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Abstract. We revisit an algorithm by Skeel et al. [5, 16] for computing
the modified, or shadow, energy associated with symplectic discretizations of
Hamiltonian systems. We amend the algorithm to use Richardson extrapola-
tion in order to obtain arbitrarily high order of accuracy. Error estimates show
that the new method captures the exponentially small drift associated with
such discretizations. Several numerical examples illustrate the theory.

1. Introduction. Numerical simulation of conservative differential equations re-
quires special care in order to avoid introducing non-conservative, or non-physical
truncation error effects. For Hamiltonian ODEs or Euler–Lagrange equations orig-
inating from variational principles there exists much evidence [6, 9, 11, 14] that the
proper discretization scheme should be symplectic [7, 9, 11, 18]. In the Hamilton-
ian case this can be achieved by imposing special conditions on classical methods
or by methods based on generating functions [7]. In the variational formulation
symplecticity is achieved by discretizing the action integral and carrying out a dis-
crete variation [10]. In some cases these formulations and methods turn out to be
equivalent by the Legendre transformation [8, 10].

Focusing on the Hamiltonian side, symplecticity implies that the trajectory
produced by the numerical algorithm is the exact solution [12] of another, non-
autonomous “modified” Hamiltonian system close to the original one. Various sta-
bility results for Hamiltonian ODEs then apply, leading to an understanding of the
dynamics of such discretizations schemes [6, 9, 11, 15]. Early results on modified
equations focused on the autonomous part [2, 4, 6, 13, 14] and established that its
flow is exponentially close to the numerical trajectory. This work was motivated
by the bounded error in energy observed in simulations with symplectic schemes.
The early results are contained in the newer results since the time-dependent part
is exponentially small due to analyticity. Despite its smallness the non-autonomous
term excites instabilities through resonances, one consequence being a drift in the
modified energy. In simulations requiring millions of steps such as in molecular
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2 PER CHRISTIAN MOAN AND JITSE NIESEN

dynamics [9, 17] and celestial mechanics [19] these effects become significant and it
becomes important to understand and control them.

Constructing the modified Hamiltonian is equivalent to evaluating many terms
in the Baker–Campbell–Hausdorff formula, or its continuous analogue [13], a com-
binatorially complicated task possible only for small systems and to a low order of
accuracy. Recently, Skeel and coworkers [5, 16] devised a method for numerically
computing the value of the modified Hamiltonian along the numerical trajectory,
thus allowing us to track the possible drift in the modified energy. In this paper we
modify their method to make it easier to implement and obtain high order, possibly
at the cost of extra storage. The new method is based on the same idea, but it does
not give identical results. We also provide exponentially small error bounds when
the new method is applied in the asymptotic regime. It is then used to verify, and
justify the theory of modified equation on several test equations and methods.

2. Modified equations. As alluded to in the introduction, the numerical solution
of an ODE y′ = f(y) is interpolated by the exact solution of a modified ODE
y′ = f(y, t). The modified equation is non-autonomous, but the non-autonomous
part is exponentially small in the step size. More precisely, given an analytic vector
field f and a one-step method defined by an analytic mapping Ψh,f , there exists an

analytic vector field f(y, t), h-periodic and analytic in t, whose exact flow exactly
interpolates the numerical trajectory {xn}, xn+1 = Ψh,f (xn). The construction

in [12] starts by constructing a modified vector field f̃(y, t) which is only C∞ in
t whose flow interpolates {xn}. This vector field is then transformed by a time-
dependent coordinate transformation into a vector field f analytic in t.

The domain of analyticity of f̃ plays an important role in the analysis, and we
have found it useful to assume that f̃ is analytic for all y in a domain of the form

Dy :=
⋃

t>0

{z ∈ C
d : |ỹ(t) − z|∞ < r̃y} =

⋃

t>0

{z ∈ C
d : |ℑ(ỹ(t) − z)|∞ < r̃y}

for some r̃y > 0, where ỹ(t) = φt,f̃ (y0) is the trajectory of the smooth modified

vector field f̃ . This domain is typically smaller than the domain of analyticity of f ,
and depends on the numerical method. In the following we will use the sup-norm
‖f‖D = supz∈Dy

|f(z)|∞. With these definitions the main result of [12] in the limit
h → 0 can be formulated as

Theorem 1. Let Ψh,f be a one-step method applied to the analytic vector field f ,
and yn+1 = Ψh,f (yn) be the approximations obtained by iterating Ψ. Then there

exists a modified vector field f(y, t) = f(y)+ r1(y)+ r2(y, t) which is h-periodic in t

and analytic in (y, t) ∈ D′
such that its exact flow satisfies y(nh) = Φnh,f (y0) = xn.

