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Synthesis of General Chebyshev Characteristic Function for Dual
(Single) Bandpass Filters
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Abstract— A new synthesis method for the generation of the
generalized Chebyshev characteristic polynomials has been
presented. The general characteristic function is generated by
linear combination of elementary Chebyshev characteristic
functions. The characteristic function is suitable for synthesis of
dual bandpass filters as well as direct synthesis for single
bandpass filters.

Index Terms—Dual-band Filters, Generalised Chebyshev,
Minimum Phase Networks,

I. INTRODUCTION

There has been increasing interest in the past decade in the
area of multi-passband filters. In particular dual band filters
offers flexibility as well as efficiency in the utilization of
communication resources. Many important contributions have
been made to the methods of designing of dual band filters [1-
3].

The previous methods outlined in [2, 3] involve some form
of frequency transformations to generate a lowpass transfer
function suitable for dual band filters. Similar lowpass filters
for dual band filters may be designed using change of variable
based on classical work in [4]. In this paper, however,
methods of direct generation of the general Chebyshev
lowpass transfer function for dual passband filters will be
explained. The outlined method offers a simple and intuitive
approach to synthesis of dual (or direct synthesis of single)
band filter networks by linearly combining simple elementary
characteristic functions.

In section II the generation of the basic prototype
characteristic functions is described followed by the method of
computing the characteristic polynomials in section III.
Finally, a design example is given in section I'V.

II. CHARACTERISTIC FUNCTION

For any given filter network, the power transfer function

may be defined as [5],
, 1
[S21 (w)]? = N (kF(w))z (1
P(w)

where k is a constant, the monic polynomials, F(w) and P(w)
are the reflection and transmission (containing the transfer
function’s transmission zeros) characteristic polynomial
respectively, all dependent on the frequency variable w rad/s.
Let the characteristic function be defined as

F(w

where, N is the degree of the filter network. It may be shown
then that for Chebyshev characteristic functions the
characteristic function can be found from the linear
combination of m number of low degree basic characteristic
functions X,.(w) based on the following equation,

Ty (w) = cosh {Z [a, acosh{Xr(w)}]} 3

where «, (integer) is the corresponding weighting number to
the basic characteristic function X, (w). Thus the problem of
determining the higher degree rational polynomial Ty (w), is
reduced to determining some unique lower degree basic
characteristic functions X,(w) which act as basic building
blocks for higher degree polynomials. Each of the basic
prototype is defined by the number and positions of
transmission zeros. The overall characteristic function may be
obtained by further expansion of (3) as presented below after
a bit of mathematical manipulations,

Ty(w) = %{ﬁ [Xr(w) + %) - 1]%
r=1 . . (4)
+1_[[Xr(w) - /sz(a)) - 1] }

Now the term in (4) is conveniently re-written as

X (@) £ X2 @) -1 =% )

where U, is simply the numerator of X,.(w) and

V=(0?-1)(w-a)w-p) (6)
is the polynomial containing the critical (cut-off) points. W, is
the polynomial that results from the factorisation (5) and
P.(w) is simply the denominator of X, (w). The next sections
show how the basic prototypes may be determined.

Ty(w) =k

A. Basic prototypes for minimum phase lowpass filters

For minimum phase filter networks, all the transmission
zeros of the transfer function (1) are either at the origin or
infinite in the complex plane. For this class of lowpass filter,
the characteristic function satisfies the general differential
equation of the form,

dTy (@)  Cn(@? + @ W Ty’ (@) — 1

dw oot — (1 + 0 2)w? + w2

()



The term w? + w,,* accounts for a pair of imaginary turning
points. The other turning points are provided by the term

VTy?(w) — 1 and the extra zeros provided by this expression
are just the cut-off points at w = —1, —w,, w;, and 1, which
are cancelled out by the denominator term
\/w“ -1+ w2)w? + ws?. C, is a constant and w, is the
inner cutoff in the normalized domain. By solving this
differential equation, the general solution of the characteristic
function for minimum phase filter networks is obtained. It
may be shown that the solution to (7) may be written as,

a; acosh{X;_o_o(w)}
Ty (w) = cosh{ +a, acosh{X,_q_1(w)} (8
+a5 acosh{X,_y_,(w)}
proving the synthesis equation (3) where the basic prototypes

are
20% — (1 + wy?)

