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UNIFORM BOUNDS FOR PERIOD INTEGRALS AND SPARSE
EQUIDISTRIBUTION

JAMES TANIS AND PANKAJ VISHE

ABSTRACT. Let M = T'\ PSL(2,R) be a compact manifold, and let f € C*°(M) be a
function of zero average. We use spectral methods to get uniform (i.e. independent
of spectral gap) bounds for twisted averages of f along long horocycle orbit segments.

We apply this to obtain an equidistribution result for sparse subsets of horocycles on
M.

1. INTRODUCTION
Let I' € PSL(2,R) be a cocompact lattice, and let M = I'\ PSL(2,R). Let

= (g 1 )eat= (7 e ).

denote the one-parameter subgroups generating the horocycle and the geodesic flows
respectively.

Let L2(M ) be the space of complex-valued functions on M, which are square-integrable
with respect to the PSL(2, R)-invariant volume form. The space L*(M) is a right regu-
lar representation of PSL(2, R) and any element of the Lie algebra si(2,R) of PSL(2,R)
acts on L?(M) as an essentially skew-adjiont differential operator. Let {Y, X, Z} be a
basis for the Lie algebra si(2,R) given by,

() x=(0h) 2= (1)

The center of the enveloping algebra for si(2,R) is generated by the Casimir element
O:=-Y?-1/2(XZ+ ZX),

which acts by multiplication by a constant on each irreducible, unitary representation
of PSL(2,R). These constants, u € spec(dJ) := R, U {(—n?+ 2n)/4 : n € Z, } classify
the nontrivial, unitary, irreducible representations of PSL(2,R) into three categories: A
representation is called principal series if ;1 > 1/4, complementary series if 0 < pu < 1/4,
and discrete series if © < 0. The Casimir element takes the value zero on the trivial
representation, which is spanned by the PSL(2, R)-invariant volume form, denoted by
dg.
Let Qr be the set of eigenvalues of [ on L?(M), counting multiplicities. Let

L*(M)=C PV, (1.1)
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2 JAMES TANIS AND PANKAJ VISHE

be a Fourier decomposition of L?(M), where for each 0 < y, V), is an irreducible, unitary
representation of M in the j-eigenspace of [J; and for 4 <0, V, = V7 @ V" is a direct
sum of two inequivalent irreducible unitary representations of M, called holomorphic
and anti-holomorphic discrete series representations in the p-eigenspace of L.

We will use the L” based norms for p = 1,2, co. We write S, (f) for the L” norm of
f. Let O be the collection monomials in {Y, X, Z} up to order s € Z>q. Let W*P(M)
be the space of functions with bounded norm

Sps(£) = 3 S,0(Bf).

Beos

The Hilbert Sobolev spaces W#2?(M) are denoted by W#(M). For even integers s, they
consist of functions f with bounded norms

So.s(f) = Soo (I —Y? —1/2X* — 1/22%)*/2f) . (1.2)

Using interpolation, these norms can be defined for all s > 0 (see [13]). [12, Lemma 6.3]
implies that for all s € Z>, there are constants Cy, C”, > 0 such that

CoS2a(f) < D Sa0(Bf) < CLSas(f).

BeOs

Moreover, W#*(M) is endowed with an inner product, and by irreducibility, and (LI),
we have

wiM)=C P vy (1.3)

where V7 is the subspace V,, N W?*(M).

The distributional dual space of W*(M) is denoted by W=*(M) := (W*(M))’, equipped
with the natural distributional norm S5 _;. Our distributions are defined and studied in
W=s(M). The space of smooth functions on M is denoted by C*(M) := NgoW* (M),
and its distributional dual space is &'(M) := UgsoW (M) . For each p € Qp, let
Vi =Nz Vi

Our computations will be carried out in irreducible models consisting of functions
defined on the real line. Using unitary equivalence, we use the same notation Ss s(f)
for L?-based norms in models. We start by listing our results.