In the limit h → 0 we have the estimates

‖f‖D′ ≤ 2

1 − η
‖f‖D

‖r2‖D′ = O
(‖f‖D

h
exp

(

−η
2πδ

‖f‖Deh

))

for 0 < η < 1, 0 < δ < r̃y. The domain of analyticity of the modified vector field is

D′
=

{

(z, τ) ∈ C
d × C : |ℑ(z − y(t))|∞ < r̃y − δ, |ℑ(τ − t)| <

ηδ

‖f‖De

}

,

and the norm ‖ · ‖D is defined by ‖f‖D′ = sup(z,τ)∈D′ |f(z, τ)|∞.
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For a Hamiltonian vector field f and a symplectic numerical method [6, 7, 14],
the modified vector field f is also Hamiltonian [4, 7, 9], with Hamiltonian H =
H(y) + G1(y) + G2(y, t) where H, G1 and G2 are the Hamiltonians corresponding
to the vector fields f , r1 and r2, respectively. The change in the modified energy
along the numerical trajectory therefore satisfies

d

dt
H = {H, H} +

∂

∂t
H =

∂

∂t
G2,

where {F,G} :=
∑m

j=1 Fqj
Gpj

− Fpj
Gqj

is the Poisson bracket. By Theorem 1 this
drift is very small for small h, thus motivating symplectic methods.

3. The method of Skeel et al. for computing the modified energy. Skeel
and coworkers [5, 16] found an ingenious way of evaluating the modified energy H
at the points {xn} for discretizations based on splittings [3]. Suppose we have an
Hamiltonian given by H = 1

2pT M−1p + U(q). An explicit splitting algorithm with
step size h is given by

for n = 0, 1, 2, ...

p̂0 = pn, q̂0 = qn

for s = 1 : S

p̂s = p̂s−1 − hasUq(q̂s−1)

q̂s = q̂s−1 + hbsM
−1p̂s

end

pn+1 = p̂S , qn+1 = q̂S

end

(1)

leading to approximations pn+1 = p̂S , qn+1 = q̂S when q̂0 = qn, p̂0 = pn at tn = nh.
By choosing the coefficients as, bs appropriately, a method of arbitrary high order
can be found. The modified Hamiltonian can be found by representing the inner
loop of (1) as a concatenation of exponential operators [7]

Ψh,f (p, q) = exp(−ha1Uq∂p)(p, q) exp(hb1M
−1p∂q) · · ·
exp(−haSUq∂p) exp(hbSM−1p∂q),

whereby the Baker–Campbell–Hausdorff (BCH) formula is used to find an expres-
sion so that Ψh,f (x) ≃ exp(hf∂)(x).

The approach of Skeel et al. for computing values of the modified energy is to
append one scalar equation to the numerical integrator,

for n = 0, 1, 2, . . .

p̂0 = pn, q̂0 = qn, β̂0 = βn

for s = 1 : S

p̂s = p̂s−1 − hasUq(q̂s−1)

β̂s = β̂s−1 − has(q̂
T
s−1Uq(q̂s−1) + 2U(q̂s−1))

q̂s = q̂s−1 + hbsM
−1p̂s

end

pn+1 = p̂S , qn+1 = q̂S , βn+1 = β̂S

end

(2)
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where β0 = 0. To understand how the modified energy can be recovered from
{pn, qn, βn}, note that by Theorem 1 the numerical trajectory (pn, qn) is exactly
interpolated by the flow of a Hamiltonian H. The discretization (2) is the dis-
cretization of Hα = α2H(α−1p, α−1q) where β is conjugate to α, the so-called
homogeneous extension of H(p, q). The discovery in [16] rests on the fact that
homogeneous extension is a Lie algebra homeomorphism. Thus, since H is con-
structed by Poisson brackets as in the BCH formula, the modified Hamiltonian for
(2), Hα, is the homogeneous extension of H, hence the trajectory generated by (2)
is interpolated by

q′ = Hp(p, q, t),

p′ = −Hq(p, q, t),

β
′
= qT Hq(p, q, t) + pT Hp(p, q, t) − 2H(p, q, t),

from which

H =
1

2
(qT Hq + pT Hp − β

′
) =

1

2
(−qT p′ + pT q′ − β

′
). (3)

The equation for α is removed from (3) since Hα does not depend on β, the conju-
gate variable of α, and hence α′ = 0 which is solved exactly by the methods we are
considering.