Xo-0-0(w) = (1 - w.2)
0t w,
Xo0-1(w) = T ©)

1+ w2 w? - 20>
Xy0—2(w) = (1 — w,2)w?
From (8) for Ty(w) to be an even N degree rational
polynomial in w, 2a; + 2a, + 2a; = N i.e.
a,+a,+a;=N/2 (10)
Thus a4, o, and a3, must be either zero or positive integers.
Also from (8), the number of transmission zeros at the origin
for Ty (w) is

Nrz = Norz = a; + 2a3 (11)
By assigning different integer values including zero to a4, a,
and oy, different linear combinations of functions in (8) may
be obtained as unique solutions to the differential equation
(7). Ty(w) given by (8) is thus the general solution to the
differential equation defined by (7). There are only two
equations in o4, a, and a3 i.e. (10) and (11). Thus one of the
three scalars may be chosen and the other two may be
determined from (10) and (11). One suitable choice is as
follows: For Nyr; < N/2,choose az = 0, then solving (10)
and (11) simultaneously yields,
ay =N/2 = Norz
az = Norz (12)
For Nyrz; = N/2,choose a; = 0, then solving (10) and (11)
simultaneously yields,
a; =N — Norz

13
a3 = Norz — N/2 (13)

TABLE I POSSIBLE VALUES FOR SCALARS @, @;AND a3

Condition ay a; a
Norz = NfZ NXZ - Norz Norz 0
Norzszz 0 N_Norz NOTZ_N./Z

The different scalars values are summarized in table I. In this
work, the nomenclature N — Npr; — Nyrz 1s adopted to depict
an N®" degree characteristic function with Npy, transmission
zeros at some general complex frequencies, including purely

real and imaginary (real frequency), and Ny, number of
transmission zeros at the origin. This yields family of
solutions based on the number of transmission zeros at the
origin (Nprz). It is interesting to note that the first
characteristic function in (9) is simply the even degree
Achieser-Zolotarev characteristic function [6]. The well-
known Chebyshev even degree characteristic functions may
be obtained from this class by simply setting the parameters
w, =0 and Ngry; = Nor; = 0. Additionally, the second
prototype in (9) is a well-known function in the design of
filters e.g. used in [2] and also used as a conventional
normalised bandpass transformation [7]. Therefore, Table I
gives all possible transmission zeros at the origin (Nyrz) for
any given minimum phase lowpass filter of degree N(N even).

B. Basic prototypes for symmetrical lowpass filters

The three basic prototypes derived in II (A) are used in design
of general Chebyshev characteristic function for symmetrical
networks. In general an N®" basic prototype characteristic
function may be determined analytically by solving a set of N
non-linear simultaneous equations based on the behavior of
the function and its known values at the critical points, (i.e.
a, B,+1 as depicted in Fig. 1) using,

X2(w)—1=0. (14)
For symmetrical networks, the inner cutoff points are,

a=f=uw, (15)
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Fig. 1 Example of a plot of the basic characteristic function in II (B)

For example consider a second degree basic prototype for
direct synthesis of bandpass filters or synthesis of symmetrical
dual band filters shown in Fig. 1 given by,
Uy(w w? +

Xy 2-o(w) = P:((a))) = d(w? — znz) (16)
Since from Fig. 1, X,_,_o(+1) =1 and X,_,_o(+w.) = —1,
then two simultaneous equations may be formed and solved

for unknown coefficients p and € as
1+p w2 +p
5(1 - wnz) S(wcz - wnz)
b= (2(‘)(!2 —w,*(1 + wcz)) [Quwy? —w? = 1)
&= ((‘)cz - 1)/(2wn2 - wcz -1

=1and = 1 where

17)



Hence the basic symmetrical characteristic function with the
transmission zeros prescribed at w,? is given by,

Qw,? — w2 — Dw? + 20, — w,2(1 + w2)

@7 D@ w0, - 09

Xpz-o(w) =

In fact all the basic prototypes may be found in this way and
for symmetrical networks are summarized in Table II. Note
that for the X,_,_o(w) prototype, W, > 0 for |w,| > 1 and
W, < 0 for w, < w, < w,.

TABLE II: SYMMETRICAL NETWORK BASIC PROTOTYPES
V= (0w?-1)(0? - w?)

N—Ngrz —Norz U, (@) W.(w) P.(w)
2-0-0 2w® — (1+ w.2) 2 1-w?
2-0-1 - w, 1 (1-w)w
2-0-2 1+ @, De? — 2w 2w, 1-wHa?

