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Abstract— A new synthesis method for the generation of the 
generalized Chebyshev characteristic polynomials has been 
presented. The general characteristic function is generated by 
linear combination of elementary Chebyshev characteristic 
functions. The characteristic function is suitable for synthesis of 

dual bandpass filters as well as direct synthesis for single 
bandpass filters. 

Index Terms—Dual-band Filters, Generalised Chebyshev, 
Minimum Phase Networks, 

I. INTRODUCTION 

There has been increasing interest in the past decade in the 

area of multi-passband filters. In particular dual band filters 

offers flexibility as well as efficiency in the utilization of 

communication resources. Many important contributions have 

been made to the methods of designing of dual band filters [1-

3]. 

The previous methods outlined in [2, 3] involve some form 

of frequency transformations to generate a lowpass transfer 

function suitable for dual band filters. Similar lowpass filters 

for dual band filters may be designed using change of variable 

based on classical work in [4]. In this paper, however, 

methods of direct generation of the general Chebyshev 

lowpass transfer function for dual passband filters will be 

explained. The outlined method offers a simple and intuitive 

approach to synthesis of dual (or direct synthesis of single) 

band filter networks by linearly combining simple elementary 

characteristic functions. 

In section II the generation of the basic prototype 

characteristic functions is described followed by the method of 

computing the characteristic polynomials in section III. 

Finally, a design example is given in section IV.  

II. CHARACTERISTIC FUNCTION 

For any given filter network, the power transfer function 

may be defined as [5], |𝑆21(𝜔)|2 = 11 + (𝑘𝐹(𝜔)𝑃(𝜔) )2 (1) 

where k is a constant, the monic polynomials, 𝐹(𝜔) and 𝑃(𝜔) 

are the reflection and transmission (containing the transfer 

function’s transmission zeros) characteristic polynomial 
respectively, all dependent on the frequency variable 𝜔 rad/s. 

Let the characteristic function be defined as 

𝑇𝑁(𝜔) = 𝑘 𝐹(𝜔)𝑃(𝜔) (2) 

where, 𝑁 is the degree of the filter network. It may be shown 

then that for Chebyshev characteristic functions the 

characteristic function can be found from the linear 

combination of 𝑚 number of low degree basic characteristic 

functions 𝑋𝑟(𝜔) based on the following equation, 𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ {∑[𝛼𝑟 𝑎𝑐𝑜𝑠ℎ{𝑋𝑟(𝜔)}]𝑚
𝑟=1 } (3) 

where  𝛼𝑟 (integer) is the corresponding weighting number to 

the basic characteristic function 𝑋𝑟(𝜔). Thus the problem of 

determining the higher degree rational polynomial 𝑇𝑁(𝜔), is 

reduced to determining some unique lower degree basic 

characteristic functions  𝑋𝑟(𝜔) which act as basic building 

blocks for higher degree polynomials. Each of the basic 

prototype is defined by the number and positions of 

transmission zeros. The overall characteristic function may be 

obtained by further expansion of (3) as presented below after 

a bit of mathematical manipulations, 𝑇𝑁(𝜔) = 12 {∏ [𝑋𝑟(𝜔) + √𝑋𝑟2(𝜔) − 1]𝛼𝑟𝑚
𝑟=1 + ∏ [𝑋𝑟(𝜔) − √𝑋𝑟2(𝜔) − 1]𝛼𝑟𝑚

𝑟=1 } . (4) 

Now the term in (4) is conveniently re-written as  𝑋𝑟(𝜔) ± √𝑋𝑟2(𝜔) − 1 = 𝑈𝑟 ± 𝑊𝑟√𝑉𝑃𝑟(𝜔)  (5) 

where 𝑈𝑟  is simply the numerator of 𝑋𝑟(𝜔) and  𝑉 = (𝜔2 − 1)(𝜔 − 𝛼)(𝜔 − 𝛽) (6) 

is the polynomial containing the critical (cut-off) points. 𝑊𝑟 is 

the polynomial that results from the factorisation (5) and 𝑃𝑟(𝜔) is simply the denominator of 𝑋𝑟(𝜔). The next sections 

show how the basic prototypes may be determined. 