Thus the value of H can be computed by finding the derivatives of the interpo-
lating trajectory (which are not known since we do not have Hp, Hq). In [5, 16]
estimates of the derivatives are computed using backward difference formulas and
interpolating polynomials with stored values of {pn, qn, βn}. These polynomials
can be precomputed, but unfortunately the required expressions are very large, and
they only provide expressions up to order 24. Their method does however have an
advantage in requiring less stored values than one based on centered differences,
which might be important if the modified energy is part of the simulation [5].

4. Richardson extrapolation. Our suggestion is to use Richardson extrapolation
in order to avoid the large expressions that arise in the method described in the
previous section.

First consider the use of Richardson extrapolation to find the derivative of a
function, say y, at zero given the function values on a grid. We define the central
difference approximations

Tj,1 =
y(jh) − y(−jh)

2jh
, j = 1, . . . ,

and compute the Richardson table entries

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(1 − k/j)2 − 1
, k = 1, . . . , j − 1.

We then have by standard results that Tj,j = y′(0) +O(h2j). In fact, it is straight-
forward to prove by induction that the Tj,k satisfy

Tj,k =

k
∑

i=1

2 (−1)i+1 (j)2k
(i − 1)! (k − i)! (2j − k + i)k (j − k + i)

Tj−k+i,1

where the Pochhammer symbol denotes the falling factorial:

(n)k = n(n − 1)(n − 2) . . . (n − k + 1) =
n!

k!
.
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It follows that the diagonal entries in the Richardson table are given by Tm,m =
Dmy(0) where Dm(y) denotes the central-difference approximation to the deriva-
tive y′(0) using 2m points, defined by

Dmy(0) =
m
∑

j=1

(−1)j+1(m!)2

jh(m − j)!(m + j)!

(

y(jh) − [y(−jh)
)

. (4)

This approximation satisfies Dmy(0) = y′(0) + O(h2m). By choosing the index m
appropriately, it is possible to find an exponentially accurate approximation for the
derivative of analytic functions, as stated in the following lemma.

Lemma 2. Let y(t) be analytic in {t ∈ C : |ℑ(t)| < ρ}, then there exists an m∗

(which depends on h) and a constant C1 > 0 such that

|y′(0) − Dm∗y(0)| ≤ C1

ρ exp
(

−πρ
h

)

h2
‖y‖ρ

where ‖y‖ρ = sup|ℑ(τ)|<ρ |y(τ)|∞.

The proof of this result and other results are found in the Appendix.

5. Computing the modified energy using Richardson extrapolation. Re-
turning to the computation of the modified energy (3), the derivatives in this
formula can be computed with Richardson extrapolation using the stored values
of {pn, qn, βn}. To compute the modified energy at t = nh, we define the central
difference approximation

Tn
j,1 =

1

2

(

−qT (nh)
p((n + j)h) − p((n − j)h)

2jh

+ pT (nh)
q((n + j)h) − q((n − j)h)

2jh
− β((n + j)h) − β((n − j)h)

2jh

)

=
1

2

(

−qT
n

pn+j − pn−j

2jh
+ pT

n

qn+j − qn−j

2jh
− βn+j − βn−j

2jh

)

for j = 1, . . . and then compute the Richardson table entries as before:

Tn
j,k+1 = Tn

j,k +
Tn

j,k − Tn
j−1,k

(1 − k/j)2 − 1
, k = 1, . . . , j − 1, (5)

The expression Tn
j,j is a convenient way of computing the approximations and in

addition it gives a way of estimating the error in the approximation |H−Tj−1,j−1| ≈
|Tj,j−Tj−1,j−1|, which is useful for finding a stopping criterion for the extrapolation
process.

We mention in passing that accurate values of H might be obtained using Fourier
series as well [1], however such methods seem most useful for quasi-periodic motions
or scattering problems, while the approach taken here seems suitable for a broader
range of problems.