2w,% — w2 — Dw* +
2-2-0 +2,/(@,2 — D(w,* — w2) | (w2~ 1w —w,?)

202 - 0, 1+ w2)

C. Basic prototypes for asymmetrical lowpass filters

Similar to the method used for symmetrical prototypes,
asymmetrical basic prototypes may be determined and are
tabulated in Table III in terms of the required polynomials.

TABLE III: ASYMMETRICAL NETWORK BASIC PROTOTYPES
V=(0?-1D(w-a)w-p)

P (w) = e(w — w,)
W (w) =w—wy

3-1-01-B<a+1) (w,ISB)

wn =(@+p—-2)/2
e=—(wp?+ 2w, +a+ B —af)/2
Wz = _(wmz + aﬂ)/(z‘g)
Up(w) = 02 — Qo + a + fw?/2
+ (W% + 2w, —a— B+ af)w/2
+ (—wy,? +af)/2
Pr(w) = g(w - wz)
W (w) =w—wp

3-1-0(1-f<a+1) (w,LSB/USB)

Wy = (C{ - ,8)/2
e = (wp? +2Bw, +1)/2
W, = ([)’wmz + a)/(Zs)
Up(w) = 02 — Qup + a + Bw?/2 + (wpm? + 2w, — Dw/2
+ (—Bwn® +a)/2
P(w) = e(w — w,)
W (w) = w—wny

4-1-0 (w, ISB)

Prototype (N — Nprz — Nprz) and Position of Dependent
Transmission Zero (w,)
ISB = Inner Stopband, LSB = Lower Stopband, USB =
Upper Stopband

p=(—a+p+2)/2
wmy = @+ B —p? —2pla —D]/[2(a - B +p—2)]
Wm2 = W1 TP
&= (Zﬁwml + Zawmz + (,8 + :l)("-)ml2 - (a - 1)wm22)/2
wz = (.melz + awmzz)/(zg)

Up(w) = 0* — Qupy + 20 + @+ Pw3/2 +
(W12 + Wp2? + 2B + Dy + 2(a@ — Dwyp — a + Pw?/2 —
((B + Dwmi® + (@ = Dz’ + 2Bwm; — 2awm;)w/2 +
(.melz - awmzz)/z
P(w) = e(w — w,)

W, (w) = w? — (W1 + W)W + W1 W2

2-2-0(w, LSB—ISB/ISB — USB)
w, =[Qap+p—a)/wy—a—pl/[(a+p)/w,—a+p—2]
e=(a+1)/[(w, —a)/w, + w, +1]
Ur(w) = w? —e(w, + 1/wp)w + (1 + w,/w,) — 1
P (w) = e((w,/wp)w? — (w, + 1/wy)w — w,)
W, (w) = 1if wy, is infinite
W (w) = V1 — &2 if wy, is finite

2—2—-0(w,LSB—-USB/ISB —ISB)

e=lap+1—(a+PRw,]/[1—aB + (a+b—2w,)wy]
w, =(@f+1+ (af —1)e)/Rewy)
U()=w?— 1+ (a+Bw/2+ (@f —1)/2+e(af +1)/2
P(w) = g(wz — (w; + wy)w + wwy,)

W, (w) = V1 — &2

3-1-01-B>a+1) (w,ISB)

wm =(@+p+2)/2
£ = (wp? —2wp—a—LF—aB)/2
w, = —(wpn® + aB)/(2¢)
Ur(w) = 0 — Quy + a + Bw?/2
+ (w2 =20, +a+ B+ af)w/2
+ (wm? — ap)/2
B (w) = &(w — wy)
W (w) =w—wp

3-1-0(1—-f>a+1) (w, LSB/USB)

wn = (B —a)/2
£ = (wp? + 2aw, +1)/2
Wy = (awmz +B)/(2¢)
Ur(w) = 03 — Qupy + a + Bw?/2 + (wy? + 2awy, — Dw/2
+ (—awr? + B)/2

III. CHARACTERISTIC POLYNOMIALS

Once the basic prototypes are determined, the computation
of the overall characteristic function is fairly straight forward
from (4). The weighting integer numbers a,. is the designer’s
choice depending on the number and positions of transmission
zeros required from a given elementary function of table II.
By substituting (5) in (4), the reflection polynomial is
obtained as follows:

