
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(2) If x1; x2 A Q
�
p satisfy x1A2vðeÞþ1 x2, then x1 and x2 have the same e-th power

residue.

(3) There are only finitely many di¤erent e-th power residues.

2.2. Model theory of G. Let M be a subset of Gm. A function l : M ! G is called
linear if there exist a1; . . . ; am, b A Q such that lðk1; . . . ; kmÞ ¼ a1k1 þ � � � þ amkm þ b for all
ðk1; . . . ; kmÞ A M. A function M ! GW fyg is called linear if it is either a linear function
to G or constant y. We will use the partial order on the functions M ! GW fyg defined
by le l

0 :, lðkÞe l
0ðkÞ for all k A M.

It is well known that any subset MHG
m which is definable in our two-sorted struc-

ture is already definable in ðG; 0;þ; <Þ. We will use the cell decomposition theorem for
that structure (see e.g. [1], Theorem 1) to get hold of definable subsets of Gm. To avoid
the rather lengthy definition of cells, we only state an immediate consequence of the cell
decomposition theorem.

Lemma 2.3. (1) For any definable MHG
m and any definable function l : M ! G,

there exists a finite partition of M into definable subsets M 0 such that l is linear on each

part M 0.

(2) Any definable subset NHG
m � G can be written as a Boolean combination of sets

of the following forms:

M � G

fðk; lÞ A G
m � G j ls lðkÞg

G
m � X

for MHG
m definable;

for l : Gm ! G linear;

for X A G=rG; r A G:

2.3. Trees and Swiss cheese. There are di¤erent ways to define trees. Let me fix the
variant I will use.

Definition 2.4. A tree T is a set (of nodes), together with a binary is-child-of rela-
tion, which satisfies the usual axioms. However, we do allow trees to be empty. Define the
root (if the tree is non-empty), the leaves and the depth depthðvÞ ¼ depthTðvÞ of a node
v A T as usual.

We say that ðv; v 0Þ is an edge of T if v 0 is a child of v. A path (of length n) is a se-
quence v0; . . . ; vn of nodes where ðvi; viþ1Þ are edges.

The class of all trees will be denoted by fTreesg.

Define isomorphisms of trees as usual. The product T1 �T2 of two trees is defined
layerwise.

If T and T
0 are two non-empty trees and v is a node of T, then we will sometimes

construct a new tree by attaching T
0 to v. This means: take the disjoint union of the nodes

and then identify the root of T 0 with v.

We already gave a definition of the tree of a set in the introduction. Here is a slight
generalization.
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Definition 2.5. Suppose X HQ
n
p is a set and B0 ¼ Bðx0; l0ÞHQ

n
p is a ball. Then the

tree of X on B0 is

TB0
ðXÞ :¼ Tx0;l0ðX Þ :¼ fBðx; lÞHB0 jBðx; lÞXX 3jg;

with the tree structure induced by inclusion. Set TðX Þ :¼ TZ
n
p
ðXÞ.

Remark. TB0
ðXÞ only depends on B0XX . In particular, TB0

ðXÞ is empty if and
only if B0 XX ¼ j.

Example. The tree TðfPtgÞ of a one-point set is just one infinite path. TðZn
p Þ is the

infinite tree where each node has exactly pn children.

One technique to determine the tree TðXÞ of a definable set will be to cut out some
balls Bi on which X is particularly complicated, compute the trees TBi

ðX Þ separately, com-
pute the tree on the remainder, and then put everything together. We define notation suit-
able for this.

Definition 2.6. A slice of Swiss cheese (or a cheese, for short) is a set of the form
S ¼ Bn S

i A I

Bi, where I is a finite index set and B and Bi are balls in Z
n
p , satisfying Bi HB

and Bi XBj ¼ j for i3 j. The set of balls Bi (the ‘‘holes’’) is part of the cheese datum.

Definition 2.7. Let S ¼ B0n
S

i A I

Bi HZ
n
p be a cheese and X HZ

n
p a set. Then the tree

TSðX Þ of X on S is the subtree of TB0
ðXÞ consisting of those nodes B which are not a

proper subset of any Bi, i A I .

We will only be interested in the tree TSðX Þ when none of the intersections X XBi

is empty. In that case, the balls Bi are nodes of TSðXÞ, and the total tree TB0
ðX Þ can be

obtained from TSðX Þ by attaching TBi
ðXÞ to the node Bi for each i A I .

3. Computing the first trees

The definition of a tree of level d is rather involved, so let us start by computing a few
examples to motivate it. To this end, we first prove some basic lemmas on trees. In partic-
ular, we will check that in certain cases the tree of a set is determined (in an easy way) by
the trees of its fibers; this is a key reason for trees of definable sets not being too compli-
cated.

3.1. Lipschitz continuously varying fibers. Isomorphisms between the trees
TðXÞ ! TðX 0Þ of two sets X ;X 0

HZ
n
p correspond to isometric bijections between the p-

adic closures X ! X 0. More precisely, the following lemma holds.

Lemma 3.1. Suppose that X ;X 0
HQ

n
p are two arbitrary sets and B ¼ Bðx0; lÞ,

B 0 ¼ Bðx 0
0; l

0ÞHQ
n
p are two balls. Then a bijection f : BXX ! B 0 XX 0 satisfying

v
�

fðx1Þ � fðx2Þ
�

¼ vðx1 � x2Þ � lþ l 0 for all x1; x2 A BXXð2Þ
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induces an isomorphism of trees

ftree : TBðXÞ ! TB 0ðX 0Þ;

Bðx; mÞ 7! B
�

fðxÞ; m� lþ l 0�;

where x A BXX and mf l. On the other hand, any isomorphism ftree : TBðX Þ ! TB 0ðX 0Þ
induces a bijection f : BXX ! B 0XX 0 satisfying (2).

Proof. (2) implies that ftree is well-defined, and an inverse of f induces an inverse of
ftree. For the other direction, note that BXX is in bijection to the set of infinite paths of
TBðX Þ and define fðxÞ as the only element in the intersection

T

mfl

ftree
�

Bðx; mÞ
�

. r

A crucial point in the whole analysis of trees is the following observation: if
X HZp � Zp is a set whose vertical fiber Xx does not vary too quickly with x, then the
tree TðXÞ is the same as if the fiber would not vary at all. A similar statement is true in
higher dimensions. We formulate this as a lemma.

Lemma 3.2. Let X HZ
m
p � Z

n
p be any set and denote by Xx :¼ fy A Z

n
p j ðx; yÞ A Xg

its fiber at x A Z
m
p . Suppose that for any x1; x2 A Z

m
p , any y A Z

n
p and any le vðx1 � x2Þ, we

have Ty;lðXx1ÞGTy;lðXx2Þ. Then TðXÞGTðZm
p Þ � TðXxÞ for any x A Z

m
p .

Remark. By rescaling, the lemma implies a similar statement for a subset X of any
ball BHQ

m
p �Q

n
p .

Proof. For lf 0, let Al :¼ f0; 1; . . . ; pl � 1gm
HZ

m
p be a set of representatives of

the balls of radius l, and define the following ‘‘approximations’’ to X :

X ðlÞ :¼ S

a AAl

Bða; lÞ � Xa:

In particular X ð0Þ ¼ Z
m
p � X0. Without loss, we will prove TðXÞGTðX ð0ÞÞ. We will verify

that the tree of X ðlÞ coincides with the tree of X up to depth l and define isomorphisms
cðlÞ

: TðX ðlÞÞ !@ TðX ðlþ1ÞÞ which are the identity up to depth l. By putting these together,
we get an isomorphism TðX ð0ÞÞ !@ TðXÞ which is equal to cðlÞ � � � � � cð0Þ on nodes of
depth less or equal to l.

To check that TðX ðlÞÞ and TðXÞ coincide up to depth l, we have to verify that
X ðlÞ X ðB� B 0Þ3j if and only if X X ðB� B 0Þ3j for any ball B� B 0

HZ
m
p � Z

n
p of ra-

dius l. Fix a A Al such that B ¼ Bða; lÞ. We have X ðlÞX ðB� B 0Þ ¼ B� ðXa XB 0Þ, so
‘‘)’’ is clear. For ‘‘(’’, suppose ðx; yÞ A X X ðB� B 0Þ. By assumption there exists an iso-
morphism of trees TB 0ðXxÞ !@ TB 0ðXaÞ, so non-emptiness of XxXB 0 implies non-emptiness
of Xa XB 0.

We define cðlÞ
: TðX ðlÞÞ ! TðX ðlþ1ÞÞ to be the identity up to depth l, and it remains

to find an isomorphism TB�B 0ðX ðlÞÞ ! TB�B 0ðX ðlþ1ÞÞ for each ball B� B 0
HZ

m
p � Z

n
p of

radius l.
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Set fag :¼ BXAl and ~AA :¼ BXAlþ1. Then we have

X ðlÞX ðB� B 0Þ ¼ B� ðXa XB 0Þ

and

X ðlþ1Þ X ðB� B 0Þ ¼ S

~aa A ~AA

Bð~aa; lþ 1Þ � ðX~aa XB 0Þ:

By assumption, for each ~aa A ~AA we have an isomorphism f~aa : TB 0ðXaÞ ! TB 0ðX~aaÞ.
Now suppose C � C 0 A TðX ðlÞÞ is a node strictly below B� B 0, and let ~aa A ~AA be such that
CHBð~aa; lþ 1Þ. Then we define cðlÞðC � C 0Þ :¼ C � f~aaðC 0Þ. r

Combining this lemma with Lemma 3.1, we get:

Corollary 3.3. Let X HZ
m
p � Z

n
p be any set and denote by Xx :¼ fy A Z

n
p j ðx; yÞ A Xg

its fiber at x A Z
m
p . Suppose that for any x1; x2 A Z

m
p there exists a bijective isometry

f : Xx1 ! Xx2 which additionally satisfies v
�

fðyÞ � y
�

f vðx2 � x1Þ for any y A Xx1 . Then

TðXÞGTðZm
p Þ � TðXxÞ for any x A Z

m
p .

Proof. The condition v
�

fðyÞ � y
�

f vðx2 � x1Þ ensures that f induces a bijection
Bðy; lÞXXx1 ! Bðy; lÞXXx2 for any y A Z

n
p and any le vðx2 � x1Þ. Thus Lemma 3.1

yields Ty;lðXx1ÞGTy;lðXx2Þ and Lemma 3.2 applies. r

Remark. Again, a similar statement holds for a subset X of any ball BHQ
m
p �Q

n
p .

If X satisfies the prerequisites of this corollary, we will say that the fiber Xx varies

Lipschitz continuously with x.

Remark. An isometry c : Zm
p � Z

n
p ! Z

m
p � Z

n
p fixing the first m coordinates pre-

serves Lipschitz continuity of fibers.

3.2. Trees of smooth schemes. We will now prove Theorem 1.4 (except for the
‘‘in particular’’ part), i.e. we will determine the tree of a scheme which is su‰ciently smooth
in the sense of the theorem. Let us first check how to reduce the computation of trees of
general schemes of finite type to trees of a‰ne schemes.

Lemma 3.4. Suppose V is a scheme of finite type and ðViÞi A I is a covering of V. Then

for any child v of the root of TðVÞ, there is an i A I and a child v 0 of the root of TðViÞ such
that the subtree of TðVÞ starting at v and the subtree of TðViÞ starting at v 0 are isomorphic.

Proof. Denote by s the special point of specZp and by h the generic one. For some
given lf 1, write s : spec Fp ! specZ=plZ and p : specZ=plZ ! specZp for the canonical
maps.

Suppose v A VðFpÞ is a child of the root of TðVÞ. Choose i such that Vi contains
the image of v. The preimage v 0 of v under the map ViðFpÞ ! VðFpÞ is the child of the
root of TðViÞ we are looking for; we have to verify that the whole tree below v already ap-
pears in TðViÞ.
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Suppose that w A VðZ=plZÞ is a node of TðVÞ below v, i.e. w � s ¼ v, and there exists
an x A VðZpÞ such that w ¼ x � p. It is clear that w has a preimage w 0 A ViðZ=plZÞ. As Vi

is open and contains xðsÞ, it also contains xðhÞ, so im xHVi. Thus x has a preimage
x 0 A ViðZpÞ, and w 0 ¼ x 0 � p. r

Proof of Theorem 1.4. Let V be a scheme as in the theorem. By Lemma 3.4, it
su‰ces to consider a‰ne V ; we fix an embedding V ,! A

n and determine the tree of
VðQpÞHQ

n
p .

Fix z A VðQpÞXZ
n
p , and suppose that the dimension of V at z is d. The first step of

the proof is to determine the tree on a small ball B :¼ Bðz; lÞ around z. Write B as a prod-
uct BX � BY , with BX HZ

d
p and BY HZ

n�d
p , and denote the coordinates by X1; . . . ;Xd ,

Y1; . . . ;Yn�d . To simplify notation, suppose z ¼ 0.

Let f1; . . . ; fn�d A Zp½X1; . . . ;Xd ;Y1; . . . ;Yn�d � be generators of the ideal of V in the
local ring at 0; regularity of that ring implies that indeed n� d polynomials su‰ce.

Moreover, after possibly permuting coordinates, the matrix
qfi

qYj

ð0Þ
� �

1ei; jen�d

is invertible

over Qp. GLnðZpÞ acts on B by isometries, so by Lemma 3.1, applying such matrices
does not change the tree of VðZpÞ on B. Thus by using the column transformations of the

Smith normal form, we may additionally suppose that
qfi

qXj

ð0Þ ¼ 0 for ie n� d, je d.