1.1. Bounds for period integrals. Let 1) be the additive character
Y(t) == e, for all t € R,

for some a € R\ {0}. For any 7" > 1 and for any = € M, let f x or(x) denote the
unipotent period integral defined by

f*aﬂ@zz%ié () fan(t))dt (1.4)

Let 0 < A; < 1/4 be the spectral gap of the Laplacian on M, and let o := /1 — 4.
Venkatesh [18, Lemma 3.1] used equidistribution and mixing of the horocycle flow to
prove the following bound:
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Lemma 1.1. Let f € C*°(M) satisfying [,, f(g) dg = 0. Then
Saco(fxor) <r TS 1 (f),

(1-200)° 0] the implied constant is independent of 1.

where b < 20’

Our main theorem is an estimate of the L™ norm of the derivatives of f x orp:

Theorem 1.2. Let f € C*°(M) be such that [,, f(g)dg = 0. Then for any k € N, and
for any € > 0, we have

S f x07) <pe (L4 |a| /2T V928,y 111 ope () (1.5)

Moreover, at the cost of a possibly larger, unspecified dependence on a, the above bound
can be improved to get

Soo(f x01) Lp g Tzk_(g_m)/4+€52,k+11/2+e(f)> (1.6)
where (9 —\/73) /4 < 1/8.772.

In particular, we remove the dependence of spectral gap in the exponent in Lemma
[LI] at the cost of a factor which depends on . The dependence of I' in the constant
can be made explicit using the injectivity radius and the spectral gap. We remark that
one should not expect an estimate independent of both the spectral gap and 1, since,
as a — 0, the behavior of f *or is increasingly governed by the rate of equidistribution
of the horocycle flow on M, which depends on the spectral gap.

1.2. Sparse equidistribution results. Recently, there has been an increasing interest
in studying equidistribution properties of sparse subsets of horocycle orbits. A question
of Margulis [I4] asks whether the sequence {z¢n(t;)};ez+ is dense in M, for

e t; is the jy, prime number;
o t;=|j"], for somey > 0.

A conjecture of Shah further predicts that the sequence {won(j'*7)} cz+ is equidis-
tributed for any v > 0. Margulis’ first question was partially answered by Sarnak-Ubis
[16], by proving that the horocycle orbit of a non-periodic point at prime values is dense
in a set of positive measure in the modular surface.

Margulis’ second question was answered in [I8, Theorem 3.1], where lemma [[I] was
used to achieve equidistribution of the points {zgn(j17)}, for any 0 < v < Ymax(T),
depending on the spectral gap of I'. We use theorem to remove the dependence of
spectral gap in the above result, establishing equidistribution of points {zon(j17)}, for
any v < 1/26, giving further evidence for Shah’s conjecture.

Theorem 1.3. Let b < &;_2323)2), and let by < 1/9, then for any xo € M, any f €

C>®(M), and for any 0 <y < %;

In other words, the sequence {xon(j177) : 0 < j < N} is equidistributed in M as N
tends to oo.
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It should be noted that the methods in this paper in fact give effective bounds for
the rate of equidistribution in the above theorem, which depend on ~. However, we do
not to mention it here in order to keep the statement of the theorem more accessible.

1.3. Sparse equidistribution for smooth time-changes of horocycle flows. Let
7: M xR — R be a smooth cocycle over {n(t)},cr, i.e. for all z € M and t,s € R,

T(z,t+s) = 1(x,t) + 7(2n(t), s) .

Assume that for all z € M, 7(x,t) is a strictly increasing function of ¢. Let p : M — R*
denote the positive function defined by

la) = Sl )y

We assume p € W(M).
For all x € M, the smooth time change {n}};cg of {n(t)} is defined by

n? ., o(@) = an(t).
We will also write n?(7) := n2 . The vector field for {n?} cg is generated by
XP = X/p,

and the X -invariant volume form is d,g := pdg. In the wake of Shah’s conjecture, it
is natural to further ask whether Shah’s conjecture holds for any smooth time change
of a horocycle flow.

Using the method in [I8], and the results of Forni-Ulcigrai [7], we obtain a sparse
equidistribution result for smooth time-changes of horocycle flow, dependent on the
spectral gap, thus providing a partial answer to the above question.

Theorem 1.4. Let b = —(1 — ag)?/200. Then for any xo € M, any f € C(M), and
any 0 < v <D,

| N
Jm 53 fan M) = [ fla)da.
7j=1

1.4. Remarks. The method used here is simple yet powerful, and could be employed in
answering further questions related to the horocycle flows. For instance, proposition 3.2]
below gives a bound for the mean-square estimate for twisted averages of the horocycle
flow, improving [7, Theorem 4] in a very special case. Moreover, since analogous theory
of Kirillov models is available for quotients of PGL(2, k), for a field k in a very general
setting, these estimates are likely to be generalized there as well.

An independent work of the first author with L. Flaminio and G. Forni [6] also
addresses the question of bounding period integrals and application to Shah’s conjecture.
With more work, [6] obtains stronger results by using a rescaling argument as in [5] for
the twisted horocycle flow, namely, a combination of the horocycle flow with a circle
translation on T'\ SL(2,R) x S*.