The following corollary follows from Lemma 2.

Corollary 3. Let pn, qn, βn be given by the numerical scheme then there exists an
m∗ such that

|H(pn, qn, tn) − Tn
m∗,m∗ | ≤ C1

2

ρ exp
(

−πρ
h

)

h2

(

|qn|1‖p‖ρ + |pn|1‖q‖ρ + ‖β‖ρ

)

,

where ρ is such that the interpolating trajectory (p(t), q(t), β(t)) is analytic for
|ℑ(t)| < ρ.
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In Corollary 3 the parameter ρ related to the domain of analyticity of y(t) is
undetermined. The following existence lemma will be useful for bounding ρ.

Lemma 4 (Domain of analyticity of the solution). Let g(y, t) be an analytic vector
field on the domain

(z, τ) ∈ Dy ×Dt

Dy = {z ∈ C
d : |z − xn|∞ < ry}

Dt = {t ∈ C
d : |ℑ(t)| < rt}

Then y(t) satisfying y′ = g(y, t), y(0) = xn ∈ R
d is an analytic function of t on the

domain

D =

{

t ∈ C : |t| < min

(

ry

‖g‖r
, rt

)}

,

where ‖g‖r := sup(z,t)∈Dy×Dt
|g(z, t)|∞.

We can now combine the estimates of Corollary 3 and Lemma 4 to determine a
bound on ρ, and hence on the error in the numerically computed modified energy.

Theorem 5 (Numerical modified energy). Let H(p, q) be analytic in its arguments,
and let pn, qn, βn be computed by the algorithm (2). Then for each n there exists
an m∗ such that we have the error bound

|H(pn, qn, tn) − Tn
m∗,m∗ | ≤ C1

2h2
exp

(

−C2
δ

h‖f‖D

)

(

|qn|‖p‖ρ + |pn|‖q‖ρ + ‖β‖ρ),

where C2 < 2.14707 (and ρ = 0.6835δ/‖f‖D).

The error bound in Theorem 5 shows that we are able to track the modified energy
exponentially accurately. Moreover the bound displays the same dependency on the
parameters h, r̃y and ‖f‖D as Theorem 1.

The bounding-constant C2 is however smaller than the 2π/e found in the proof
of Theorem 1. It is unclear to us if this is due to the proof techniques applied, or if
it is an actual weakness of the extrapolation method when applied to estimate the
derivatives and thus the modified energy.

6. Numerical experiments. We have implemented the extrapolation algorithm
using the Arprec multiple-precision library in order to avoid pollution by round-off
errors and to be able to verify the theory to high accuracy.1 We set the precision to
120 digits. Most experiments are done using the standard Störmer–Verlet scheme
(also known as the leap frog scheme). All the experiments were also repeated with
two fourth-order splitting schemes to check for dependence on splitting scheme
coefficients. No noteworthy dependence was found, and we only present these results
for the Kepler experiment.

An early experiment verifying the exponentially small drift in modified energy
was done by Benettin and Giorgilli [2] who used a Hamiltonian of the form H =
1
2 (p2

1 +p2
2)+U(q2

1 +q2
2) with the potential function U vanishing fast as its argument

becomes large. In this case, the exponentially small effects can be observed directly
because methods of the form (1) preserve the energy H exactly when U is identically
zero. To carry out this experiment the initial values y0 = (p1(0), p2(0), q1(0), q2(0))

1The Arprec library is available from http://crd.lbl.gov/~dhbailey/mpdist/. The C++
source code for our experiments can be downloaded from http://www1.maths.leeds.ac.uk/

~jitse/software.html

http://crd.lbl.gov/~dhbailey/mpdist/
http://www1.maths.leeds.ac.uk/~jitse/software.html
http://www1.maths.leeds.ac.uk/~jitse/software.html
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Figure 1. Drift in modified energy for the pendulum as a function
of step size h for various values of m. The thick line indicates the
limit.

are then chosen so that U vanishes and that the trajectory passes close to (q1, q2) =
(0, 0) before ending at some point yT = (p1(T ), p2(T ), q1(T ), q2(T )) where again U
vanishes. Carrying out that simulation the difference |H(y0) − H(yT )| is observed
to be O(exp(−C/h)) where C is some unspecified constant.