A. Basic prototypes for minimum phase lowpass filters 

For minimum phase filter networks, all the transmission 

zeros of the transfer function (1) are either at the origin or 

infinite in the complex plane. For this class of lowpass filter, 

the characteristic function satisfies the general differential 

equation of the form, 𝑑𝑇𝑁(𝜔)𝑑𝜔 = 𝐶𝑛(𝜔2 + 𝜔𝑚2)√𝑇𝑁2(𝜔) − 1𝜔√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2 . (7) 



The term 𝜔2 + 𝜔𝑚2 accounts for a pair of imaginary turning 

points. The other turning points are provided by the term √𝑇𝑁2(𝜔) − 1 and the extra zeros provided by this expression 

are just the cut-off points at 𝜔 = −1, −𝜔𝑐 , 𝜔𝑐 , and 1, which 

are cancelled out by the denominator term √𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2. 𝐶𝑛  is a constant and 𝜔𝑐 is the 

inner cutoff in the normalized domain. By solving this 

differential equation, the general solution of the characteristic 

function for minimum phase filter networks is obtained. It 

may be shown that the solution to (7) may be written as, 

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ {    𝛼1 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−0(𝜔)}+𝛼2 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−1(𝜔)}+𝛼3 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−2(𝜔)}} (8) 

proving the synthesis equation (3) where the basic prototypes 

are 𝑋2−0−0(𝜔) = 2𝜔2 − (1 + 𝜔𝑐2)(1 − 𝜔𝑐2)  𝑋2−0−1(𝜔) = 𝜔2 − 𝜔𝑐(1 − 𝜔𝑐)𝜔 𝑋2−0−2(𝜔) = (1 + 𝜔𝑐2)𝜔2 − 2𝜔𝑐 2(1 − 𝜔𝑐2)𝜔2 . (9) 

From (8) for 𝑇𝑁(𝜔) to be an even 𝑁𝑡ℎ degree rational 

polynomial in ω, 2𝛼1 + 2𝛼2 + 2𝛼3 = 𝑁 i.e. 𝛼1 + 𝛼2 + 𝛼3 = 𝑁/2 (10) 

Thus α1, α2 and α3, must be either zero or positive integers. 

Also from (8), the number of transmission zeros at the origin 

for TN(ω) is 𝑁𝑇𝑍 = 𝑁𝑂𝑇𝑍 = 𝛼2 + 2𝛼3 (11) 

By assigning different integer values including zero to α1, α2 

and α3, different linear combinations of functions in (8) may 

be obtained as unique solutions to the differential equation (7). 𝑇𝑁(𝜔) given by (8) is thus the general solution to the 

differential equation defined by (7). There are only two 

equations in α1, α2 and α3 i.e. (10) and (11). Thus one of the 

three scalars may be chosen and the other two may be 

determined from (10) and (11). One suitable choice is as 

follows: For 𝑁𝑂𝑇𝑍 ≤ 𝑁/2, choose 𝛼3 = 0, then solving (10) 

and (11) simultaneously yields, 𝛼1 = 𝑁/2 − 𝑁𝑂𝑇𝑍 𝛼2 = 𝑁𝑂𝑇𝑍 
(12) 

For 𝑁𝑂𝑇𝑍 ≥ 𝑁/2, choose 𝛼1 = 0, then solving (10) and (11) 

simultaneously yields, 𝛼2 = 𝑁 − 𝑁𝑂𝑇𝑍 𝛼3 = 𝑁𝑂𝑇𝑍 − 𝑁/2 
(13) 

 

 

 