Throughout the paper, we only deal with compact quotients of PSL(2, R). However,
the non compact case can be dealt with analogously, using the corresponding spectral
decomposition [4, Theorem 1.7]. In this case, certain period integrals correspond to the
Fourier coefficients of automorphic forms (see [18] Section 3.2]). A non-compact version
of theorem would therefore provide uniform bounds for the Fourier coefficients of
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automorphic forms. Even though the methods in this paper would fail to give better
estimates than those of Good [10], and Bernstein and Reznikov [3]; their advantage lies
in their simplicity, and general applicability.

It should be noted that in order to keep the exposition clearer, we have not tried
to optimize the Sobolev norms appearing in the results in this paper. These can be
improved using a more stringent approach.

1.5. Acknowledgements. The second author would like to thank A. Venkatesh for
introducing him to the problem, for the discussions, and for the encouragement. The
authors would like to thank G. Forni for the encouragement, and for his generous help.

The authors are also grateful for M. Baruch for his help in understanding the Kirillov
model for PSL(2, R).

2. IRREDUCIBLE MODELS AND SPECTRAL DECOMPOSITION

2.1. Line models. For a Casimir parameter y > 0, let v = /1 — 4 be a representation
parameter. The line model H, for a principal or complementary series representation
space is realized on the Hilbert space consisting of functions on R with the following
norm. If 4 > 1/4, then v € iR, and the corresponding norm is

S2.0(f) = lf lz2w)-
IfO<p<1/4,then 0 <v <1, and

_ 1/2
s ([ L0 0

The group action is defined by
7, : PSL(2,R) — % (H,,)

dr —b
A flz) = | — “op (S22 2.1
R R e B (2.1)
where A = ( Cé 2 ) € PSL(2,R), and x € R. Let H3® be the space of all smooth

vectors in H,.

In the discrete series case the situation is a little bit more complicated. For 4u =
—n? + 2n, where n € Zso, let H® be the space of smooth functions f on R, such that
x7"f(—1/x) is smooth. The corresponding group action 7, is defined by

mo(A) f(z) = | — cx +a| ™" f <L_b) . (2.2)

—cxr +a
H® consists of two irreducible invariant subspaces for the action 7,, denoted by H, ;r o0
and H *. These representation spaces correspond to the smooth vectors in holomor-
phic and anti-holomorphic discrete series representations H ;r and H, for the eigenvalue
p = (—n%+2n)/4, respectively. Hj can be shown to be unitarily equivalent to Vf. See
[2 section 4], and [I7] for more details.

2.2. Kirillov Models. The Kirillov model, denoted by K, is closely related to the
Fourier transform of the line model.
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2.2.1. Principal and complementary series representations. For > 0, we let
¢:H, = K, : f— Cyla|t2f (2.3)
where C), is a constant which is defined to be 1 for © > 1/4, and it will be defined later
for 0 < pu < 1/4. Then
Ky ={o(f): f € Hu}

Sa.0(f) = </R/{0} \f(:c)P%)l/Q

We begin by showing that ¢ is unitary in the complementary series case, the principal
series case being simpler. For 0 < o < 1/4, let R(x) = |z|"~! be a homogeneous function
on R\ {0}. An easy computation shows that R(§) = [£|7VR(1). Moreover, R(1) is non

zero since R is not identically zero. Then clearly

116, = [ o =l f@T@ dody = (R £.5),

with the norm

where ( , ) denotes the usual L? inner product on R. The Plancherel theorem implies

112, = / FOPRE) de = R(1) / 1P de
R\{0} R\{0}

& (1- u/2 2 dg 2 d€
=y [ i) g = woer g,

upon choosing €, = |R(1)|"/2, proving that ¢ is unitary. The action of g € PSL(2,R)
on K, is given by

g-o(f) =g f),
implying that ¢ is an unitary equivalence. The explicit action of n(t), and a(t), on K,
is given by

n(t) - f(z) =e ™ f(t), al(t) f(x) = fle'z). (2.4)
The explicit action of the basis X,Y, Z of si(2,R) on this model is given by:
0 L 0?
X=—iz, Y=o—, Zz=il_ix 9.
i, To i ZI@xQ (2.5)

2.2.2. Discrete series representation. A detailed description of these models can be
found in [T4, Sections 4, 5]. We will merely state the various results here. As before,
for 4y = —n? + 2n, we let

¢ H, — L*(R\ {0}, dz/|z]) : | — | ""/2f.