We repeated this experiment using our method, and found that in this case it had
zero error so the experiments we consider will not have this type of Hamiltonian.
This matter warrants further investigations, but we have not pursued these in this
paper.

6.1. The pendulum. In this experiment we apply the Störmer–Verlet method to
the pendulum, which has Hamiltonian H = p2/2− cos(q), integrated over the time
interval [0, 100]. Figure 1 reports the drift in the modified energy computed us-
ing Tm,m for m = 2, 5, 10, 15, 20, 30, 40. Here, and in the other plots, the drift is
defined as the difference between the maximum of the modified energy over the
integration interval and its minimum. The figure suggests that the approxima-
tions Tm,m converge for this problem. The limit is indicated by the thicker line in
the left part of the plot, which shows that the drift follows the exp(−c/h) behaviour
predicted by the theory.

The initial value for the experiment reported in Figure 1 is q(0) = 0 and p(0) = 1.
Next we study the effect of varying the initial condition. The result is shown in
Figure 2. The Störmer–Verlet method shows improved energy preservation near
the equilibrium point, revealing the exp(−c/h‖f‖D) dependency on step size and
on ‖f‖D which decreases as p → 0.
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Figure 2. Drift in modified energy for the pendulum as a function
of the initial momentum p(0).

6.2. Kepler problem. The Kepler problem for one particle in a central force field
is given by the Hamiltonian

H =
1

2
(p2

1 + p2
2) −

1
√

q2
1 + q2

2

.

We integrate over the interval [0, 100] starting from the point

p1 = 0, q1 = 1 − ecc,

p2 =

√

1 + ecc

1 − ecc
, q2 = 0.

where 0 ≤ ecc < 1 is the eccentricity of the orbit.
The left plot of Figure 3 shows the theoretical exp(−c/h) behavior. In contrast

with the pendulum, for this problem the Tm,m do not converge as m → ∞, but the
sequence has to be truncated at a suitably chosen point. To find the optimal m, we
approximate the error in the m-th estimate as

|H − Tm,m| ≈ |Tm,m − Tm−1,m−1|. (6)

We compute this estimate for m = 2, 3, . . . , 200 and select the value of m for which
the estimated error is minimized. This procedure recovers the expected exponential
behaviour.

The right plot of Figure 3 shows the dependence of the drift in the modified
energy on the eccentricity of the orbit. Almost circular orbits with a low eccentric-
ity show much better preservation of the energy than highly elliptical orbits. An
instability occurs at a critical eccentricity which depends on the step size. This can
be explained by the fact the the topology of the energy levels of the modified energy
changes with h, thus leading to unbounded trajectories and instability.

We used the second-order Störmer–Verlet method to produce Figure 3. We ran
the experiments again with two fourth-order splitting methods: Yoshida’s scheme
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Figure 3. Drift in modified energy for the Kepler problem as a
function of step size h for eccentricity ecc = 0.6 (left plot), and as
a function of eccentricity (right plot).

based on extrapolation [20] and a fourth-order scheme due to Blanes and Moan [3].
The last scheme is optimized for problems of the type we have considered. It has
very small error coefficients at the cost of many stages, leading to coordinate errors
which are typically three orders of magnitude smaller than Yoshida’s method at
the same computational cost. The plots for the drift in modified energy of both
Yoshida’s method and the Blanes–Moan method look the same as for the Störmer–
Verlet method. In particular, the constant c in exp(−c/h) is the same. However,
the drift in the modified energy for the Störmer–Verlet method is approximately a
factor of three smaller than Yoshida’s method and a factor of four smaller than the
method of Blanes and Moan.

The left plot in figure 4 illustrates for several different step sizes how the modified
energy varies. There are peaks when the particle is near the singularity at the origin.
The crucial point is that the energy essentially recovers its value after this point
before another close encounter. The plot on the right compares the three different
methods. It is seen that the methods give rather different results, even though the
maximal variation in the modified energy is almost the same for the methods. The
Blanes–Moan method seems to preserve the modified energy better after the close
encounter, which might indicate a special advantage of this method when applied to
the Kepler problem. If, however, the time steps are scaled so that the computational
cost is the same for the three methods, the Störmer–Verlet method will preserve
the modified energy better than the high-order methods.