Now we apply the implicit function theorem (see e.g. [7]). This yields a power series
a with coe‰cients in Qp, from the variables Xi to the variables Yj such that for lg 0, a
converges on BX , and for ðx; yÞ :¼ ðx1; . . . ; xd ; y1; . . . ; yn�dÞ A B, we have ðx; yÞ A VðQpÞ

if and only if y ¼ aðxÞ. As
qfi

qXj

ð0Þ ¼ 0, this power series has no linear term, so for l su‰-

ciently large and x; x 0 A BX , we get

v
�

aðxÞ � aðx 0Þ
�

f vðx� x 0Þ;ð3Þ

in particular, aðxÞ A BY for x A BX . Thus the fiber of VðQpÞXB at x A BX is exactly
faðxÞg, and by (3), it varies Lipschitz continuously with x; hence Corollary 3.3 yields
TB

�

VðQpÞ
�

GTðZd
p Þ.

As VðQpÞXZ
n
p is compact in p-adic topology, we can cover it by finitely many balls

B satisfying TB

�

VðQpÞ
�

GTðZd
p Þ (possibly for di¤erent d, but all satisfying de dimV ;

and the maximum of all d is equal to dimV ). Moreover, in Z
n
p any two balls are either dis-

joint or contained in one another, so we may suppose that these balls B are all disjoint.
Thus the total tree of VðQpÞ consists of a finite tree (the subtree of TðZn

pÞ whose leaves
are exactly the balls used in the cover), with a copy of TðZd

p Þ attached to each leaf. r

The ‘‘in particular’’ part of Theorem 1.4 will be a direct consequence of Lemma 4.4.

3.3. Example: the cusp curve. Up to now, we only saw very simple trees. As a more
complicated example, let us compute the tree of the cusp curve X ¼ fðx; yÞ A Z

2
p j x3 ¼ y2g

when p3 2. This tree will already contain most of the aspects appearing in the general
definition of level d trees.
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We will need the following notation: let YðkÞ be the tree which starts with a path of
length k and then has a bifurcation into two infinite paths; in other words, YðkÞ is the tree
of a two-point-set fx1; x2g, where vðx1 � x2Þ ¼ k.

From the previous subsection, it is clear that TðX Þ might be complicated only
close to ð0; 0Þ; thus we will determine the tree on squares which do not contain ð0; 0Þ
and then put them together. The largest squares not containing ð0; 0Þ are of the form
B ¼ B

�

ðx0; y0Þ; kþ 1
�

with k ¼ vðx0; y0Þ. Fix such x0, y0, k.

If vðx0Þ > vðy0Þ, then vðxÞ > vðyÞ for any ðx; yÞ A B. This implies x3 3 y2, so BXX

is empty. Thus in the following we suppose k ¼ vðx0Þe vðy0Þ.

Write B as a product BX � BY ¼ Bðx0; kþ 1Þ � Bðy0; kþ 1Þ, and let us analyse the
fiber of X at some x A BX . It is Xx ¼ fG

ffiffiffiffiffi

x3
p

g if this root exists and empty otherwise. By
Hensels Lemma, the root

ffiffiffiffiffi

x3
p

¼ x
ffiffiffi

x
p

exists if and only if vðxÞ is even and the angular com-
ponent of x is a square in the residue field Fp. Neither vðxÞ nor the angular component of x
depend on the specific choice of x A BX , so either all Xx are empty or all Xx consist of two
roots (for BX fixed).

If the roots don’t exist, then BXX is empty, so suppose now that they do exist.

Consider two elements x1; x2 A BX . By applying Lemma 2.2 to

ffiffiffiffiffi

x1

x2

r

, one checks that there

is a suitable choice of roots
ffiffiffiffiffi

x3
1

q

,
ffiffiffiffiffi

x3
2

q

such that

vð
ffiffiffiffiffi

x3
1

q

�
ffiffiffiffiffi

x3
2

q

Þf vðx1 � x2Þ:ð4Þ

In particular,
ffiffiffiffiffi

x3
1

q

A BY if and only if
ffiffiffiffiffi

x3
2

q

A BY . Moreover v
�

ffiffiffiffiffi

x3
p

� ð�
ffiffiffiffiffi

x3
p

Þ
�

does not

depend on x A BX , so we may apply Corollary 3.3 and get TBðX ÞGTðZpÞ � TBY
ðXxÞ for

any x A BX . It remains to determine TBY
ðXxÞ. We have v

�
ffiffiffiffiffi

x3
p

�

¼ v
�

ffiffiffiffiffi

x3
p

� ð�
ffiffiffiffiffi

x3
p

Þ
�

¼ 3

2
k,

so we get: if k ¼ 0, then there exist two balls BY such that TBY
ðXxÞ ¼ TðfPtgÞ, and all

other BY XXx are empty; if k > 0, then T0;kþ1ðXxÞGY
1

2
k� 1

� �

, and all other BY XXx

are empty.

Assembling our results, we get the total tree of X (see Figure 1): it consists of an infi-
nite path (the nodes Bð0; kÞ for kf 0) with some side branch attached to it. The root has

Figure 1. The tree of the cusp curve X ¼ fðx; yÞ A Z
2
5 j x3 ¼ y2g; thick lines mean ‘‘multiply by p’’.
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p� 1 additional children, and each of these children is the root of a copy of TðZpÞ. (The

number p� 1 comes from the fact that Fp contains
p� 1

2
squares and each such square

contributes two children.) Finally, for each k A 2G, kf 2, the node Bð0; kÞ has
p� 1

2
additional children, each of which is the root of a copy of TðZpÞ �Y

1

2
k� 1

� �

.

4. Trees of level d

4.1. Definition of trees of level d. We will now define, for any d A N, a tree datum of

level d and explain how to construct an actual tree out of it. Then we set:

Definition 4.1. A tree is of level d if it is isomorphic to a tree constructed out of a
tree datum of level d, as described below. A tree is of strict level d if it is of level d but
not of level d � 1.

A tree of level d will consist of a ‘‘skeleton’’ which has only finitely many bifurca-
tions, together with trees of level d � 1 attached to every node in some uniform way. For
this uniformity to make sense, we need a parametrized version of these notions. A parame-

trized tree is a map T : M ! fTreesg, where MHG
m is definable.

A tree datum of level 0 defined on MHG
m consists of:

� a finite tree S (possibly empty),

� for each edge ~ee ¼ ð~vv; ~vv 0Þ of S a linear function l~ee : M ! G>0 W fyg (the ‘‘length
of ~ee’’); the value y is only allowed if ~vv 0 is a leaf of S.

The nodes of S will be called joints; the edges will be called bones. A virtual joint is a leaf
following a bone of infinite length; the other joints are real joints.

Out of such a datum one constructs a tree TðkÞ (for k A M) as follows. Start with a
copy of S, but omitting the virtual joints, and denote the copy of the joint ~vv A S by ~vvðkÞ.
For each bone ~ee ¼ ð~vv; ~vv 0Þ, add l~eeðkÞ � 1 nodes between ~vvðkÞ and ~vv 0ðkÞ if ~vv 0 is real (thus
creating a path of length l~eeðkÞ from ~vvðkÞ to ~vv 0ðkÞ), and add an infinite path below ~vvðkÞ if
~vv 0 is virtual; denote the set of these new nodes by ~eeðkÞ.

The depth depthð~vvÞ of a joint is the function k 7! depth
�

~vvðkÞ
�

if ~vv is real and k 7! y if
~vv is virtual.

Note that a given level 0 tree T : M ! fTreesg can be described by a tree datum in
di¤erent ways. In particular, we may replace a bone of T by several bones (of appropriate
lengths) with joints in between.

Before we describe level d þ 1 trees, we need to describe how side branches of such
trees look like. A side branch datum of level d (defined on M) consists of:
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� a non-empty finite tree F,

� for each leaf w of F, a tree datum defining a level d tree Tw : M ! fTreesg such
that TwðkÞ is non-empty for all k A M.

The corresponding side branch BðkÞ A fTreesg (for k A M) consists of F with
TðZpÞ �TwðkÞ attached to w for each leaf w of F.

Now, a tree datum of level d þ 1 (defined on M) is the following:

� an element r A G>0,

� a tree datum
�

S; ðl~eeÞ
�

of level 0 (defined on M), such that for any bone ~ee, the
length l~eeðkÞmod r does not depend on k; denote by T0 the tree build out of

�

S; ðl~eeÞ
�

,

� for each real joint ~vv of T0, a side branch datum of level d, defining a side branch
B~vv : M ! fTreesg,

� for each bone ~ee ¼ ð~vv; ~vv 0Þ of T0 and each congruence class X A G=rG, a side branch
datum of level d, defining a side branch B~ee;X : N~ee;X ! fTreesg, where

N~ee;X ¼ fðk; lÞ A M � X j depthð~vvÞðkÞ < l < depthð~vv 0ÞðkÞg:

The tree TðkÞ is constructed as follows. Start with T0ðkÞ, and to each node v A T0ðkÞ at-
tach a side branch: if v ¼ ~vvðkÞ for some joint ~vv, then attach B~vvðkÞ to v. Otherwise v A ~eeðkÞ
for some bone ~ee, and depthðvÞ A X for some X A G=rG. Attach B~ee;X

�

k; depthðvÞ
�

to v.

T0 will be called the skeleton of T, and the joints and bones of T are the joints and
bones of T0. The trees of level d appearing in the side branch data will be called the side

trees of T. (Note that it does not make sense to say that a side tree is a subtree: some side
trees are not even parametrized by the same set.)

An unparametrized tree of level d is a parametrized tree of level d defined on the one-
point set M ¼ G

0.

4.2. Piecewise level d trees. In the definition of the previous subsection, we tried to
be as restrictive as possible. We will now show how one can weaken the conditions on para-
metrized level d trees without changing the notion of unparametrized trees. While our first
definition is useful to deduce other statements about trees, the new definition will be more
convenient to show that a given tree is of level d.

Define a generalized level d tree in the same way as an ordinary one, with the follow-
ing modifications: given a bone ~ee ¼ ð~vv; ~vv 0Þ, instead of cutting

N~ee :¼ fðk; lÞ A M � G j depthð~vvÞðkÞ < l < depthð~vv 0ÞðkÞgð5Þ

into subsets according to lmod r, we allow N~ee to be cut into finitely many arbitrary defin-
able subsets Ni and use a separate side branch datum S~ee; i for each such subset. Moreover,
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the condition on the length of the bones modulo r is removed, and the side trees of a gen-
eralized level d tree are also allowed to be generalized.

Lemma 4.2. Unparametrized generalized level d trees are the same as unparametrized

normal level d trees.

In the proof of this lemma, we will use trees T : M ! fTreesg which are only piece-

wise of level d (normal or generalized): there exists a finite partition of M into definable
subsets Mi, such that each restricted tree T0Mi

is of level d (normal or generalized). As
‘‘piecewise’’ only concerns parameters, Lemma 4.2 is a special case of the following lemma.

Lemma 4.3. Piecewise generalized level d trees are the same as piecewise normal level

d trees.

Proof of Lemma 4.3. We use induction over the level. For d ¼ 0, the statement is
trivial.

Suppose now T is piecewise a generalized level df 1 tree. We have to show that T
is also piecewise a normal level d tree. It is clear that for generalized trees, it does not make
any di¤erence whether we allow the side trees to be piecewise or not, so using the induction
hypothesis, we may suppose the side trees of T to be ungeneralized of level d � 1.

Now consider a bone ~ee of T and the corresponding decomposition of the set N~ee into
definable subsets Ni (defined in (5) above). When working with ungeneralized trees, we are
a priori only allowed to decompose N~ee into sets of the form N~eeX ðM � XÞ for X A G=rG.
But modifications of the tree also permit us to do some other cuts: as we are working with
piecewise trees, we may intersect N~ee with sets of the form M 0 � G for M 0

HM definable,
and moreover, we may cut the bone ~ee into several bones, thus intersecting N~ee with sets of
the form fðk; lÞ j ls lðkÞg. By Lemma 2.3 any definable subset of N~ee may be obtained in
this way, if arbitrary r are allowed.

It remains to deal with the requirement to have one single r for the whole tree, and
that the lengths of the bones have to be constant modulo r. But we may use the least com-
mon multiple of all r we need; moreover, we cut M into definable subsets according to the
congruence classes of the lengths of bones. r

In this subsection, we introduced a lot of di¤erent kinds of trees of level d. In the re-
mainder of the article, we will only use normal and generalized piecewise ones. Having
Lemma 4.3 in mind, generalized piecewise trees will be just called piecewise trees.

4.3. First properties of level d trees. To familiarize with level d trees, let us verify the
following simple lemmas.

Lemma 4.4. (1) An unparametrized level 0 tree consists of a finite tree with finitely

many infinite paths attached to it.

(2) Any ( piecewise or not) level d tree is also a ( piecewise or not) level d þ 1 tree.

(3) If T is a level d tree, then TðZpÞ �T is a level d þ 1 tree. In particular, TðZn
p Þ is a

level n tree.
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(4) Suppose that T1;T2 : M ! fTreesg are parametrized trees defined on the same

set, that T1 is of level d and that T2 is piecewise of level d. Suppose moreover that ~vv is a

real joint of T1 and that T2ðkÞ3j for any k A M. Let TðkÞ be the tree one gets by attach-

ing T2ðkÞ to T1ðkÞ at ~vvðkÞ. Then T is piecewise of level d.

Proof. (1) Clear.

(2) By induction, it is enough to verify this for d ¼ 0. A level 0 tree is a level 1 tree
with side branches consisting only of the root.

(3) Let the skeleton of TðZpÞ �T consist only of the root, let the finite tree F in the
side branch at the root also consist only of the root, and attach TðZpÞ �T to the only leaf
of F.

(4) Clear (using generalized level d trees). r

Lemma 4.5. Let T be an unparametrized tree of level d and let v be any node of T.

Then the subtree of T below v is of level d.