The different scalars values are summarized in table I. In this 

work, the nomenclature 𝑁 − 𝑁𝐹𝑇𝑍 − 𝑁𝑂𝑇𝑍 is adopted to depict 

an 𝑁𝑡ℎ degree characteristic function with 𝑁𝐹𝑇𝑍 transmission 

zeros at some general complex frequencies, including purely 

real and imaginary (real frequency), and 𝑁𝑂𝑇𝑍 number of 

transmission zeros at the origin. This yields family of 

solutions based on the number of transmission zeros at the 

origin (𝑁𝑂𝑇𝑍). It is interesting to note that the first 

characteristic function in (9) is simply the even degree 

Achieser-Zolotarev characteristic function [6]. The well-

known Chebyshev even degree characteristic functions may 

be obtained from this class by simply setting the parameters 𝜔𝑐 = 0 and 𝑁𝐹𝑇𝑍 = 𝑁𝑂𝑇𝑍 = 0. Additionally, the second 

prototype in (9) is a well-known function in the design of 

filters e.g. used in [2] and also used as a conventional 

normalised bandpass transformation [7]. Therefore, Table I 

gives all possible transmission zeros at the origin (𝑁𝑂𝑇𝑍) for 

any given minimum phase lowpass filter of degree 𝑁(𝑁 even). 

B. Basic prototypes for symmetrical lowpass filters 

The three basic prototypes derived in II (A) are used in design 

of general Chebyshev characteristic function for symmetrical 

networks. In general an 𝑁𝑡ℎ basic prototype characteristic 

function may be determined analytically by solving a set of 𝑁 

non-linear simultaneous equations based on the behavior of 

the function and its known values at the critical points, (i.e. 𝛼, 𝛽, ±1 as depicted in Fig. 1) using, 𝑋𝑟2(𝜔) − 1 = 0 . (14) 

For symmetrical networks, the inner cutoff points are, 𝛼 = 𝛽 = 𝜔𝑐 (15) 

 

Fig. 1 Example of a plot of the basic characteristic function in II (B)  

For example consider a second degree basic prototype for 

direct synthesis of bandpass filters or synthesis of symmetrical 

dual band filters shown in Fig. 1 given by, 𝑋2−2−0(𝜔) = 𝑈𝑟(𝜔)𝑃𝑟(𝜔) = 𝜔2 + 𝑝𝑑(𝜔2 − 𝜔𝑛2) (16) 

Since from Fig. 1, X2−2−0(±1) = 1 and X2−2−0(±ωc) = −1, 

then two simultaneous equations may be formed and solved 

for unknown coefficients p and ε as 1 + 𝑝𝜀(1 − 𝜔𝑛2) = 1 𝑎𝑛𝑑 𝜔𝑐2 + 𝑝𝜀(𝜔𝑐2 − 𝜔𝑛2) = 1 where 𝑝 = (2𝜔𝑐2 − 𝜔𝑛2(1 + 𝜔𝑐2)) /(2𝜔𝑛2 − 𝜔𝑐2 − 1) 𝜀 = (𝜔𝑐2 − 1)/(2𝜔𝑛2 − 𝜔𝑐2 − 1) 

(17) 

TABLE I  POSSIBLE VALUES FOR SCALARS 𝛼1, 𝛼2AND 𝛼3 

 
 



Hence the basic symmetrical characteristic function with the 

transmission zeros prescribed at ωn2 is given by, 

𝑋2−2−0(𝜔) = (2𝜔𝑛2 − 𝜔𝑐2 − 1)𝜔2 + 2𝜔𝑐2 − 𝜔𝑛2(1 + 𝜔𝑐2)(𝜔𝑐2 − 1)(𝜔2 − 𝜔𝑛2) . (18) 

In fact all the basic prototypes may be found in this way and 

for symmetrical networks are summarized in Table II. Note 

that for the 𝑋2−2−0(𝜔) prototype, 𝑊𝑟 > 0 for |𝜔𝑛| > 1 and 𝑊𝑟 < 0 for 𝜔𝑐 < 𝜔𝑛 < 𝜔𝑐. 

 

 

 

  

 

 

 

 

 

C. Basic prototypes for asymmetrical lowpass filters 

Similar to the method used for symmetrical prototypes, 

asymmetrical basic prototypes may be determined and are 

tabulated in Table III in terms of the required polynomials. 