Figure 5 shows the accumulated change in energy, |H(p0, q0, t0)−H(pn, qn, tn)|,
and the instantaneous change in energy, |H(pn−1, qn−1, tn−1) − H(pn, qn, tn)|, to-
gether with the optimal m found by the error estimate (6). The graph shows that
near the singularity quite a high order m (which we bounded by 200) is used. This
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Figure 4. The difference between modified energy at a given time
and the initial modified energy for the Kepler method with eccen-
tricity ecc = 0.6. The left plot shows the results for the Störmer–
Verlet method for different step sizes, while the right plot shows
the results for different methods. All methods are run with step
size h = 0.1, so Störmer–Verlet does considerably less work.

indicates that information from the smooth parts of the trajectory is used near
singularities, and that it might be important to use very high order approximations
to get a clear picture of the drift. The graph also indicates that the algorithm can
track instantaneous changes in energy.

Away from the parts of the orbit where the singularity at the origin is approached
most closely, a lower value of m suffices. It is thus useful to find a more efficient
method for finding the optimal m instead of computing the error estimate for all m
up to some large value (here, 200). We found good results with the following ad-hoc
termination criterion: compute the error estimate (6) for all m up to the first value
of m for which

max
j=m−11,...,m−1

|Tj,j − Tj−1,j−1| ≤ max
j=m−10,...,m

|Tj,j − Tj−1,j−1|,

and then choose the m with the minimal error estimate. The plots produced by
this criterion are nearly indistinguishable from the plots produced when all m up
to 200 are considered.

6.3. Hénon–Heiles system. The Hamiltonian of the Hénon–Heiles system is given
by

H =
1

2
(p2

1 + p2
2) +

1

2
(q2

1 + q2
2 + 2q2

1q2 − 2
3q3

2).

Skeel et al. investigated the theoretical exp(−c/h) behaviour of the drift in the
modified energy for this system, and report that the results are “less convincing” [5,
§2.4]. We revisit this problem, using instead the extrapolation method to achieve
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Figure 5. The change per step in the modified energy (dashed)
and the accumulated change (solid), and the optimal order m
(capped by 200, marked by ’x’). The axis for the energies is on the
left, which the right axis is for the order m. This is for the Störmer–
Verlet method applied to the Kepler problem with h = 1/20 and
ecc = 0.6.
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Figure 6. Drift in modified energy for the Störmer–Verlet method
applied to the Hénon–Heiles problem as a function of step size h
with initial condition p1(0) = 0.1 (left plot), and as a function of p1

for step sizes h = 0.25, 0.1, 0.05 (right plot).
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arbitrary high orders. Figure 6 shows that the expected exponential smallness is
indeed present, and that there is no problem in using the algorithm other than
allowing for large values of m (we again capped m at 200). The effect of round-off
error becomes visible when 1/h exceeds 20; remember that all computations are
done with 120 digits.

The right plot shows how the maximal deviation of the modified energy changes
as the initial condition for p1 is varied; the initial conditions for the other variables
are fixed as q1 = q2 = p2 = 0. This plot shows that there is no abrupt change in
energy preservation when moving from regular, integrable motions (the region with

energy H < 1/12 or, equivalently, p1 < 1/
√

6 ≈ 0.4) to the chaotic regime of phase
space (where H > 1/12).

We also applied the fourth-order methods due to Yoshida and Blanes and Moan
to this problem, with the same results as for the Kepler problems: the Störmer–
Verlet method shows slightly better energy preservation, but the value of c in the
exp(−c/h) dependence is the same.

7. Conclusions. We have supplied rigorous estimates for a numerical algorithm
that computes the modified energy for methods based on operator splitting of Hamil-
tonian systems. The estimate shows that the procedure can recover exponentially
small estimates, known to exist theoretically. The estimates exhibit the same depen-
dence on the important parameters r̃y, h and ‖f‖D, and can therefore in principle
be used to extract their values from simulations. When comparing different split-
ting algorithms, it seems that in the limit h → 0 the exponential remainder term
only weakly depends on the method coefficients. Thus when considering the addi-
tional cost of optimized, many-stage, methods these will have a larger drift than
the second-order Störmer–Verlet algorithm. In other words, when it comes to pre-
serving the modified energy, cheap, low-order methods are preferable. Although
we have not considered ODEs originating from Hamiltonian semidiscretization of
PDEs it seems likely that for long time simulations a low-order method such as
Störmer–Verlet is preferable if energy preservation is important.