Proof. If v lies on the skeleton or on the finite tree at the beginning of a side branch,
then this is easy. If v lies in TðZpÞ �T

0ðlÞ for some side tree T
0 and some l A G, then

T
0ðlÞ is of level d � 1 as an unparametrized tree. By induction, the subtree of T 0ðlÞ start-

ing at the image of v is of level d � 1, hence the subtree starting at v is of level d by Lemma
4.4 (3). r

It is now easy to see that it su‰ces to understand trees of a‰ne schemes to get trees of
arbitrary schemes.

Proposition 4.6. Let V be an arbitrary scheme of finite type, and suppose that V has

an a‰ne covering ðViÞi A I such that each TðViÞ is of level d. Then TðVÞ is of level d.

Proof. Use Lemma 3.4, Lemma 4.5 (applied to the children of the roots of the trees
TðViÞ) and Lemma 4.4 (4). r

The following lemma enables us to decompose the computation of a tree into sepa-
rate computations on a cheese and its holes.

Lemma 4.7. Suppose we have, for each k in some definable set MHG
m, a set

Xk HZ
n
p and a cheese Sk :¼ Z

n
pn

S

i A I

Bk; i, where the index set I does not depend on k. Suppose

moreover that the following holds:

(1) k 7! TSkðXkÞ is of level d.

(2) For each i A I , k 7! TBk; i
ðXkÞ is piecewise of level d.

(3) For each i A I , there is a joint ~vvi of k 7! TSkðXkÞ such that ~vviðkÞ ¼ Bk; i for all

k A M.

Then the whole tree k 7! TðXkÞ is piecewise of level d.
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Proof. The third condition in particular implies Xk XBk; i 3j, so TðXkÞ consists
of TSkðXkÞ with TBk; i

ðXkÞ attached to it at the node Bk; i for each i A I . Now use Lemma
4.4 (4). r

We conclude this subsection by proving that if the tree of a set does have a level at all,
then this level is the right one.

Lemma 4.8. Suppose that X HZ
n
p is definable and that TðXÞ is a tree of strict level d.

Then d ¼ dimX .

Proof. In this proof, we use the convention dim j ¼ �1, and we define the empty
tree to be of strict level �1.

Define a pd -node of a tree to be a node such that this node as well as every node
below has at least pd children. The lemma follows from the following two claims (both
for df 0):

(1) Suppose that T is a tree without leaves which has a level. Then T contains a
pd -node if and only if T is of strict level at least d.

(2) Suppose that X is definable. Then TðX Þ contains a pd -node if and only if
dimX f d.

Both statements are easy for d ¼ 0. For larger d, we proceed by induction.

(1) ‘‘)’’: Suppose T is of level d � 1 and contains a pd -node v. There are infinitely
many paths going from v to infinity, but the skeleton of T has only finitely many such
paths, so below v we can find a node v 0 not lying on the skeleton. By going a bit further
down, we can suppose that v 0 lies in a subtree Zp �T

0, where T
0 is of level d � 2. As v 0

is again a pd -node, the corresponding node of T 0 is a pd�1-node, contradicting induction.

(1) ‘‘(’’: A tree T of strict level d has a subtree TðZpÞ �T
0, where T

0 is of strict
level d � 1 (otherwise T would be of level d � 1 itself). By induction, T

0 contains a
pd�1-node, so TðZpÞ �T

0 contains a pd -node.

(2) ‘‘)’’: Suppose TðXÞ contains a pd -node v but dimX < d. Without loss, suppose
that X is Zariski closed (taking the Zariski closure can only enlarge the tree and does not
change the dimension of X ). No infinite path below v can converge to a smooth point of X
by Theorem 1.4, so the tree below v is already contained in the tree TðXsingÞ of the singular
locus of X . Xsing has lower dimension, so we get a contradiction by induction.

(2) ‘‘(’’: By [9], Corollary 3.1 (and the definition of dimension following it),
dimX ¼ d implies that there exists a definable subset Y HX , an open subset U HQ

d
p

and a bi-analytic map f : U ! Y . Applying the Smith normal form to the Jacobian of f

yields matrices A A GLnðZpÞ and B A GLdðZpÞ such that the Jacobian of the composition
A � f � B : B�1ðUÞ ! AðY Þ consists of a diagonal matrix G A GLdðQpÞ with n� d addi-
tional rows of zeros below. Set f 0 :¼ A � f � BG�1 : GB�1ðUÞ ! AðYÞ. A and f 0 are
isometries, so Y and GB�1ðUÞ have isomorphic trees by Lemma 3.1. GB�1ðUÞ is still a
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non-empty open subset of Q
d
p , so it contains a ball, and the corresponding node in

T
�

GB�1ðUÞ
�

is a pd -node. r

5. Results on trees of level d

5.1. Rationality of the Poincaré series. In the introduction we promised that level d
trees would have rational Poincaré series. Let us now make this precise and verify it.

Definition 5.1. Suppose T is a tree which has only finitely many nodes at each
depth. Then we define the Poincaré series of T as follows:

PTðZÞ :¼ P

y

l¼0

Kfv A T j depthðvÞ ¼ lg � Zl A Z½½Z��:

Proposition 5.2. Let T be a level d tree. Then PTðZÞ A QðZÞ.

The main ingredient to the proof of this proposition is the following lemma:

Lemma 5.3. Suppose MHG
m is a definable set contained in G

m
f0. Then the series

P

ðk1;...;kmÞ AM
Y k1

1 � � �Y km
m A Z½½Y1; . . . ;Ym��

is rational in Y1; . . . ;Ym.

This is, for example, a simplified version of [2], Theorem 4.4.1.

Sketch of proof. Using cell decomposition in G
m and by further refining the cells,

one reduces the statement to sums of the form

P

b1

k1¼0

P

b2ðk1Þ

k2¼0

� � � P

bmðk1;...;km�1Þ

km¼0

Y
l1ðk1Þ
1 � � �Y lmðkmÞ

m

where the li are linear and non-constant, the bi are linear or y, and biðk1; . . . ; ki�1Þf 0 for
all appearing tuples ðk1; . . . ; ki�1Þ. Now use inductively that geometric series are rational.

r

Proof of Proposition 5.2. We inductively prove the following parametrized version
of the proposition. Let MHG

m
f0 be a definable set and let T : M ! fTreesg be a parame-

trized level d tree. Then the series

PTðZ;Y1; . . . ;YmÞ :¼
P

ðk1;...;kmÞ AM
PTðkÞðZÞ � Y k1

1 � � �Y km
m A Z½½Z;Y1; . . . ;Ym��ð6Þ

is rational in Z, Y1; . . . ;Ym. Note that the condition MHG
m
f0 is satisfied for iterated side

trees of level d trees.

If we define a level �1 tree to be one consisting only of the root, then we may view a
level 0 tree as one having side branches of level �1 (and where additionally the finite trees
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F at the beginning of the side branches consist only of the root). Adopting this point of
view, we start our induction at d ¼ �1.

If d ¼ �1, then PTðkÞðZÞ ¼ 1 for all k A M, and Equation (6) is just Lemma 5.3.

If T
0ðkÞGTðZpÞ �TðkÞ, then PT

0ðZ;Y1; . . . ;YmÞ ¼ PTðpZ;Y1; . . . ;YmÞ. Using
this, rationality of level d trees implies rationality of level d side branches.

Now consider a level d þ 1 tree T defined on MHG
m�1
f0 . We may treat each joint

and each bone separately. Moreover, on each bone we may treat the di¤erent congruence
classes modulo r separately. The total Poincaré series PTðZ;Y1; . . . ;Ym�1Þ is then the sum
of all these parts.

Consider a bone ~ee ¼ ð~vv; ~vv 0Þ and a congruence class X A G=rG. Let B be the tree in
m parameters describing the side branches at nodes on ~ee with depth in X. The con-
tribution of these side branches, including the corresponding nodes on ~ee themselves, is
PBðZ;Y1; . . . ;Ym�1;ZÞ.

Finally consider a (real) joint ~vv with side branch B. We define

M 0 :¼
��

k; depthð~vvÞðkÞ
�

j k A M
�

and apply the induction hypothesis to the ‘‘shifted’’ tree

B
0 : M 0 ! fTreesg; ðk; lÞ 7! BðkÞ:

The contribution of ~vv and its side branch is PB
0ðZ;Y1; . . . ;Ym�1;ZÞ. r

5.2. Any level d tree appears. We now prove Theorem 1.2: any tree of strict level d
without leaves is isomorphic to the tree of a definable subset of Zn

p of dimension d. By
Lemma 4.8, it su‰ces to find any definable subset of Zn

p with the given tree; the dimension
will then automatically be the right one.

We introduce some additional notation only for this subsection. The coordinates
of any m-tuple a will be denoted by a1; . . . ; am. Moreover, for x A Q

m
p we will set

vðxÞ :¼
�

vðx1Þ; . . . ; vðxmÞ
�

(in contrast to vðxÞ ¼ min
i

vðxiÞ).

The main ingredient to the proof is the following lemma.

Lemma 5.4. Suppose MHG
m
f0 is definable and l : M ! Gf0 is a linear function

satisfying lðkÞf ki for each iem. Define X :¼ fx A Z
m
p j vðxÞ A Mg. Then there exists a

definable function ul : X ! Zp with the following properties:

(1) v
�

ulðxÞ
�

¼ l
�

vðxÞ
�

for any x A X , and

(2) v
�

ulðxÞ � ulðx 0Þ
�

f vðx� x 0Þ for any x; x 0 A X satisfying vðxÞ ¼ vðx 0Þ.
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Proof. Write lðkÞ ¼:
1

e

�

b þP

i

aiki

�

with ai A Z, b A G, e A N>0. Set m :¼ 1þ 2vðeÞ.

For x A G :¼ peG � Bð1; mÞ, write
ffiffiffi

xe
p

for the e-th root of x lying in pG � B
�

1; 1þ vðeÞ
�

(which exists by Lemma 2.2). Choose representatives rn A Z
�
p of the sets Z�

p =Bð1; mÞ. Using
these choices, we define ul as follows.

First suppose 1e iem and 0e l < vðeÞ, and consider the definable set

Xi;l :¼
�

x A X j l
�

vðxÞ
�

¼ vðxiÞ þ l
�

:

For x A Xi;l, we define ulðxÞ :¼ plxi. This satisfies both required conditions, so we may
remove Xi;l from X . We do this successively for all iem and all l < vðeÞ and henceforth
suppose that

l
�

vðxÞ
�

f vðxiÞ þ vðeÞð7Þ

for x A X and all i.

For x A X , set pðxÞ :¼ pb
Q

m

i¼1

xai
i . As l is defined on vðxÞ, we get

v
�

pðxÞ
�

¼ e � l
�

vðxÞ
�

A eG;

so pðxÞ lies in peGBð1; mÞrn for some n. Thus
pðxÞ
rn

A G, and we define ulðxÞ :¼
ffiffiffiffiffiffiffiffiffi

pðxÞ
rn

e

r

.

It is clear from the definition that v
�

ulðxÞ
�

¼ l
�

vðxÞ
�

. Now suppose we have

x; x 0 A X with vðxÞ ¼ vðx 0Þ. As both ulðxÞ and ulðx 0Þ lie in plðvðxÞÞB
�

1; 1þ vðeÞ
�

, we have
v
�

ulðxÞ � ulðx 0Þ
�

f l
�

vðxÞ
�

þ 1þ vðeÞ; so the second condition is satisfied unless

vðx� x 0Þ > l
�

vðxÞ
�

þ 1þ vðeÞ:ð8Þ

Set d :¼ vðx� x 0Þ �maxfvðxiÞ j 1e iemg. By (7) and (8), we have d > m and in
particular d > 0. By definition de vðxi � x 0

iÞ � vðxiÞ for all i, so we have xiAd x
0
i , which

implies pðxÞAd pðx 0Þ. As d > m, we have ulðxÞ ¼
ffiffiffiffiffiffiffiffiffi

pðxÞ
rn

e

r

and ulðx 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

pðx 0Þ
rn

e

r

for the same

rn, so Lemma 2.2 yields ulðxÞAd�vðeÞ ulðx 0Þ; hence

v
�

ulðxÞ � ulðx 0Þ
�

f v
�

ulðxÞ
�

þ d� vðeÞf vðx� x 0Þ

by (7). r

In the main proof, we will use the following ‘‘Lipschitz union argument’’ several
times: we will have two (or more) sets X ;X 0

HZ
m
p � Z

N
p with Lipschitz continuous fibers in

the first m variables and would like to infer that the union has Lipschitz continuous fibers,
too. This is possible if for any x1; x2 A Z

m
p , the corresponding isometries f : Xx1 ! Xx2 and

f 0
: X 0

x1
! X 0

x2
satisfy v

�

fðyÞ � f 0ðy 0Þ
�

¼ vðy� y 0Þ for y A Xx1 , y
0 A Xx 0

1
. In particular, this

is true if vðy� y 0Þ does not depend at all on x A Z
m
p , y A Xx, y

0 A X 0
x.
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Proof of Theorem 1.2. k and m will denote elements of Gm. It will be useful to define
k0 :¼ m0 :¼ 0. We will work inside Z

mþN
p for some large N; ðx; yÞ will be an element of

Z
mþN
p , where x A Z

m
p and y A Z

N
p . Sometimes, we will also write y ¼ ðz; ŷyÞ, with z A Zp

and ŷy A Z
N�1
p . We will denote the fiber of a set X HZ

mþN
p at x A Z

m
p by Xx.

Let us formulate a suitable parametrized version of the statement, which we will then
prove by induction over the level of the tree. We start with the following data: a definable
set MHG

m, a tree T : M ! fTreesg of level d without leaves, and a tuple m A G
m
>0. We

suppose that for any k A M, we have ki�1 þ mi�1e ki for i A f1; . . . ;mg (i.e. M is contained
in an ‘‘upper triangle’’).