TABLE III:  ASYMMETRICAL NETWORK BASIC PROTOTYPES 𝑉 = (𝜔2 − 1)(𝜔 − 𝛼)(𝜔 − 𝛽) 

Prototype (𝑁 − 𝑁𝐹𝑇𝑍 − 𝑁𝑂𝑇𝑍) and Position of Dependent 

Transmission Zero (𝜔𝑧) 𝐼𝑆𝐵 = Inner Stopband, 𝐿𝑆𝐵 = Lower Stopband, 𝑈𝑆𝐵 = 

Upper Stopband 𝟐 − 𝟐 − 𝟎 (𝝎𝒛 𝑳𝑺𝑩 − 𝑰𝑺𝑩/𝑰𝑺𝑩 − 𝑼𝑺𝑩) 𝜔𝑧 = [(2𝛼𝛽 + 𝛽 − 𝛼)/𝜔𝑛 − 𝛼 − 𝛽]/[(𝛼 + 𝛽)/𝜔𝑛 − 𝛼 + 𝛽 − 2] 𝜀 = (𝛼 + 1)/[(𝜔𝑧 − 𝛼)/𝜔𝑛 + 𝜔𝑧 + 1] 𝑈𝑟(𝜔) = 𝜔2 − 𝜀(𝜔𝑧 + 1/𝜔𝑛)𝜔 + 𝜀(1 + 𝜔𝑧/𝜔𝑛) − 1 𝑃𝑟(𝜔) = 𝜀((𝜔𝑧/𝜔𝑛)𝜔2 − (𝜔𝑧 + 1/𝜔𝑛)𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 1 if 𝜔𝑛  is infinite 𝑊𝑟(𝜔) = √1 − 𝜀2 if 𝜔𝑛  is finite 𝟐 − 𝟐 − 𝟎 (𝝎𝒛 𝑳𝑺𝑩 − 𝑼𝑺𝑩/𝑰𝑺𝑩 − 𝑰𝑺𝑩) 𝜀 = [𝛼𝛽 + 1 − (𝛼 + 𝛽)𝜔𝑛]/[1 − 𝛼𝛽 + (𝑎 + 𝑏 − 2𝜔𝑛)𝜔𝑛] 𝜔𝑧 = (𝛼𝛽 + 1 + (𝛼𝛽 − 1)𝜀)/(2𝜀𝜔𝑛) 𝑈𝑟(𝜔) = 𝜔2 − (1 + 𝜀)(𝛼 + 𝛽)𝜔/2 + (𝛼𝛽 − 1)/2 + 𝜀(𝛼𝛽 + 1)/2 𝑃𝑟(𝜔) = 𝜀(𝜔2 − (𝜔𝑧 + 𝜔𝑛)𝜔 + 𝜔𝑧𝜔𝑛) 𝑊𝑟(𝜔) = √1 − 𝜀2  𝟑 − 𝟏 − 𝟎 (𝟏 − 𝜷 > 𝜶 + 𝟏) (𝝎𝒛 𝑰𝑺𝑩) 𝜔𝑚 = (𝛼 + 𝛽 + 2)/2 𝜀 = (𝜔𝑚2 − 2𝜔𝑚 − 𝛼 − 𝛽 − 𝛼𝛽)/2 𝜔𝑧 = −(𝜔𝑚2 + 𝛼𝛽)/(2𝜀) 𝑈𝑟(𝜔) = 𝜔3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔2/2+ (𝜔𝑚2 − 2𝜔𝑚 + 𝛼 + 𝛽 + 𝛼𝛽)𝜔/2+ (𝜔𝑚2 − 𝛼𝛽)/2 𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚  𝟑 − 𝟏 − 𝟎 (𝟏 − 𝜷 > 𝜶 + 𝟏) (𝝎𝒛 𝑳𝑺𝑩/𝑼𝑺𝑩) 𝜔𝑚 = (𝛽 − 𝛼)/2 𝜀 = (𝜔𝑚2 + 2𝛼𝜔𝑚 + 1)/2 𝜔𝑧 = (𝛼𝜔𝑚2 + 𝛽)/(2𝜀) 𝑈𝑟(𝜔) = 𝜔3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔2/2 + (𝜔𝑚2 + 2𝛼𝜔𝑚 − 1)𝜔/2+ (−𝛼𝜔𝑚2 + 𝛽)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚  𝟑 − 𝟏 − 𝟎 (𝟏 − 𝜷 < 𝜶 + 𝟏) (𝝎𝒛 𝑰𝑺𝑩) 𝜔𝑚 = (𝛼 + 𝛽 − 2)/2 𝜀 = −(𝜔𝑚2 + 2𝜔𝑚 + 𝛼 + 𝛽 − 𝛼𝛽)/2 𝜔𝑧 = −(𝜔𝑚2 + 𝛼𝛽)/(2𝜀) 𝑈𝑟(𝜔) = 𝜔3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔2/2+ (𝜔𝑚2 + 2𝜔𝑚 − 𝛼 − 𝛽 + 𝛼𝛽)𝜔/2+ (−𝜔𝑚2 + 𝛼𝛽)/2 𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚  𝟑 − 𝟏 − 𝟎 (𝟏 − 𝜷 < 𝜶 + 𝟏) (𝝎𝒛 𝑳𝑺𝑩/𝑼𝑺𝑩) 𝜔𝑚 = (𝛼 − 𝛽)/2 𝜀 = (𝜔𝑚2 + 2𝛽𝜔𝑚 + 1)/2 𝜔𝑧 = (𝛽𝜔𝑚2 + 𝛼)/(2𝜀) 𝑈𝑟(𝜔) = 𝜔3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔2/2 + (𝜔𝑚2 + 2𝛽𝜔𝑚 − 1)𝜔/2+ (−𝛽𝜔𝑚2 + 𝛼)/2 𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚  𝟒 − 𝟏 − 𝟎 (𝝎𝒛 𝑰𝑺𝑩) 𝑝 = (−𝛼 + 𝛽 + 2)/2 𝜔𝑚1 = [𝛼 + 𝛽 − 𝑝2 − 2𝑝(𝛼 − 1)]/[2(𝛼 − 𝛽 + 𝑝 − 2)] 𝜔𝑚2 = 𝜔𝑚1 + 𝑝 𝜀 = (2𝛽𝜔𝑚1 + 2𝛼𝜔𝑚2 + (𝛽 + 1)𝜔𝑚12 − (𝛼 − 1)𝜔𝑚22)/2 𝜔𝑧 = (𝛽𝜔𝑚12 + 𝛼𝜔𝑚22)/(2𝜀) 𝑈𝑟(𝜔) = 𝜔4 − (2𝜔𝑚1 + 2𝜔𝑚2 + 𝛼 + 𝛽)𝜔3/2 + (𝜔𝑚12 + 𝜔𝑚22 + 2(𝛽 + 1)𝜔𝑚1 + 2(𝛼 − 1)𝜔𝑚2 − 𝛼 + 𝛽)𝜔2/2 − ((𝛽 + 1)𝜔𝑚12 + (𝛼 − 1)𝜔𝑚22 + 2𝛽𝜔𝑚1 − 2𝛼𝜔𝑚2)𝜔/2 + (𝛽𝜔𝑚12 − 𝛼𝜔𝑚22)/2 𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 𝑊𝑟(𝜔) = 𝜔2 − (𝜔𝑚1 + 𝜔𝑚2)𝜔 + 𝜔𝑚1𝜔𝑚2  

III. CHARACTERISTIC POLYNOMIALS 

Once the basic prototypes are determined, the computation 

of the overall characteristic function is fairly straight forward 

from (4). The weighting integer numbers 𝛼𝑟 is the designer’s 
choice depending on the number and positions of transmission 

zeros required from a given elementary function of table II. 