Appendix.

Proof of Lemma 2. Without loss of generality we assume that n = 0.
By representing (4) as a contour integral we have

Dmy(0) =
1

2πi

m
∑

j=1

∮

γ

(−1)j+1(m!)2

hj(m − j)!(m + j)!

{

1

z − jh
− 1

z + jh

}

y(z)dz,

where the contour γ includes the points −mh, . . . ,mh and excludes singularities
of y, as sketched in Figure 2.

The derivative is given by y′(0) = 1
2πi

∮

γ
y(z)dz

z2 , so the error in the approximation

becomes

Em(y)(0) = Dmy(0) − y′(0) =
1

2πi

∮

γ

Km(z)y(z)dz, (7)

where the kernel is defined by

Km(z) =
(−1)m+1(m!)2h2m

z2(z2 − h2)(z2 − (2h)2) · · · (z2 − (mh)2)
.
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Figure 7. The contour of integration used in the proof of Lemma 2.

Along the curve γ, the kernel Km achieves its maximum in modulus at z = iρ, and
the maximum is

|Km(iρ)| =
(m!)2h2m

ρ2(ρ2 + h2) · · · (ρ2 + (mh)2)
=

1

ρ2(1 + ρ2

h2 ) · · · (1 + ρ2

(mh)2 )

=
π

ρh sinh(πρ
h )

∞
∏

j=m+1

(

1 +
ρ2

(hj)2

)

where the last equality follows from
∏∞

j=1(1+ ρ2

(hj)2 ) = h
πρ sinh(πρ/h). The product

can be bounded as

log

∞
∏

j=m+1

(

1 +
ρ2

(hj)2

)

=

∞
∑

j=m+1

log

(

1 +
ρ2

(hj)2

)

≤
∫ ∞

m

log

(

1 +
ρ2

(hx)2

)

dx ≤ ρ2

h2m
,

yielding
∏∞

j=m+1(1 + ρ2

(hj)2 ) ≤ exp( ρ2

h2m ), and thus

|Km(iρ)| ≤ π

ρh sinh(πρ
h )

exp

(

ρ2

h2m

)

.

Since the length of the contour is 2πρ+4mh, the error expression (7) can be bounded
as

|Dmy(0) − y′(0)| ≤
(πρ + 2mh) exp

(

ρ2

h2m

)

ρh sinh
(

πρ
h

) ‖y‖ρ

where ‖y‖ρ := sup|ℑ(z)|<ρ |y(z)|∞. This upper bound is minimized by choosing m

so that d
dm (πρ + 2mh) exp(ρ2/h2m) vanishes, i.e. m ≈ ρ2

h2 . This gives the bound

|Dmy(0) − y′(0)| ≤ e(π + 2ρ2/h2)

h sinh
(

πρ
h

) ‖y‖ρ ≤ C1

ρ exp
(

−πρ
h

)

h2
‖y‖ρ

for some constant C1 > 0.
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Proof of Corollary 3. This follows from

|H(pn, qn, tn) − Tn
m∗,m∗ |

≤ 1
2 |q

T (p′ − Dm∗p)| + 1
2 |p

T (q′ − Dm∗q)| + 1
2 |β

′ − Dm∗β|
≤ 1

2 |qn|1‖p′ − Dm∗p‖ρ + 1
2 |pn|1‖q′ − Dm∗q‖ρ + 1

2‖β
′ − Dm∗β‖ρ

≤ C1ρ exp(−πρ
h )

2h2
(|qn|1‖p‖ρ + |pn|1‖q‖ρ + ‖β‖ρ)

where the last inequality follows from Lemma 2.