Using this, we define a set GHZ
m
p as follows. For k A M, define the rectangle

Gk :¼ pk1Bð1; m1Þ � � � � � pkmBð1; mmÞ;

and set G :¼ S

k AM

Gk. It will also be useful to define lðkÞ :¼ km þ mm for k A M (lðkÞ is the

radius of pkmBð1; mmÞ). Note that Gk ¼ fx A G j vðxÞ ¼ kg and that G is definable (using
e.g. [4], Lemma 2.1).

The claim we will prove by induction is the following. For N su‰ciently large, there
exists a definable set X ¼ X ðT; mÞHZ

mþN
p such that the following holds:

� X H
S

k AM

ðGk � plðkÞZN
p Þ.

� For any k A M and any x A Gk, T0;lðkÞðXxÞGTðkÞ.

� For any k A M, the fiber Xx varies Lipschitz continuously with x A Gk.

If m ¼ 0, then G ¼ Gk is the one-point set, where k is the empty tuple, lðkÞ ¼ 0, and
the statement becomes TðXÞGT, which is our theorem.

Let ~vv0; . . . ; ~vvr be the joints of T, including the virtual ones (i.e. the ones at depth
infinity). We will start by constructing definable functions f0; . . . ; fr : G ! Z

N
p which yield

the skeleton of T in the following sense. For k A M and x A Gk, set

Tx :¼
�

B
�

fiðxÞ; lðkÞ þ n
�

j 0e ie r; 0e ne depthð~vviÞðkÞ; n < y
�

HT0;lðkÞðZN
p Þ:

There will be isomorphisms cx : TðkÞ ! Tx sending ~vviðkÞ to B
�

fiðxÞ; lðkÞ þ depthð~vviÞðkÞ
�

.

Let X 0 be the union of the graphs of those functions fi which correspond to virtual
joints; the tree T0;lðkÞðX 0

xÞ is exactly the subtree of Tx consisting of the infinite paths. Later,
we will define a set X 00 which yields the side branches of T: X 00 will be a union

X 00 ¼ S

k AM

S

v ATðkÞ
X 00
k; v

such that for any x A Gk, the fiber Z :¼ ðX 00
k; vÞx is contained in the corresponding node

B :¼ cxðvÞ of Tx, its tree TBðZÞ is isomorphic to the side branch of TðkÞ at v, and the in-
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tersection of TBðZÞ and Tx consists only of B. We then set X :¼ X 0 WX 00. Thus T0;lðkÞðXxÞ
will have a side branch at B A Tx which is isomorphic to the corresponding one of TðkÞ,
and as TðkÞ has no leaves, T0;lðkÞðXxÞ will contain the whole skeleton Tx.

We will have to ensure that the fibers Xx vary Lipschitz continuously with x A Gk.
Our functions fi will satisfy

v
�

fiðx1Þ � fiðx2Þ
�

f vðx1 � x2Þ for x1; x2 A Gk;ð9Þ

this implies Lipschitz continuity of the fibers of X 0. We will also prove Lipschitz continuity
for each set X 00

k; v. Then the Lipschitz union argument yields continuity for X .

Now let us construct the functions fi. To get the isomorphism TðkÞGTx, it su‰ces
to have

v
�

fiðxÞ � fjðxÞ
�

¼ di; jðkÞ þ lðkÞ;ð10Þ

where di; j : M ! G is the ‘‘separating depth’’ of the joints ~vvi and ~vvj: the depth of the deepest
common ancestor of both. Set f0ðxÞ :¼ 0 for all x A G. For jf 1, consider the maximum
dmax :¼ maxfdi; j j 0e i < jg under the partial order defined by pointwise comparison; note
that for j fixed, all di; j are comparable. Choose any i < j with di; j ¼ dmax and define

fjðxÞ :¼ fiðxÞ þ udi; jþlðxÞ � ð0; . . . ; 0; 1; 0; . . . ; 0
"

pos: iþ1

Þ;ð11Þ

where udi; jþl comes from Lemma 5.4. By definition of udi; jþl, (11) implies (10) for those
specific i, j. For other pairs i < j, (10) follows by induction on j. Moreover, (9) follows
from the second property of the functions udi; jþl.

It remains to define the sets X 00
k; v. We will show how to do this when v lies on a bone;

for joints, a simplified version of the same argument will do. So fix a bone ~ee ¼ ð~vvi; ~vvjÞ of T
and a congruence class X A G=rG. Let Nk :¼ fk 0 A X j depthð~vviÞðkÞ < k 0 < depthð~vvjÞðkÞg be
the set depths of the corresponding side branches of TðkÞ, and set

N :¼ fðk; k 0Þ j k A M; k 0 A Nkg:

We will construct a definable set

Y ¼ S

k AM

S

v A ~eeðkÞ
depthðvÞ AX

X 00
k; v:

For x A Gk, the fiber ðX 00
k; vÞx is supposed to be contained in

B :¼ cxðvÞ ¼ B
�

fjðxÞ; lðkÞ þ depthðvÞ
�

:

By applying the isometry ðx; yÞ 7!
�

x; y� fj
�

xÞ
�

(which neither harms the trees of fibers,
nor Lipschitz continuity), we may assume fjðxÞ ¼ 0.
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Now notice that in (11), we did not use the first coordinate of Z
N
p at all, hence

any child of B ¼ plðkÞþdepthðvÞZN
p in Tx is contained in plðkÞþdepthðvÞðpZp � Z

N�1
p Þ. We will

ensure that Tx and TB

�

ðX 00
k; vÞx

�

only intersect in B by choosing

ðX 00
k; vÞx HAk; v :¼ plðkÞþdepthðvÞ�ð1þ pZpÞ � Z

N�1
p

�

:ð12Þ

Let F be the finite tree at the beginning of the side branch of T corresponding
to ~ee, X, and for each leaf w of F, let Tw : N ! fTreesg be the corresponding side
tree of level d � 1. Define a shifted set ~NN :¼

��

k; lðkÞ þ k 0� j ðk; k 0Þ A N
�

and a shifted
tree ~TTw : ~NN ! fTreesg, ~TTw

�

k; lðkÞ þ k 0� ¼ Twðk; k 0Þ. We apply the induction hypo-
thesis to ~TTw using mmþ1 :¼ depthFðwÞ (we may suppose depthFðwÞ > 0); denote by
Xw :¼ X

�

~TTw; ðm1; . . . ; mmþ1Þ
�

the resulting definable set.

Fix k A M and x A Gk. For z A Qp, the fiber ðXwÞðx; zÞ is non-empty if and only if
z A plðkÞþk 0

Bð1; mmþ1Þ for some k 0 A Nk, and if this is the case, then

T0;lðkÞþk 0þmmþ1

�

ðXwÞðx; zÞ
�

GTwðk; k 0Þ.

Set

Bk 0 :¼ plðkÞþk 0
B
�

ð1; 0; . . . ; 0Þ; depthFðwÞ
�

HZ
N
p ;

then ðXwÞx is contained in
S

k 0 ANk

Bk 0 , and Lipschitz continuity of fibers ðXwÞðx; zÞ of ðXwÞx
yields TBk 0

�

ðXwÞx
�

GTðZpÞ �Twðk; k 0Þ.

Now choose an embedding of F into TðZN�1
p Þ and let B

�

ŷyw; depthðwÞ
�

be the image
of the leaf w. The map fwðx; z; ŷyÞ :¼ ðx; z; ŷyþ z � ŷywÞ is an isometry sending Gk � Bk 0 to
Gk � plðkÞþk 0

B
�

ð1; ŷywÞ; depthðwÞ
�

. We claim that the set Y :¼ S

w

fwðXwÞ is the one we are

looking for; more precisely, if k A M, v A ~eeðkÞ, k 0 :¼ depthðvÞ A X, then we claim

X 00
k; v ¼

S

w

fw
�

XwX ðGk � Bk 0Þ
�

:

Fix x A Gk and B :¼ plðkÞþk 0
Z

N
p . ðX 00

k; vÞx is contained in the union of balls

Bw :¼ plðkÞþk 0
B
�

ð1; ŷywÞ; depthðwÞ
�

;

which in turn are contained in Ak; v, so (12) is satisfied.

The finite subtree of TBðZN
p Þ with leaves Bw is isomorphic to F, and the tree of

ðX 00
k; vÞx on Bw is isomorphic to TðZpÞ �Twðk; k 0Þ, so the tree TB

�

ðX 00
k; vÞx

�

is the right
one. Finally, using Lipschitz continuity in x of the fibers of fw

�

Xw X ðGk � Bk 0Þ
�

and the
Lipschitz union argument, we get Lipschitz continuity of the fibers of X 00

k; v. r

6. The main proofs

In this section we will prove the main conjecture in the interesting cases. We start by
sketching the proofs; an overview over the remainder of the section will be given after that
sketch.
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6.1. Idea of proof. Suppose that X is a definable set of dimension d and that we
want to check that TðX Þ is a level d tree. By compactness (as in the case of smooth vari-
eties) it su‰ces to understand the tree on a neighborhood of each point of X . To under-
stand the tree near a given point—without loss 0—we proceed as in the example of the
cusp curve: we compute it on balls B which are close to 0 but which do not contain 0; the
largest such balls are of the form B ¼ Bðpkx0; kþ 1Þ with vðx0Þ ¼ 0. The total tree will be
of level d if the following two conditions hold:

(1) The tree on each ball B looks like the tree of a side branch: after cutting B into
finitely many smaller balls, it is of the form TðZpÞ �T, where T is of level d � 1.

(2) If we let k go to infinity (i.e. the ball B approaches 0), then the trees on B are
uniform in k (in the way required by the definition of level d trees).

Now suppose that X is one-dimensional. For simplicity, assume moreover X HQ
2
p . It

is known that such a set X is a subset of an algebraic set V . By applying the theorem of
Puiseux to V , close to ð0; 0Þ we can write X as union of branches, each of which is the
graph of series of the form f ðxÞ ¼ P

i

ai
ffiffiffi

xe
p i

. Taking the e-th root is of course not unique,

but as in the cusp example, on each ball B ¼ B
�

pkðx0; y0Þ; kþ 1
�

we can choose roots in
such a way that we get a continuous function f . (In fact, here we might need to replace
kþ 1 by kþ m for some fixed m > 1.) Now suppose that vðx0Þ ¼ 0, i.e. B does not lie
directly above or below ð0; 0Þ. Then for large k, the graph of f will intersect B only if its
derivative at 0 has non-negative valuation. Using this, we get Lipschitz continuity of f :
v
�

f ðx1Þ � f ðx2Þ
�

f vðx1 � x2Þ. This will allow us to apply Corollary 3.3, which will finally
imply condition (1). If on the other hand vðx0Þ > 0, then vðy0Þ ¼ 0, and the same argument
applies with coordinates exchanged.

All this can be carried out uniformly in k, and we will get the uniformity required
in (2) by having a second look at the Puiseux series describing the branches. If

P

i

ai
ffiffiffi

xe
p i

is

the di¤erence of two such series, then for k ¼ vðxÞg 0, the valuation of this di¤erence is

equal to vðaiÞ þ
i

e
vðxÞ, where ai is the first non-zero coe‰cient. This valuation corresponds

to the depth of a joint of the side tree; as required, it is linear in k.

To get a proof for two-dimensional definable subsets of Q2
p , we use cell decomposi-

tion to understand X and then apply the Puiseux series arguments to the centers of cells
(which are curves). Lipschitz continuity of these centers yields Lipschitz continuity of the
whole fibers of the cells, so Corollary 3.3 implies that the tree on a ball B is of the form
TðZpÞ �T, where T is the tree of one fiber.

Of course the tree T of a fiber is of level 1 (as its dimension is at most 1), but we need
uniformity in k. To prove this, for each k we will choose one fiber Xk in the corresponding
ball. The cell decomposition of X yields a cell decomposition of each Xk which is ‘‘close to
uniform’’; for example, for kg 0 a cell center will be close to plðkÞ � a for some fixed a A Qp

and some linear function l. This uniformity will allow us to deduce that the parametrized
tree k 7! TðXkÞ is of level 1.
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The remainder of this section is organized as follows. First, we recall cell decomposi-
tions; in the next two subsections, we introduce ‘‘garlands’’, which are the right sets to work
on when one wants to carry out the above arguments concerning Puiseux series uniformly
in k. In Subsection 6.5, we introduce the close-to-uniform families of sets Xk and prove that
they have uniform level 1 trees, and in the last two subsections, we carry out the remainder
of the above arguments.

6.2. Cell decomposition. The following is almost the usual definition of a cell de-
composition. The only di¤erence is that we are a bit more restrictive on the conditions p
and pp in a harmless way; this will save us a few clumsy case distinctions.

Definition 6.1. (1) The only cell in Q
0
p is the one-point set Q0

p itself.

A cell in Q
n
p is a set of the form

C ¼
�

ðx; yÞ A D�Qp j aðxÞp v
�

y� cðxÞ
�

pp bðxÞ and bz y� cðxÞ ¼ rze
�

;

where D is a cell in Q
n�1
p , a; b : D ! GW fyg and c : D ! Qp are definable functions,

r A Q
�
p , e A Nf1, p is either e or no condition and pp is either e or <. Moreover, we

suppose that the projection C ! D is surjective and that if pp is <, then b ¼ y.

We call D the base, c the center, a and b the lower and upper bound, e the exponent

and r the residue of C.

(2) A cell decomposition of Qn
p is a partition of Qn

p into finitely many disjoint cells. If
n > 0, then we additionally require that the set of bases of the cells is a cell decomposition
of Qn�1

p .

By fixing a cell decomposition, we will mean that we also fix the data D; c; a; b; . . .
describing the cells.