By substituting (5) in (4), the reflection polynomial is 

obtained as follows: 𝐹(𝜔) = 12 {∏[𝑈𝑟 + 𝑊𝑟√𝑉]𝛼𝑟𝑚
𝑟=1 + ∏[𝑈𝑟 − 𝑊𝑟√𝑉]𝛼𝑟𝑚

𝑟=1 } . (19) 

Thus the reflection polynomial is computed by successive 

application of the general recursive technique [5] with initial 

conditions 𝑋0 = 1 and 𝑌0 = 0 and defined by  𝑋𝑁 = 𝑈𝑟𝑋𝑁−1 + (𝑊𝑟𝑉)𝑌𝑁−1 𝑌𝑁 = 𝑊𝑟𝑋𝑁−1 + 𝑈𝑟𝑌𝑁−1 
(20) 

where all the parameters are as defined above. (20) is used for 𝑚 basic prototypes and repeated 𝛼𝑟 times for each prototype, 

each time using the previous results to compute the 𝑁𝑡ℎ polynomials in (20). Finally  𝐹(𝜔) = 𝑋𝑁 . (21) 

The monic polynomial 𝑃(𝜔) is obtained from the prescribed 

transmission zeros as 𝑃(𝜔) = ∏ 𝑃𝑟(𝜔).𝑚
𝑟=1  (22) 

𝑉 = (𝜔2 − 1)(𝜔2 − 𝜔𝑐2) 

TABLE II:  SYMMETRICAL NETWORK BASIC PROTOTYPES 

 



For monic polynomials 𝐹(𝜔) and 𝑃(𝜔), their normalizing 

parameter 𝜇 and 𝜀 respectively are computed at points in ω - 
plane where both s-parameters 𝑆11(𝜔) and   𝑆21(𝜔) are known 

(e.g. 𝜔 = 1) so that the unitary condition [7] and the 

prescribed return loss level are satisfied. Once the 

characteristic polynomials are determined, the rest of the 

synthesis process follows from the standard filter theory in [8]. 

IV. DESIGN EXAMPLE 

A symmetrical dual passbands with cutoffs at 1710-1785 & 

1920-1995MHz and 20 dB passband return loss were 

designed. Using the lowpass to bandpass transformation, the 

inner cutoff is 𝜔𝑐 = 0.5025. The prescribed transmission 

zeros were at 𝜔 = ±0.25,0, ±1.75. Since the dual band is 

symmetrical, the following lowpass prototypes were linearly 

combined according to (3) based on the basic prototypes of 

table II: 2 − 0 − 0, 2 − 0 − 1 and 2 − 2 − 0 with weighting 

numbers 𝛼1 = 2, 𝛼2 = 1 and 𝛼3 = 2 respectively. The first 

prototype only provides transmission zeros at infinite, the 

second provides the required single transmission zero at the 

origin and the last prototype provides the two pairs of 

symmetrical transmission zeros - applied iteratively depending 

on 𝛼𝑟.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This gives an overall 10 − 4 − 1 lowpass characteristic 

function. Using the general recursive formulae (20) the 

characteristic polynomials were determined as in Table IV in 

complex variable 𝑝(𝑗𝜔). Then cascaded synthesis was used to 

extract the element values and the coupling matrix generated 

as shown below. The bandpass simulation and topology are 

shown in Fig. 2. 

 
Fig. 2 Bandpass Simulation of the dual band filter in IV with its 
topology.  

V. CONCLUSION 

The method of generating the general Chebyshev 

characteristic function used in the design of relatively close-

spaced dual passband filters has been outlined. Linear 

combinations of the elementary characteristic functions (based 

on transmission zeros placement) allow high order 

characteristic functions to be determined.   
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Coupling Matrix for 10 − 4 − 1 Dual Band Filter 

 

TABLE IV  10 − 4 − 1 DUAL BAND FILTER 

CHARACTERISTIC POLYNOMIALS (𝜇 = −1AND 𝜀 =197.6872) 

 