Proof of Lemma 4. We prove this by Picard iteration: set x̃1 = xn and iterate

x̃k+1(t) = xn+
∫ t

0
g(x̃k(s), s) ds. Fix t ∈ Dt, and assume at first that rt is sufficiently

large. For x̃k+1, x̃k ∈ Dy

|g(x̃k+1, t) − g(x̃k, t)|∞

=

∣

∣

∣

∣

∫ 1

0

d

ds
g
(

x̃k+1 + s(x̃k − x̃k+1), t
)

ds

∣

∣

∣

∣

∞

=
1

2π

∣

∣

∣

∣

∣

∫ 1

0

∮

|z−s|=R

g
(

x̃k+1 + z(x̃k − x̃k+1), t
)

(z − s)2
dz ds

∣

∣

∣

∣

∣

∞

=
1

2π

∣

∣

∣

∣

∣

∫ 1

0

∮

|w|=R

g
(

x̃k+1 + s(x̃k − x̃k+1) + w(x̃k − x̃k+1), t
)

w2
dw ds

∣

∣

∣

∣

∣

∞
.

The radius R is restricted by the requirement that the argument of g lies within Dy

or

|x̃k+1 + s(x̃k − x̃k+1) − xn + w(x̃k − x̃k+1)|∞
≤ |x̃k+1 + s(x̃k − x̃k+1) − xn|∞ + r|(x̃k − x̃k+1))|∞
≤ |t|‖g‖r + R|x̃k − x̃k+1|∞ < ry

by using

|x̃k+1 + s(x̃k − x̃k+1) − xn)|∞

≤ sup
|τ |=|t|

∣

∣

∣

∫ τ

0

(1 − s) |g(x̃k(τ), τ)|∞ + s |g(x̃k−1(τ), τ)|∞ dτ
∣

∣

∣
≤ |t|‖g‖r.

We may therefore choose

R = η
ry − |t|‖g‖r

|x̃k+1 − x̃k|∞
, 0 < η < 1

which gives the supremum-norm Lipschitz bound

|g(x̃k+1, t) − g(x̃k, t)|∞ ≤ ‖g‖r

η(ry − |t|‖g‖r)
|x̃k+1 − x̃k|∞.

Let ∆k+1(|t|) = sup|τ |=|t| |x̃k+1(τ) − x̃k(τ)|∞, then the Picard iteration x̃1 = xn,

x̃k+1 = xn +
∫ t

0
g(x̃k(s), s) ds, converges if ∆k → 0 as k → ∞, with

∆k+1(t) ≤
∫ |t|

0

‖g‖r

η(ry − s‖g‖r)
∆k(s) ds, ∆1(t) = |t|‖g‖r
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Introducing the generating function G(µ, |t|) =
∑

k≥1 µk∆k we have

G(µ, t) ≤ µ|t|‖g‖r + µ

∫ |t|

0

‖g‖r

η(ry − s‖f‖ρ)
G(µ, s) ds.

Since the terms in this inequality are positive, an upper bound is the solution of

dG+(µ, |t|)
d|t| = µ‖g‖r +

‖g‖r

η(ry − |t|‖g‖r)
G+(µ, |t|), G+(µ, |t| = 0) = 0,

i.e.

G+(µ, |t|) =
µηρ

η + µ

(

(

1 − |t|‖g‖r

ry

)−µ/η

−
(

1 − |t|‖g‖r

ry

)

)

.

Because G+ is analytic in µ around µ = 1 provided |t| <
ry

‖g‖r
, the sequence ∆k(|t|)

converges uniformly to zero and hence x̃k(t) converges uniformly to the solution.

Since each iterate x̃k+1(t) = xn +
∫ t

0
f(x̃k(s), s) ds is analytic in t ∈ {t ∈ C :

|t| < min{ ry

‖g‖r
, rt}} the uniform convergence gives by Weierstrass theorem that

y(t) = x̃∞(t) is analytic in this domain as well.

Proof of Theorem 5. In Theorem 1 we take g = f , thus ‖g‖r ≤ 2
1−η‖f‖D with f

analytic in D′
. This gives that the y(t) is analytic in the domain

{

τ ∈ C : |ℑ(τ)| < min

(

r̃y − δ
2

1−η‖f‖D
,

ηδ

e‖f‖D

)}

.

We find that the bound is optimized by picking r̃y = ηδ where η = e−2
e−

√
2e

. Thus

we may take ρ = ηδ
e‖f‖D

< 0.6835 δ
‖f‖D

in Corollary 3 giving the exponentially small

bound (t = nh)

|H(pn, qn, t) − Tm∗,m∗ | ≤ C1

2h2
exp

(

−C2
δ

h‖f‖D

)

(|qn|1‖p‖ρ + |pn|1‖q‖ρ + ‖β‖ρ),

where C2 = 0.6834π.
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