The usual cell decomposition theorem is the following; see e.g. [9], Section 4.

Lemma 6.2. Let X HQ
n
p be a definable set. Then there exists a cell decomposition

of Qn
p such that X is a union of cells.

The following easy fact about one-dimensional cells will be used quite often:

Lemma 6.3. There exists a function d : Nf1 ! G>0 such that the following holds:

(1) Let CHQp be a cell with center c and exponent e, and suppose x1 A C and

x2 A QpnC. Then vðx1 � x2Þ < vðxi � cÞ þ dðeÞ for i A f1; 2g.

(2) Suppose that C1 and C2 are two disjoint cells with centers c1 and c2 and common

exponent e, and suppose that x1 A C1 and x2 A C2. Then vðx1 � x2Þ < vðc1 � c2Þ þ dðeÞ.

Proof. Set dðeÞ :¼ 2vðeÞ þ 1. Then (1) follows from Lemma 2.2 (2).

For (2), use (1) and the disjointness of C1 and C2 to get (for i ¼ 1; 2)
vðx1 � x2Þ < vðx1 � ciÞ þ dðeÞ. Now apply the triangle inequality to c1, x1, c2. r
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6.3. Garlands and trees. Suppose that X HZ
n
p , x0 A Z

n
p , B0 ¼ Bðx0; lÞ, and BHB0

is a ball not containing x0. As described in Subsection 6.1, we will try to understand TBðX Þ
uniformly when B approaches x0. To be able to speak about uniformity, we have to deter-
mine the trees on a whole ‘‘garland’’ of balls approaching x0 at once. In this subsection,
we define these garlands and show that indeed knowing the trees on appropriate garlands
su‰ces to get back the whole tree of X (Lemma 6.6).

The reason to work on garlands and not on the whole of B0 is essentially that on a
garland, it makes sense to speak of one specific branch of the e-th root function, whereas on
the whole of B0 it does not. In the next subsection, we will use this to infer a nice descrip-
tion of definable functions on garlands close to x0.

Definition 6.4. Suppose we have x0 A Z
n
p , l A Gf0, and m; r A G>0. A garland G

corresponding to x0, l, m, r is a set of the form

G ¼ x0 þ
S

kfl
k AX

pkBðxG; mÞ

for some xG A Z
n
p satisfying vðxGÞ ¼ 0 and some X A G=rG. We will write

MðGÞ :¼ fk A X j kf lg

for the set over which the union goes, and call the subsets Gk :¼ x0 þ pkBðxG; mÞ for k A M

the components of G.

Remark. Gk consists of exactly those x A G which satisfy vðx� x0Þ ¼ k.

Remark. For fixed x0, l, m, r, garlands form a finite partition of Bðx0; lÞnfx0g.

We will not always specify x0, l, m, r; sometimes we just write ‘‘garland for l, m, r’’,
‘‘garland converging to x0’’ or ‘‘garland on Bðx0; lÞ’’. Moreover, most of the time we will
not care for the precise values of l, m, r; we will only require the garlands to be ‘‘su‰ciently
fine’’, i.e. each garland is a subset of a garland for certain given l0, m0, r0. This is equivalent
to lf l0, mf m0 and r0 j r. This is also what we will mean by ‘‘l, m, r su‰ciently large’’:
for r interpret ‘‘large’’ multiplicatively.

Definition 6.5. Let X be a subset of Zn
p and let G be a garland whose components

are Gk, for k A M :¼ MðGÞ. The tree of X on G is the parametrized tree

TGðXÞ : M ! fTreesg; k 7! TGk
ðXÞ:

Lemma 6.6. Let X be a subset of Zn
p . Suppose that for each x A Z

n
p , there are l, m, r

such that for each garland G (corresponding to x, l, m, r), the parametrized tree TGðXÞ is of
the form k 7! TðZpÞ �TGðkÞ, where TG is piecewise a parametrized tree of level d. Then

TðXÞ is a tree of level d þ 1.

Proof. First, for each x A Z
n
pnX we enlarge the corresponding l such that

Bðx; lÞXX ¼ j. As in the proof of Theorem 1.4 (Subsection 3.2), using compacity of Zn
p it

su‰ces to prove that the tree on each ball Bðx; lÞ is of level d þ 1; the whole tree will then
consist of a finite tree, with finitely many of the trees Tx;lðX Þ attached to it.
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Now fix x A Z
n
p , and let l, m, r be as in the prerequisites (possibly with l enlarged);

we compute the tree Tx;lðXÞ. To simplify notation, suppose x ¼ 0. If 0 B X , then
Bð0; lÞXX ¼ j and there is nothing to do, thus suppose now 0 A X . This implies
Bð0; kÞ A T0;lðX Þ for all kf l. We take this as skeleton for T0;lðX Þ, with a joint at
Bð0; lÞ and then a single infinite bone. It remains to determine the side branches.

Consider a garland G for l, m, 1 (converging to 0). It is the union of finitely
many garlands Gi for l, m, r, and TGðXÞðkÞ ¼ TGi

ðXÞðkÞ if k A MðGiÞ. Recall that
TGi

ðX ÞðkÞGTðZpÞ �TGi
ðkÞ and define TGðkÞ :¼ TGi

ðkÞ if k A MðGiÞ. We get that TG

is piecewise of level d and TGðXÞðkÞGTðZpÞ �TGðkÞ. In other words, we may without
loss suppose r ¼ 1.

For each garland G, we have a finite partition of fk A G j kf lg such that TG is of
level d on each set of the partition. We choose a partition of fk A G j kf lg such that for
each part M, TG is of level d on M for all garlands G. Now we claim that there is a single
side branch datum describing the side branch of T0;lðX Þ leaving the skeleton at Bð0; kÞ for
all k A M.

Let Fk be the subtree of T0;kðXÞ consisting of those B ¼ Bðx; kþ nÞ with 0e ne m

and 0 B B. Equivalently, Fk is the finite subtree of T0;kðZn
p Þ whose leaves are exactly the

components Gk of those garlands G satisfying GkXX 3j. For G fixed, this non-emptiness
does not depend on k (as long as k A M), so for two di¤erent k; k 0 A M, the map

fx j vðxÞ ¼ kg ! fx j vðxÞ ¼ k 0g; x 7! pk 0�kx

induces (using Lemma 3.1) an isomorphism from Fk to Fk 0 sending Gk to Gk 0 .

Now the side branch of TBj
ðXÞ at Bð0; kÞ consists of Fk, with TGk

ðX Þ attached to the
leaf Gk A Fk (for GkXX 3j). As TGk

ðXÞGTðZpÞ �TGðkÞ with TG of level d, this proves
the claim. r

6.4. Definable functions on garlands. The main result of this subsection (Proposition
6.13) is that on su‰ciently fine one-dimensional garlands, a definable function is given by a
branch of a Puiseux series. We start by giving a meaning to a specific branch of the e-th
root function.

Definition 6.7. Suppose GHQp is a garland for 0, l, m, r, and suppose e A Nf1. We
say that G is fine enough for e-th roots if mf 2vðeÞ þ 1 and e j r. Suppose that this is the
case. Then a uniform choice of e-th roots on G is a choice of

ffiffiffi

xe
p

A ~QQp for each x A G such

that for any x; x 0 A G we have

ffiffiffi

xe
p
ffiffiffiffiffi

x 0e
p A pG � ð1þ pvðeÞþ1

ZpÞ.

If G is fine enough for e-th roots, then uniform choices of e-th roots on G exist. For

any x A G choose any root
ffiffiffi

xe
p

. Then for any x 0 A G we have
x 0

x
A pe�n � ð1þ p2vðeÞþ1

ZpÞ for

some n A G; thus by Lemma 2.2 (1),
x 0

x
has a root z A pn � ð1þ pvðeÞþ1ZpÞ. Set

ffiffiffiffiffi

x 0e
p

:¼ ffiffiffi

xe
p � z.
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By ‘‘choosing an e-th root on G’’, we will mean choosing
ffiffiffi

xe
p

uniformly as described
above. When we ask a garland to be fine enough for e-th roots, we will often implicitly
choose such a root.

If G converges to x0 3 0, by choosing an e-th root on G we mean choosing
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0e
p

for x A G in an analogous way.

These uniformly chosen roots are Lipschitz continuous in the following sense:

Lemma 6.8. Suppose e A Nf1 and G is a garland converging to 0 which is fine enough

for e-th roots. If x; x 0 A G satisfy xAdþvðeÞ x
0 for some df 1, then

ffiffiffi

xe
p

Ad

ffiffiffiffiffi

x 0e
p

, and more

generally
ffiffiffi

xe
p i

Ad

ffiffiffiffiffi

x 0e
p i

for any i A Z.

Proof.

xAdþvðeÞ x
0 , x

x 0 A 1þ pdþvðxÞ
Zp )

ffiffiffi

xe
p
ffiffiffiffiffi

x 0e
p A 1þ pd

Zp

)
ffiffiffi

xe
p
ffiffiffiffiffi

x 0e
p

� �i

A 1þ pd
Zp ,

ffiffiffi

xe
p i

Ad

ffiffiffiffiffi

x 0e
p i

: r

Note that if x, x 0 lie in the same component of G (and G is fine enough for e-th roots),
we may always apply the lemma with d ¼ vðx� x 0Þ � vðxÞ � vðeÞf 1.

We will need the following two results relating garlands and definable sets.

Lemma 6.9. (1) Garlands are definable.

(2) If we chose an e-th root on a garland GHZp and this root lies in Qp, then x 7! ffiffiffi

xe
p

is definable.

Note that whether
ffiffiffi

xe
p

lies in Qp does not depend on the specific x A G.

Proof of Lemma 6.9. (1) Well known; see e.g. [4], Lemma 2.1, 3) and 4).

(2) We only need to specify in a definable way which of the roots we want to take.
If z0 is the root of one element of G, then the other ones are exactly the ones lying in
z0 � pG � Bð1; pvðeÞþ1Þ. This is definable by the same argument as for (1). r

Lemma 6.10. Let X HQp be definable and x0 A Qp. Then there exist l, m, r such that

any corresponding garland converging to x0 lies either completely inside or completely outside

of X .

Proof. It is enough to prove the statement when X is a cell. If x0 is not equal to the
center of the cell, or if the cell has an upper bound b < y, then a whole ball Bðx0; lÞ lies
either completely inside or completely outside of X . Otherwise choose l > a (the lower
bound) and use that the e-th power residue on su‰ciently fine garlands is constant. r
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The two principal ingredients to our description of definable functions on su‰ciently
fine garlands are a lemma of Scowcroft and van den Dries which will allow us to replace
definable functions by branches of algebraic sets, and the theorem of Puiseux which will
allow us to describe such branches in terms of branches of root functions.

Lemma 6.11 ([9], Lemma 1.2 and comment following its proof). For any definable

X HQp and any definable function f : X ! Qp, the graph of f is a subset of an algebraic

curve.

Lemma 6.12 (Theorem of Puiseux; see e.g. [6], III.1.6). Let VðQpÞHQ
2
p be an

algebraic curve not containing f0g �Qp. Then there exists l A G, a finite index set N,
integers en f 1 and coe‰cients an; i A ~QQp for i A Z and n A N, such that the following holds:

(1) For each n A N, an; i ¼ 0 for if 0, and the Laurent series

gnðzÞ ¼
P

i AZ

an; iz
i

converges for any z A ~QQ�
p satisfying vðzenÞf l.

(2) For any ðx; yÞ A plZp �Qp, we have ðx; yÞ A VðQpÞ if and only if there exist a

n A N and a root
ffiffiffi

xen
p

A ~QQp such that y ¼ gnð
ffiffiffi

xen
p Þ.

Now here is the main result of this subsection.

Proposition 6.13. Let DHQpnf0g be definable and let f : D ! Qp be a definable

function. Then there are e, l, m, r such that DXBð0; lÞ is a union of garlands corresponding

to 0, l, m, r, and such that for each such garland GHD the following holds. G is fine enough

for e-th roots, and f can be written as a convergent Laurent series in
ffiffiffi

xe
p

, with coe‰cients

ai A ~QQp:

f ðxÞ ¼ P

i AZ

ai
ffiffiffi

xe
p i

for all x A G.

Note that the specific choice of an e-th root on G does not matter; to compensate for
a change of root, multiply each ai by an appropriate power of an e-th root of unity.

Proof. Choose l, m, r large enough such that DXBð0; lÞ is a union of correspond-
ing garlands converging to 0 (use Lemma 6.10). Let VðQpÞHQ

2
p be the algebraic curve

containing the graph of f according to Lemma 6.11, and apply Lemma 6.12 to V (without
loss, V does not contain f0g �Qp). Enlarge l such that the conclusion of Lemma 6.12
holds on Bð0; lÞ. Then for any x A DXBð0; lÞ, there exists a n A N and an en-th root of x
such that

f ðxÞ ¼ P

i AZ

an; i
ffiffiffi

xen
p i

:

This statement remains true if we replace all en by their least common multiple and renum-
ber the coe‰cients an; i accordingly.
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Now choose a primitive e-th root of unity z, enlarge m and r such that corresponding
garlands are fine enough for e-th roots, and choose an e-th root on each of them. Define the
set of formal Laurent series

S :¼
�

P

i AZ

an; iðz j ffiffiffi

xe
p Þ i A ~QQp½½

ffiffiffi

xe
p ��

	

	

	

	

n A N; 0e j < e




;

and for GHD and s A S, set AG; s :¼ fx A G j f ðxÞ ¼ sðxÞg. The union of these sets is equal
to DXBð0; lÞ. We claim that after enlarging l, we may suppose that the sets AG;s are de-
finable and disjoint.