F(w) = %{ﬂ[ur + ]+ ] o - WTW]“T}- (19)

Thus the reflection polynomial is computed by successive
application of the general recursive technique [5] with initial
conditions X, = 1 and Y; = 0 and defined by

XN = UrXN—l + (VVTV)YN—l (20)

Yy =W Xy_1 +Up¥y_q
where all the parameters are as defined above. (20) is used for
m basic prototypes and repeated «,. times for each prototype,
each time using the previous results to compute the
N*" polynomials in (20). Finally
F(w) = Xy. (21)

The monic polynomial P(w) is obtained from the prescribed
transmission zeros as

P@) =] [p@. (22)




For monic polynomials F(w) and P(w), their normalizing
parameter ¢ and & respectively are computed at points in ® -
plane where both s-parameters S;; (w) and S,;(w) are known
(e.g. w=1) so that the unitary condition [7] and the
prescribed return loss level are satisfied. Once the
characteristic polynomials are determined, the rest of the
synthesis process follows from the standard filter theory in [8].

1V. DESIGN EXAMPLE

A symmetrical dual passbands with cutoffs at 1710-1785 &
1920-1995MHz and 20 dB passband return loss were
designed. Using the lowpass to bandpass transformation, the
inner cutoff is w, = 0.5025. The prescribed transmission
zeros were at w = +0.25,0,+1.75. Since the dual band is
symmetrical, the following lowpass prototypes were linearly
combined according to (3) based on the basic prototypes of
table II: 2—0—0,2—-0—1 and 2 — 2 — 0 with weighting
numbers @; = 2, a, =1 and a3 = 2 respectively. The first
prototype only provides transmission zeros at infinite, the
second provides the required single transmission zero at the
origin and the last prototype provides the two pairs of
symmetrical transmission zeros - applied iteratively depending
on a,.

TABLEIV 10 — 4 — 1 DUAL BAND FILTER
CHARACTERISTIC POLYNOMIALS (4 = —1AND € =

197.6872)
P(p) = p° +3.1250p° + 0.1914p

F(p) = p'® + 2.9564p® + 3.3175p% + 1. 7564p* + 0.4373p2 + 0.0410
E() = p'® + 1.0152p° + 3.4717p® + 2.5759p7 + 4.2763p% + 2. 2206p°
+2.2900p* + 0.7535p° + 0.5238p? + 0.0842p + 0.0410

Coupling Matrix for 10 — 4 — 1 Dual Band Filter
s 12 3 4

5 6 7 8 9 10 L
s| 0 07124 0 0 0 0 0 0 0 0 0 0
110.7124 0 06601 0 -0.4907 0 0 0 0 0 0 0
2] 0 06601 0 0.0643 0 0 0 0 0 0 0 0
31 0 0 00643 0 06752 0 0 0 0 0 0 0
4| 0 -0.4907 0 06752 0 03150 0 0 0 0 0 0
51 0 0 0 0 0.3150 0 0.68160.3276 0 0 0 0
6] 0 0 0 0 0 06816 0 0 0 0 0 0
71 0 0 0 0 0 03276 0 0 07038 0 -0.0984 0
8] 0 0 0 0 0 0 0 07038 0 04841 0 0
91 0 0 0 0 0 0 0 0 04841 0 08167 0
01 0 0 0 0 0 0 0 -0.0984 0 0.8167 0 0.7124
LpL 0 0 0 0 0 0 0 0 0 0 07124 0

This gives an overall 10 -4 —1 lowpass characteristic
function. Using the general recursive formulae (20) the
characteristic polynomials were determined as in Table IV in
complex variable p(jw). Then cascaded synthesis was used to
extract the element values and the coupling matrix generated
as shown below. The bandpass simulation and topology are
shown in Fig. 2.

20 |
40 |
——DB(|S(1.1)])
Bandpass_Filter
60 | |
— DB(|S(2.1)])
Bandpass_Filter
N
O—0O—O—0O—@O—@
400 L

13 14 15 16 17 18 19 2 21 22 23 24
Frequency (GHz)
Fig. 2 Bandpass Simulation of the dual band filter in IV with its

topology.

V. CONCLUSION

The method of generating the general Chebyshev
characteristic function used in the design of relatively close-
spaced dual passband filters has been outlined. Linear
combinations of the elementary characteristic functions (based
on transmission zeros placement) allow high order
characteristic functions to be determined.
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