For s ¼ P

i

bi
ffiffiffi

xe
p i

A S, let st :¼
P

iei

bi
ffiffiffi

xe
p i

be the corresponding truncated series, where

i is large enough such that s3 s 0 implies st3 s 0t for any s; s
0 A S. Then for vðxÞg 0, we have

v
�

sðxÞ � stðxÞ
�

> v
�

stðxÞ � s 0tðxÞ
�

for any two di¤erent s; s 0 A S, so we get that x A AG; s if
and only if x A G and v

�

f ðxÞ � stðxÞ
�

> v
�

f ðxÞ � s 0tðxÞ
�

for all s 0 A Snfsg. This condition is
definable and implies disjointness.

So now we have a finite definable partition ðAG; sÞ of DXBð0; lÞ. To finish the proof,
enlarge l, m, r again such that any of the finer garlands is completely contained in one of
the sets AG; s; on each of those finer garlands we have f ðxÞ ¼ sðxÞ ¼ P

i

bi
ffiffiffi

xe
p

. r

We will need an analogue of the previous proposition for definable functions going
to GW fyg; we get it as a corollary of the previous proposition, although the heavy ma-
chinery of Proposition 6.13 is not really necessary. (It could, for example, also be deduced
from [3], Corollary 6.5, together with our Lemma 6.10.)

Corollary 6.14. Let DHQp be a definable set and a : D ! GW fyg a definable

function. Then there are l, m, r such that on each garland GHD corresponding to 0, l, m,
r, aðxÞ only depends on vðxÞ, and the function MðGÞ ! GW fyg, vðxÞ 7! aðxÞ is linear.

Proof. Write a as v � f for some definable f : D ! Qp. Apply Proposition 6.13 to
get f ðxÞ ¼ P

i

ai
ffiffiffi

xe
p i

, and let i be minimal such that ai 3 0. If vðxÞ is su‰ciently large,

then v
�

f ðxÞ
�

¼ vðai
ffiffiffi

xe
p iÞ ¼ vðaiÞ þ

i

e
vðxÞ, so choose l accordingly. r

To conclude this subsection, we prove two general statements on Puiseux series which
we will need later.

Lemma 6.15. Suppose that G is a garland for 0, l, m, r which is fine enough for e-th

roots and that the Laurent series

f ðxÞ ¼ P

i AZ

ai
ffiffiffi

xe
p i

(with coe‰cients ai A ~QQp) converges on G.

(1) If f ðxÞ A Qp for all x A G, then ai
ffiffiffi

xe
p

A Qp for all x A G and all i A Z.

(2) If v
�

f ðxÞ
�

f vðxÞ for all x A G, then there exists a l 0 f l such that for all

x1; x2 A G with vðx1Þ ¼ vðx2Þf l 0, we have v
�

f ðx2Þ � f ðx1Þ
�

f vðx2 � x1Þ.
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Proof. (1) As

ffiffiffiffiffi

x 0e
p
ffiffiffi

xe
p A Qp for any x; x 0 A G, it su‰ces to check the claim for one

single x A G. Now suppose that i is minimal such that ai
ffiffiffi

xe
p i

B Qp. For y A ~QQp, write
distQp

ðyÞ :¼ supfvðy� y 0Þ j y 0 A Qpg for the distance of y to Qp. As Qp is closed in ~QQp in
the p-adic topology, we have distQp

ðai
ffiffiffi

xe
p iÞ > 0.

As
ai

ffiffiffiffiffi

x 0e
p i

ai
ffiffiffi

xe
p i A Qp for any x; x 0 A G, we have distQp

ðai
ffiffiffi

xe
p iÞ ¼ vðai

ffiffiffi

xe
p iÞ þ d0 for some

fixed d0 A G not depending on x A G. Thus, for x su‰ciently close to zero, we get
vðai

ffiffiffi

xe
p iÞ > distQp

ðai
ffiffiffi

xe
p iÞ for all i > i. Together with

P

i<i

ai
ffiffiffi

xe
p i

A Qp, this contradicts
P

i AZ

ai
ffiffiffi

xe
p i

A Qp.

(2) Suppose that ai is the first non-zero coe‰cient of the series. The condition
v
�

f ðxÞ
�

f vðxÞ (applied to su‰ciently small x) implies that if e, and if i ¼ e, then
vðaiÞf 0.

Now suppose x1; x2 A G are given. The claim v
�

f ðx2Þ � f ðx1Þ
�

f vðx2 � x1Þ follows
if we can verify the inequality

vðai
ffiffiffiffiffi

x2
e
p i � ai

ffiffiffiffiffi

x1
e
p iÞ ¼ vðaiÞ þ vð ffiffiffiffiffi

x2
e
p i � ffiffiffiffiffi

x1
e
p iÞf vðx2 � x1Þð13Þ

for all if i.

If i ¼ e ¼ i, then
ffiffiffiffiffi

x2e
p i � ffiffiffiffiffi

x1e
p i ¼ x1 � x2, so (13) follows from vðaiÞf 0. Now sup-

pose i > e.

Set s :¼ vðx2 � x1Þ � vðx1Þ. By Lemma 6.8, we get
ffiffiffiffiffi

x1e
p i

As�vðeÞ
ffiffiffiffiffi

x2e
p i. So

vð ffiffiffiffiffi

x2
e
p i � ffiffiffiffiffi

x1
e
p iÞf vð ffiffiffiffiffi

x1
e
p iÞ þ s� vðeÞ ¼ i

e
vðx1Þ þ vðx2 � x1Þ � vðx1Þ � vðeÞ;

and it remains to verify vðaiÞ þ
i

e
vðx1Þ � vðx1Þ � vðeÞf 0. This is true for vðx1Þg 0, but we

need a bound which is independent of i.

Choose any x0 A G and set l0 :¼ vðx0Þ. Let i0 A Z be such that vðai0Þ þ
i0

e
l0 is minimal

(a minimum exits by convergence of f ðx0Þ). By supposing vðx1Þf l0, we get

vðaiÞ þ
i

e
vðx1Þ � vðx1Þ � vðeÞ ¼ vðaiÞ þ

i

e
l0 þ

i

e

�

vðx1Þ � l0
�

� vðx1Þ � vðeÞ

f vðai0Þ þ
i0

e
l0 þ

eþ 1

e

�

vðx1Þ � l0
�

� vðx1Þ � vðeÞ

¼ vðai0Þ þ
i0

e
l0 �

eþ 1

e
l0 � vðeÞ þ 1

e
vðx1Þ:

Now everything is constant except for the last summand, so for vðx1Þ su‰ciently large, this
is non-negative. r
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6.5. Parametrized subsets of Qp. For (one-dimensional) subsets of Qp, the main
conjecture is not di‰cult to prove:

Lemma 6.16. If X is a definable subset of Qp, then TðXÞ is of level 1.

Proof. By Lemma 6.10, trees on su‰ciently fine garlands close to any given point
are isomorphic either to k 7! j or to k 7! TðZpÞ, so in any case they are of the form
k 7! TðZpÞ �TðkÞ where T is of level 0. Thus Lemma 6.6 yields that the total tree TðX Þ
is of level 1. r

To prove the conjecture for definable subsets of Q
2
p , we will need a parametrized

version of this: if we have definable sets XkHQp parametrized by k A G in a suitable ‘‘uni-
form’’ way, then we should get a parametrized level 1 tree. To state this, we need a notion
of ‘‘su‰cient uniform maps’’ from G to Qp.

Definition 6.17. Let d A G>0, MHGf0 and ck A Qp for k A M. We say that k 7! ck is
d-uniform, if k 7! vðckÞ is linear and if there exists an a A Z

�
p such that ckAd p

vðckÞa for all
k A M.

Now here is a uniform version of Lemma 6.16.

Proposition 6.18. Suppose that for each k in a subset MHGf0 we are given a defin-

able set XkHQp, and that these sets are uniform in k in the following sense. Each Xk is the

union of finitely many disjoint cells Ck; i, i A I of the form

Ck; i ¼ fx A Qp j ak; i pi vðx� ck; iÞppi bk; i and bz x� ck; i ¼ riz
eg:

We require that all exponents are equal and that none of the index set I , the exponent e, the
residues ri and conditions pi, ppi depend on k. Moreover set d :¼ dðeÞ as in Lemma 6.3. We

require that for each i; j A I , the functions k 7! ak; i and k 7! bk; i are linear, and the functions

k 7! ck; i and k 7! ck; i � ck; j are d-uniform.

Under these conditions on Xk, the tree M ! fTreesg, k 7! TðXkÞ is piecewise a para-

metrized level 1 tree.

Note that the requirement that the exponents of all cells are equal is not a real restric-
tion: anyway cell decompositions can be refined such that all exponents become equal.

Before we start with the proof, let us state a variant as a corollary.

Corollary 6.19. Suppose that MHGf0 and Xk ( for k A M) are given as in Propo-

sition 6.18 and satisfy all the conditions required there with exception of the uniformity

condition on the cell centers ck; i. (We do however still require the uniformity of di¤erences

ck; i � ck; j.) Suppose moreover that Bk ¼ Bðbk; skÞ are balls, where the function of radii

k 7! sk is linear and such that for any i A I , the function k 7! ck; i � bk is d-uniform (with d

as in the proposition). Then the tree M ! fTreesg, k 7! TBk
ðXkÞ is piecewise a parametrized

level 1 tree.
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Proof of the corollary. Define ckðxÞ :¼ p�skðx� bkÞ. Then TBk
ðXkÞGT

�

ckðXkÞ
�

,
so it su‰ces to verify uniformity of the sets ckðXkÞ. Uniformity of the cell bounds and d-
uniformity of di¤erences of centers carries over (by linearity of k 7! sk), and d-uniformity
of k 7! ck; i � bk yields d-uniformity of k 7! ckðck; iÞ. The exponent e and the conditions pi,
ppi do not change, so it remains to consider the residues ri. They are replaced by p�skri,
which does depend on k. However, as we only want to prove piecewise uniformity of the
resulting trees, we may partition M according to sk modulo e; on these parts, the e-th
power residue of p�skri is constant, so we may replace p�skri by one fixed value. r

Proof of Proposition 6.18. We may suppose that M is infinite; otherwise the state-
ment follows from Lemma 6.16.

We will prove the statement inductively, starting from the leaves. We will cut the tree
horizontally into slices. There will be some thin ones where ‘‘the things happen’’ and some
thick and simple parts in between where the skeleton of the tree will only consist of long
bones. Let us make this precise.

By ‘‘the involved linear functions’’ we mean the set of maps from M to GW fyg con-
sisting of k 7! ak; i, k 7! bk; i, k 7! vðck; iÞ and k 7! vðck; i � ck; jÞ for i; j A I .

For two linear functions l1; l2 : M ! GW fyg, we write

l1 f l2 :, lim
k!y

l2ðkÞ � l1ðkÞ ¼ y:

(If l1 and l2 both are constant y, we set l1 6f l2.) By treating finitely many elements of M
separately using Lemma 6.16, we may suppose that if l1 and l2 both are either involved or
constant 0, then

l1 f l2 ) l2ðkÞ � l1ðkÞfmaxf2d; eþ 1g for all k A M:ð14Þ

In particular,e defines a total order on the involved functions and the zero function, and
whether a cell center ck; i lies in Zp is independent of k.

By partitioning M into finitely many definable sets and treating each one separately,
we may suppose that moreover for any i A I , whether or not Ck; i XZp is empty is indepen-
dent of k. By removing cells not intersecting Zp, we may suppose Ck; i XZp 3j for any i A I

and any k A M.

Our induction will run over the number of involved functions l satisfying lg 0.
Thus by induction hypothesis, we can apply Corollary 6.19 to ðXkÞk and a family of
balls Bk ¼ Bðbk; skÞ, provided there is at least one involved function lg 0 such that
l� ðk 7! skÞ 6g 0.

We will now first treat the special case where every lower bound ak; i satisfies either
ak; i e 0 or ak; i g 0, and every other involved function l satisfies lg 0. This corresponds
to the thick but simple slices in our tree. Afterwards we will reduce the general case to the
first one; this reduction corresponds to the thin but complicated slices.
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The thick and simple parts. Let l 0
0 be the minimal (with respect toe) involved func-

tion satisfying l
0
0 g 0, and define l0 :¼ l

0
0 �maxfd; eg. By (14), we have l0ðkÞ > 0 for all

k A M.

We may suppose I 3j. Choose an arbitrary i0 A I and suppose without loss ck; i0 ¼ 0
for all k A M. Thus vðck; iÞf l0ðkÞ þ d for all i A I . Moreover, as Ck; i XZp is non-empty
and bk; i f l0ðkÞ þ e, we get Ck; i XB

�

0; l0ðkÞ
�

3j; in particular Bð0; lÞ A TðXkÞ for all
le l0ðkÞ.

Now suppose first that l0 < y, and set Bk :¼ B
�

0; l0ðkÞ
�

. The parametrized tree
k 7! TBk

ðXkÞ is of level 1 by induction hypothesis, as the involved function l
0
0 satisfies

l
0
0 g 0 and l

0
0 � l0 6g 0. By Lemma 4.7, it is therefore enough to verify that the tree on

the cheese Sk :¼ ZpnBk is of level 1 in such a way that k 7! Bk is a joint. We choose
fBð0; lÞ j 0e le l0ðkÞg as skeleton (with a single bone of length l0); it remains to analyse
the side branches.

If l0 ¼ y, then we do not need the induction hypothesis; we simply define Sk :¼ Zp

and choose fBð0; lÞ j lf 0g as skeleton for TSk
ðXkÞ (again with one single bone).

The tree TSk
ðXkÞ does not change if we replace all centers of cells ck; i by 0: if l0 ¼ y,

there is nothing to do; otherwise this follows from Lemma 6.3 (1), using that for x B Bk, we
have vðx� ck; iÞ < l0ðkÞe vðck; i � 0Þ � d. So for x A Sknf0g, we get that x A Xk if and only
if there is an i A I with ak; i e 0 such that x=ri is an e-th power. Thus for l < l0ðkÞ, the side
branch of TðXkÞ at Bð0; lÞ only depends on l modulo e and not on k at all. Moreover,
each side branch consists of a finite tree with copies of TðZpÞ attached to its leaves; hence
k 7! TSk

ðXkÞ is indeed of level 1.

The thin and complicated slices (Reduction of the general case to the case where all
involved l satisfy lg 0, except for lower bounds ak; i which may also be ak; i e 0). Let
us first have a look at cells whose centers ck; i lie outside of Zp. If vðck; iÞ < �d and
Ck; i XZp 3j, then Lemma 6.3 yields Zp HCk; i, so this case is trivial. If �de vðck; iÞ < 0,
then vðck; iÞ does not depend on k by (14), and d-uniformity of ck; i yields ck; iAd a

0 for some
a 0 A Qp not depending on k. Thus for any two di¤erent k; k 0 A M, we get vðck; i � ck 0; iÞf 0.
Moreover, Ck; i XZp 3j implies ak; i e vðck; iÞ ¼ vðx� ck; iÞe bk; i for all k and all x A Zp.
This yields bijections

Zp XCk; i ! Zp XCk 0; i; x 7! x� ck; i þ ck 0; ið15Þ

for all k; k 0 A M, which will be useful later.

Now let l be the maximum value of all constant involved functions. We will cut out
holes of radius lþ d around the centers of some of the cells, apply the thick and simple case
to get the trees in these holes, compute the tree outside of the holes and then put everything
together. Define Bk; i :¼ Bðck; i; lþ dÞ for i A I . We do not want to cut out all Bk; i, but only
those in which Xk is complicated: define JH I in such a way that j A J implies ck; j A Zp and
Ck; j XBk; j 3j. Moreover, if there are several i for which the balls Bk; i are equal, then put
only one representative into J.

Let us first analyse the relative position of a cell Ck; i and a hole Bk; j (i A I ; j A J). We
claim that either ck; i A Bk; j or Ck; i XBk; j ¼ j, and that this does not depend on k. Indeed,
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if vðck; i � ck; jÞg 0, then by (14) we have vðck; i � ck; jÞf lþ 2d for all k A M, so ck; i A Bk; j.
If on the other hand vðck; i � ck; jÞ 6g 0, then vðck; i � ck; jÞe l for all k A M, and Lemma
6.3 (1) implies that Bk; j lies either completely inside or completely outside of Ck; i. As
Bk; j XCk; j 3j, the disjointness of Ck; i and Ck; j implies Ck; i XBk; j ¼ j.

Now fix j A J. Computing the tree k 7! TBk; j
ðXkÞ in the hole Bk; j can be done using

the corollary version of the thick-and-simple case, after removing all cells not intersecting
Bk; j. Indeed, the required uniformity in k is clear, and the condition lg lþ d for involved
l (or ak; i e lþ d for lower bounds) follows from the fact that Ck; i XBk; j 3j implies
vðck; i � ck; jÞg 0 and bk; i g 0.

By Lemma 4.7 we are left to compute the tree on the cheese Sk :¼ Zpn
S

j A J

Bk; j. We

will first check that for each k separately, the tree TSk
ðXkÞ is of level 1 (with the nodes Bk; j

being joints), and then we will find isomorphisms TSk
ðXkÞGTSk

ðXk 0Þ respecting the holes.
This implies that k 7! TSk

ðXkÞ is parametrized of level 1.

To prove that TSk
ðXkÞ is of level 1, it is enough to show that any ball BHSk of radius

lþ 2d lies either completely inside or completely outside of Xk. So suppose x A Xk XSk.
Then x A Ck; i for some i A I , and our choice of holes ensures that vðx� ck; iÞ < lþ d.
Lemma 6.3 (1) implies that Ck; i (and therefore Xk) contains Bðx; lþ 2dÞ.

To get the isomorphisms TSk
ðXkÞ ! TSk 0 ðXk 0Þ we first replace (for each k) Xk by a set

Yk which has the same tree on Sk, but which is simpler inside the holes. We ensure that
TðYkÞ contains the nodes Bk; j, j A J, so that TSk

ðYkÞHTðYkÞ. Then we will use Lemma
3.1 to construct an isomorphism TðYkÞ ! TðYk 0Þ sending Bk; j to Bk 0; j; this yields the de-
sired isomorphism TSk

ðXkÞ ¼ TSk
ðYkÞ !@ TSk 0 ðYk 0Þ ¼ TSk

ðXk 0Þ.

Define Yk :¼ ðXkXSkÞW fck; j j j A Jg. It is clear that TSk
ðXkÞGTSk

ðYkÞ, and the
element ck; j ensures that Bk; j is a node of TðYkÞ. It remains to define the bijective isometry
f : Yk ! Yk 0 needed in Lemma 3.1. To this end, let us first adapt our cell decomposition to
the sets Yk: define

Dk; i :¼ Ck; in
S

j A J

Bk; j:

Thus XkXSk ¼ ZpX
S

i A I

Dk; i. Our choice of J ensures that Dk; i ¼ Ck; inBk; i if ck; i A Zp

and Dk; i ¼ Ck; i otherwise, so Dk; i is a cell again, and moreover x A Zp XDk; i implies
vðx� ck; iÞ < lþ d.

Next, we claim that the map x 7! x� ck; i þ ck 0; i induces a bijection from Dk; i XZp

to Dk 0; i XZp. If ck; i B Zp, then this has already been verified in (15). Otherwise, it fol-
lows from the fact that the bounds of Dk; i are either independent of k or less than 0.
Using this, we define the bijection f : Yk ! Yk 0 by fðxÞ :¼ x� ck; i þ ck 0; i if x A Dk; i XZp,
i A I and fðck; iÞ ¼ ck 0; i if i A J. It remains to verify that f is isometric, i.e. that
vðx1 � x2Þ ¼ v

�

fðx1Þ � fðx2Þ
�

for any x1; x2 A Yk.

Suppose x1; x2 A Yk are given. Let i A I be such that x1 A Dk; i or i A J such that
x1 ¼ ck; i. Choose j analogously for x2. Then
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fðx1Þ � fðx2Þ ¼ x1 � ck; i þ ck 0; i � x2 þ ck; j � ck 0; j

¼ x1 � x2 � ðck; i � ck; jÞ þ ðck 0; i � ck 0; jÞ;

so it is enough to show that

vðx1 � x2Þ < v
�

ðck; i � ck; jÞ � ðck 0; i � ck 0; jÞ
�

:ð16Þ

We may suppose i3 j; otherwise, this is trivial. Now recall that ck; i � ck; j is
d-uniform in k and that vðck; i � ck; jÞ is involved. Suppose first that vðck; i � ck; jÞ is con-
stant. Then we get ck; i � ck; jAd ck 0; i � ck 0; j, so the right-hand side of (16) is at least
vðck; i � ck; jÞ þ d. If x1 ¼ ck; i and x2 ¼ ck; j, then this implies (16) trivially. If x1 A Dk; i and
x2 ¼ ck; j, then apply Lemma 6.3 (1). If x1 A Dk; i and x2 A Dk; j, then apply Lemma 6.3 (2).

If vðck; i � ck; jÞ is not constant, then by (14) both ck; i � ck; j and ck 0; i � ck 0; j have
valuation at least lþ 2d, so we have to check vðx1 � x2Þ < lþ 2d. If x1 ¼ ck; i, then this
follows from x2 B Bk; i. If x1 A Dk; i, then x1 B Bk; i, i.e. vðx1 � ck; iÞ < lþ d, and the claim
follows from Lemma 6.3 (1). r

6.6. Proof for definable subsets of Q2
p . We are now ready to prove that if X is a de-

finable subset of Q2
p , then the tree of X is of level 2. Together with Lemma 4.8, this implies

Theorem 1.5.

Proof for subsets of Q2
p . Suppose that X HQ

2
p is definable. Our goal is to prove that

TðXÞ is a tree of level 2. We use Lemma 6.6, i.e. it is enough to show that for any
ðx0; y0Þ A Z

2
p and for su‰ciently large l, m, r, the trees on the corresponding garlands

are piecewise of level 1. We suppose without loss ðx0; y0Þ ¼ ð0; 0Þ.

For the remainder of the proof fix a garland G for ð0; 0Þ, l, m, r. At several places, we
will suppose l, m, r to be su‰ciently large; of course the meaning of ‘‘su‰cient’’ must not
depend on G (as augmenting m and r augments the number of garlands). Indeed, l, m, r will
only depend on two cell decompositions of X : a normal one and one with coordinates
exchanged.

For k A M :¼ MðGÞ, let Gk be the corresponding component of G. Recall that
Gk ¼ B

�

pk � ðxG; yGÞ; kþ m
�

for some ðxG; yGÞ A Z
2
p with vðxG; yGÞ ¼ 0. We may suppose

vðxGÞ ¼ 0; otherwise, exchange coordinates.

Denote by H the projection of G onto the first coordinate and by
Hk ¼ BðpkxG; kþ mÞ the projections of the components Gk. As vðxGÞ ¼ 0, H is a garland
with components Hk. Denote by Bk ¼ BðpkyG; kþ mÞ the projection of Gk onto the second
coordinate. For x A H, let Xx :¼ fy A Qp j ðx; yÞ A Xg be the fiber of X at x.

Our goal is to compute TGðXÞ. We will verify that Corollary 3.3 can be applied
to each set GkXX , yielding that TGk

ðX Þ is isomorphic to TðZpÞ � TBk
ðXxkÞ, where

xk :¼ pkxG A Hk. We will moreover verify that Corollary 6.19 can be applied to the sets
Xxk and the balls Bk (where k runs through M). This implies that the map k 7! TBk

ðXxkÞ
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is piecewise a level 1 tree. Thus TGðXÞ satisfies the prerequisites of Lemma 6.6, and we are
done.

Before we attack the prerequisites of the two corollaries, let us have a closer look at
the set X and fix some more notation. Choose a cell decomposition such that X is the union
of cells. We may suppose that the exponents of all cells are equal to one single e0 A N. Fix
once and for all d :¼ dðe0Þ as in Lemma 6.3. By Lemma 6.10, we may suppose that H is
contained in one single base cell D0HQp.

In the remainder of the proof, C will be a cell contained in X and having base D0; we
will denote its bounds and center by a, b and c, respectively, and its fiber at x A H by Cx.
For any x A H, these fibers Cx form a cell decomposition of Xx. Occasionally we will need a
second cell C 0 (also contained in X and having base D0), with bounds, center and fiber a 0,
b 0, c 0 and C 0

x.

We use Proposition 6.13 and Corollary 6.14 to control a, b and c: for l, m, r su‰-
ciently large, the bounds aðxÞ and bðxÞ only depend on k ¼ vðxÞ, and this dependence is
linear. Moreover, we can choose an e-th root on H and write the center as a convergent
series

cðxÞ ¼ P

i AZ

ci
ffiffiffi

xe
p i

;

where ci ¼ 0 for if 0, and where ci may lie in ~QQp, but ci
ffiffiffi

xe
p i

A Qp for any x A H and any
i A Z by Lemma 6.15 (1). We may suppose that e does not depend on the cell C; otherwise,
take the least common multiple of all e. For the remainder of the proof, we keep an e-th
root on H fixed.

Let i be minimal such that ci3 0 in the above series. By further enlarging l,
we may suppose cðxÞAd ci

ffiffiffi

xe
p i

for all x A H. The same argument also applies to

f ðxÞ :¼ cðxÞ � c 0ðxÞ and to f ðxÞ :¼ cðxÞ � yG

xG
x: we may assume that for each of the

(finitely many) functions f mentioned here, there exist a A ~QQp and i A Z such that
f ðxÞAd a

ffiffiffi

xe
p i

A Qp for all x A H.

We now verify the prerequisites of Corollary 6.19, i.e. we have to verify that the cell
decomposition Cxk of Xxk satisfies the uniformness properties in k. It is clear that only the
bounds and the centers depend on k, and we already ensured that the bounds are linear
in k. It remains to verify that the functions k 7! cðxkÞ � c 0ðxkÞ and k 7! cðxkÞ � pkyG are
d-uniform.

Choose a A ~QQp and i A Z such that cðxkÞ � c 0ðxkÞAd a
ffiffiffiffiffi

xke
p i ¼ a

ffiffiffiffiffiffiffiffiffiffiffi

pkxG
e
p i

and fix
any k0 A M. Then we can write any k A M as k ¼ k0 þ en for some n A G. By unifor-
mity of the choice of roots on H, we have a

ffiffiffiffiffiffiffiffiffiffiffi

pkxG
e
p i ¼ p ina

ffiffiffiffiffiffiffiffiffiffiffiffi

pk0xG
e
p i

. As only n de-
pends on k, this yields d-uniformity of cðxkÞ � c 0ðxkÞ. The same argument applies to

cðxkÞ � pkyG ¼ cðxkÞ �
yG

xG
xkAd a

ffiffiffiffiffi

xk
e
p i

.
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The last remaining task is the verification of the prerequisites of Corollary 3.3.
Fix k A M and suppose we are given x1; x2 A Hk. We have to find a bijective isometry
f : Xx1 XBk ! Xx2 XBk satisfying v

�

fðyÞ � y
�

f vðx2 � x1Þ. We will define f on each
cell Cx1 separately. However, first we have to get rid of some cells: we claim that we can
suppose

v
�

cðxÞ
�

f vðxÞð17Þ

for all x A H.

As cðxÞAd a
ffiffiffi

xe
p i

for some a A Qp, i A Z, we may enlarge l such that (17) either holds
for all x A H or for no x A H. Suppose that it does not hold. We prove that then CXGk

is either empty or equal to Gk (i.e. either we may ignore C or TGk
ðXÞ is trivial). We have

to check that for ðx1; y1Þ; ðx2; y2Þ A Gk, y1 A Cx1 if and only if y2 A Cx2 . The cell Cx2 is just
a shift of Cx1 (the bounds a and b only depend on k), so in view of Lemma 6.3 (1) it is
enough to verify y1 � cðx1ÞAd y2 � cðx2Þ. But indeed, we have v

�

cðx1Þ
�

< ke vðy1Þ, so
v
�

y1 � cðx1Þ
�

¼ v
�

cðx1Þ
�

< k, and the claim follows from vðy1 � y2Þf kþ d (which is
true if we choose mf d) and cðx1ÞAd a

ffiffiffiffiffi

x1e
p i

Ad a
ffiffiffiffiffi

x2e
p i

Ad cðx2Þ (which follows from Lemma
6.8 if we choose mf dþ vðeÞ).

Now let us define f. For y A Xx1 , let C be the cell such that y A Cx1 and set
fðyÞ :¼ y� cðx1Þ þ cðx2Þ. It is clear that this defines a bijection Xx1 ! Xx2 , and it remains
to verify that f is an isometry, restricts to a bijection Xx1 XBk ! Xx2 XBk and satisfies

v
�

fðyÞ � y
�

f vðx2 � x1Þ:ð18Þ

Restricting to Bk is in fact a special case of Equation (18), as Bk is a ball of radius
kþ me vðx2 � x1Þ. By (17), we may apply Lemma 6.15 (2), which (after enlarging l) im-
plies (18) using fðyÞ � y ¼ cðx2Þ � cðx1Þ.

To check that f is an isometry, suppose y A Cx1 and y 0 A C 0
x1
. If C ¼ C 0, then

fðy 0Þ � fðyÞ ¼ y 0 � y, so there is nothing to do. Otherwise we have

v
�

fðy 0Þ � fðyÞ
�

¼ v
�

y 0 � c 0ðx1Þ þ c 0ðx2Þ � yþ cðx1Þ � cðx2Þ
�

;

so it is enough to check

vðy 0 � yÞ < v
��

c 0ðx1Þ � cðx1Þ
�

�
�

c 0ðx2Þ � cðx2Þ
��

:ð19Þ

We have c 0ðx1Þ � cðx1ÞAd a
ffiffiffiffiffi

x1e
p i and c 0ðx2Þ � cðx2ÞAd a

ffiffiffiffiffi

x2e
p i for suitable a and

i. Choosing mf dþ vðeÞ yields
ffiffiffiffiffi

x1e
p i

Ad
ffiffiffiffiffi

x2e
p i, so c 0ðx1Þ � cðx1ÞAd c

0ðx2Þ � cðx2Þ, i.e. the
right-hand side of Equation (19) is at least v

�

c 0ðx1Þ � cðx1Þ
�

þ d. But y and y 0 are con-
tained in two disjoint cells, so Lemma 6.3 (2) yields vðy 0 � yÞ < v

�

c 0ðx1Þ � cðx1Þ
�

þ d.
This proves isometry and finishes the proof of the theorem. r

6.7. Proof for 1-dimensional definable sets. The proof of the conjecture for 1-
dimensional definable sets is in many aspects just a simplification of the proof for subsets
of Q2

p , so we will be less detailed. A level 0 version of Proposition 6.18 will be build directly
into the proof.
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Proof of Theorem 1.6. If X HQ
n
p is 0-dimensional, then it is finite, so it is clear that

TðXÞ is a tree of level 0. Now let X HQ
n
p be 1-dimensional definable. We will prove that

TðXÞ is of level 1; strictness then follows from Lemma 4.8.

In this proof, we will view Q
n
p as Qp �Q

n�1
p and write elements as ðx; yÞ; all boldface

variables will be ðn� 1Þ-tuples.

By Lemma 6.6, it is enough to show that for any ðx0; y0Þ A Z
n
p and for su‰ciently

large l, m, r, the trees on corresponding garlands are of the form TðZpÞ �T, where T is
of level 0. Without loss suppose ðx0; y0Þ ¼ 0. Again we fix a corresponding garland G with
components Gk ¼ B

�

pk � ðxG; yGÞ; kþ m
�

for some ðxG; yGÞ A Z
n
p with vðxG; yGÞ ¼ 0. By

permuting coordinates, we may suppose vðxGÞ ¼ 0.

We use the same notation as in the proof for subsets of Q2
p : H and Hk are the projec-

tions of G and Gk onto the first coordinate, Bk ¼ BðpkyG; kþ mÞ is the projection of Gk

onto the remaining coordinates, and for x A H, Xx :¼ fy A Q
n�1
p j ðx; yÞ A Xg the fiber of

X at x. Again H is a garland with components Hk.

We will again apply Corollary 3.3 to the sets GkXX to get

TGk
ðX ÞGTðZpÞ � TBk

ðXxkÞ;

where xk :¼ pkxG. Moreover, we will show that k 7! TBk
ðXxkÞ is piecewise of level 0; then

the theorem follows.

Choose a cell decomposition of Qn
p such that X is the union of cells, and suppose that

C is a ‘‘relevant’’ cell, i.e. contained in X and intersecting G. Denote by D0HQp the ‘‘final
base’’ of C, i.e. iterate taking the base n� 1 times. We may suppose HHD0, so all relevant
cells have the same final base D0, and moreover dimD0 ¼ 1.

As C is 1-dimensional, it is the graph of a definable function c : D0 ! Q
n�1
p . In this

proof, by the ‘‘center’’ of C we shall mean this function c. By Proposition 6.13, we may
enlarge l, m, r, choose an e-th root on H and then write the center as

cðxÞ ¼ P

i AZ

ci
ffiffiffi

xe
p i

:ð20Þ

As vðx� pkxGÞf kþ m for x A Hk, we have Bk ¼ B pkxG
yG
xG

; kþ m

� �

¼ B x
yG
xG

; kþ m

� �

,

so cðxÞ A Bk if and only if v cðxÞ � x
yG
xG

� �

f kþ m. Using (20), this does not depend on x if

kg 0, so after enlarging l and removing irrelevant cells, we have cðxÞ A Bk for all x A Hk

and all k A M.

Let c 0 be the center of a second cell C 0. By Corollary 6.14 we may suppose that
v
�

cðxÞ � c 0ðxÞ
�

only depends on k ¼ vðxÞ and is linear in k. Let us call the induced func-
tions vðxÞ 7! v

�

cðxÞ � c 0ðxÞ
�

the ‘‘involved functions’’.

To show that M ! fTreesg, k 7! TBk
ðXxkÞ is piecewise of level 0, we partition M

into definable pieces M 0 in such a way that for any two involved functions l1, l2, the truth
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values of l1 s l2 are constant on each piece M 0. The tree TBk
ðXxkÞ has one infinite path for

each center cðxkÞ, and the depths of the bifurcations are given by v
�

cðxGÞ � c 0ðxGÞ
�

. The
partition of M ensures that the overall structure of TBk

ðXxkÞ is constant on each piece M 0,
and linearity of the involved functions yields linearity of the lengths of the bones on each
piece.

It remains to verify the prerequisites of Corollary 3.3. For k A M and x1; x2 A Hk, we
use the bijection f : Xx1 XBk ! Xx2 XBk sending cðx1Þ to cðx2Þ. This is an isometry as
x 7! v

�

cðxÞ � c 0ðxÞ
�

is constant on Hk. To get v
�

cðx2Þ � cðx1Þ
�

f vðx2 � x1Þ we apply
Lemma 6.15 (2) to each coordinate of c; the prerequisite v

�

cðxÞ
�

f vðxÞ follows from
cðxÞ A Bk. r

7. Possible generalizations

7.1. Skeletal cell decompositions of trees. The main conjecture can be generalized
to a kind of cell decomposition of trees in the following sense. Consider TðZn

p Þ as an imag-
inary sort of our language:

TðZn
pÞ ¼ ðZn

p � GÞ�ðx; lÞ ¼ ðx 0; lÞ
if vðx� x 0Þf l:

Then for any definable set X HZ
n
p , TðXÞ is a definable subset of TðZn

p Þ. Suppose we have
an isomorphism between TðXÞ and a tree constructed out of a level d tree datum; I will call
this an iterated skeleton for TðXÞ. Now let us add more branches to this iterated skeleton in
such a way that afterwards each node has exactly pn children: enlarge the finite trees F at
the beginning of side branches, and add side branches to the iterated side trees which before
were of level 0. The result is an iterated skeleton of level n for TðZn

p Þ which is, in a certain
sense, compatible to TðXÞ. It seems plausible that such a compatible iterated skeleton of
TðZn

p Þ should exist for arbitrary definable sets Y HTðZn
p Þ. Let me make this more precise.

Let D be a tree datum and let T be the tree constructed out of D. Suppose that F is
the finite tree appearing in a side branch datum of D—either for side branches of T itself,
or for side branches of an (iterated) side tree. Suppose moreover that w is a node of F.
Then we define the set CF;wHT of ‘‘nodes coming from w’’. We would like to say that
every node of T lies in exactly one set CF;w; to achieve this, we slightly modify some
definitions.

The only nodes of T which are not part of any set CF;w are the ones on side trees of
level 0. (Nodes on skeletons of trees of higher level are roots of side branches.) Thus we
define a side branch of level �1 to be a finite tree F consisting only of a root, and we let
a tree of level 0 be one with side branches of level �1 (as in Subsection 5.1). Now some
nodes of T appear in two sets CF;w: if w is a leaf of F and F belongs to a side branch
of levelf 0, then the corresponding nodes of T also appear as root of the first side branch
of the side tree attached to w; thus we forbid to take for w a leaf of F unless F is a side
branch of level �1.

In this way, an iterated skeleton of a tree T yields a partition of its nodes; let us call
such a partition a skeletal cell decomposition of T, and let us call the sets CF;w skeletal

cells. Now we can formulate a cell decomposition version of Conjecture 1.1:
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Conjecture 7.1. Suppose Y HTðZn
pÞ is definable. Then there exists a skeletal cell

decomposition of TðZn
p Þ such that Y is a union of skeletal cells.

In the introduction, we mentioned a variant ~TTðVÞ of the tree of a variety V , where the
set of nodes at depth l consists of the whole set VðZ=plZÞ. These trees are definable, so
they also fall in the scope of this version of the conjecture. Note that as for Conjecture
1.1, this directly implies rationality of the associated Poincaré series: the proof that trees
of level d have rational Poincaré series directly generalizes to unions of skeletal cells, if
one defines the Poincaré series of a subset Y HTðZn

p Þ by

PY ðZÞ :¼
P

y

l¼0

Kfv A Y j depthTðZn
p ÞðvÞ ¼ lg � Zl:

7.2. Trees over other Henselian fields. If K is any Henselian field, then one can
define the tree of a definable subset of K n in an analogue way as over Qp (though one needs
a generalized notion of tree if the valuation group is not discrete). One cannot expect to get
a nice statement on such trees if the model theory of K is not understood, but there are
several cases in which it is understood and where a variant of the main conjecture would
be interesting: algebraically closed valued fields and Henselian fields of characteristic
ð0; 0Þ. Moreover, if the model theory is not understood, one may still hope for a conjecture
concerning trees of varieties.

The reason I think algebraically closed fields are interesting is that there, trees should
be simpler, and one might hope to first prove a version of the conjecture in this case,
before going back to non-algebraically closed fields. Indeed, over Qp, we had di¤erent
side branches depending on the depth modulo some r. The reason for this was that not all
roots exist, so this phenomenon should disappear over algebraically closed fields.

Concerning Henselian fields K of characteristic ð0; 0Þ, a good version of the conjec-
ture there should imply a uniform version of the conjecture over Qp for almost all p, which
in turn should imply rationality of the Poincaré series ‘‘uniformly in p’’, probably in the
same sense as it has been proven in [5]. Let me make this precise, describing the hopes I
have in this case.

Over Qp, our trees were purely combinatorial; if the residue field is not finite, then
most nodes will just have infinitely many children, so there is not much combinatorial in-
formation left. Thus it will be necessary to add some additional structure to the trees; prob-
ably the set of children of a node (or the appropriate equivalent if the value group is not
discrete) should be a definable set over the residue field. A tree datum D in this setting
should contain formulas wðyÞ in the ring language, which describe the sets of children of
some nodes; for any valued field K, one then gets an actual tree TD;K by interpreting the
formulas wðyÞ in the residue field of K .

Now suppose that for any Henselian field K of characteristic ð0; 0Þ and any formula
fðxÞ (with x in the valued field sort), we do not only have a tree datum D describing
T
�

fðKÞ
�

, but moreover we can say this in a first order way: there is a sentence c which
holds in K and such that for any other valued field K 0, K 0 � c implies that D describes
T
�

fðK 0Þ
�

. Then for any given formula fðxÞ, by compactness there is a finite set D of tree
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data such that for any K Henselian of characteristic ð0; 0Þ, there is a D A D describing
T
�

fðKÞ
�

. If we restrict ourselves to fields with value group (elementarily equivalent to) Z,
then by Ax-Kochen-Eršov D will only depend on the residue field. Thus we may unify all
D A D to one single tree datum D0 which is valid for all K by incorporating the choice of D
into the formula describing the children of the root. By applying this to ultraproducts of the
fields Qp, we get that D0 also describes T

�

fðQpÞ
�

for almost all p.
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[3] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77

(1) (1984), 1–23.

[4] J. Denef, p-adic semi-algebraic sets and cell decomposition, J. reine angew. Math. 369 (1986), 154–166.

[5] J. Denef, F. Loeser, Definable sets, motives and p-adic integrals, J. Amer. Math. Soc. 14 (2) (2001), 429–469.
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