[14, (4.8)] and [14, (4.11)] imply that ¢ maps H~> into L*((0,00), dx/|x|), and H, >
into L?((—00,0),dz/|z|). Upon completion, this gives us the following explicit descrip-
tion of the Kirillov model for V,:

The Kirillov model for a direct sum of holomorphic and anti-holomorphic discrete
series representations of PSL(2, R), K, is also realized on the space L*(R\ {0}, dz/|z|).
The action of the Borel subgroup, and the Lie algebra here is analogous to (2.4]), and

@3).
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It should be noted that the Kirillov model the homolorphic and anti-holomorphic
discrete series representations, is realized via ¢, on the spaces L*((0,00),dz/|z|) and
L?((—00,0),dz/|z|) respectively.

2.2.3. Bounds for the elements in the Kirillov model. Throughout the paper, many of
our computations in the space V,, would be carried out in the Kirillov models K, via
unitary equivalence. As noted before, these models respect the L? based norms on |
However, using Sobolev embedding on R, we can get bounds for > norms on these
models:

Lemma 2.1. For any Kirillov model of PSL(2,R),

[ fllzoo@) < Sa.1(f)-

Proof. Let f be a smooth function in a Kirillov model for PSL(2,R). For any x €
R, recall that X f(z) = —izf(z), and Y f(z) = xf'(x). Let 2o € R and let z; :=
min{3|zo|/4,1/2}. Let I, := (xvo — x1,z0 + x1), and let h be in C°(I,,) be such that
h(zo) = 1, and 0*h(x) < |x1|7* for all k € Zs,.
We deal with the case |zo| < 1 first. By Sobolev inequality,
|f (o)l < (Al < ([ Al + [[(fR) ]l
< ||fHL1(110) + ||f/||L1(110) + |$0‘_1||f“L1(110)
< [ fller ) + |x0|_1||Yf||L1(IxO) + |£Eo|_1||f||L1(1xO) :

We consider the term || f|[ 1, :

zo+x1
|WWW:/ f(2)|de

0—Z1

To+x1
<@mW/ 22| f ()| de

0—Z1

ro+T1 1/2 1/2
<l ([ el (@) o

0—T1

< |$0|||f||L2(IxO,dx/|x|) :
After analogously bounding the rest of the terms, we get
[l oo << |2ol | fllL2(ry dafialy + 1Y iz, degialy + 1 2,y deyia))
< 52,1(.]0) .
When |zg| > 1, the Sobolev embedding implies

LRl < ARl + IR Tl << Il gy + 11 T 1)

<ﬂ|wmmHM+/Mﬂmmwm

< S21(f),

proving the lemma. 0
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2.3. Invariant distributions for the horocycle flow. Let o0,, be the set of non
negative eigenvalues of the Laplace-Beltrami operator on M, which coincides with the
set of non negative eigenvalues of the Casimir operator. The distributions invariant
under the horocycle flow have been classified by Flaminio-Forni [4]. They showed that
this space, . (M), has an infinite countable dimension, and that there is a decomposition

=P 70 P s,

HETpp neZ+

where

e for ;1 = 0, the space %, is spanned by scalar multiples of PSL(2, R)-invariant
volume, denoted by vol;
e for0 <y < 1/4, thereis a splitting .#, = ., f®.7,", where .#;F C W~*(M) if and

Vi 1 1 and each subspace has dimension equal to the multiplicity

only if s >
of p € opy;
e for ;1 > 1/4, the space .#, C W—*(M) if and only if s > 1/2, and it has dimension
equal to twice the multiplicity of p € o,,;
e forn € Zso, the space ., C W*(M) if and only if s > n/2 and it has dimension
equal to twice the rank of the space of holomorphic sections of the ny, power of

the canonical line bundle over M.

For s > 1/2,let .73 = 4, N W™(M) and .#; := £, N W~*(M). By [4, Theorem
1.4], for all p # i, and n € Z>,, the spaces .#; and . have a basis of unit-normed (in
W=%(M)) eigenvectors for {a(t )}teR, which we denote by %, and %, respectively. The
space ﬂf/ , decomposes as ﬂl RS I P where S/ P has a bas1s of unit-normed eigen-
vectors for {a(t)}ier denoted by 2y, and .| /I has a basis of unit-normed generalized

eigenvectors, denoted by %] /Z Let

%= ) Bju{# n=2},

HETpp

and

# = |J 2.

wEopp/{0}

2.4. Spectral decomposition for averages of horocycle flow. Let xy be a fixed
arbitrary point of M. Then for any T' > 1, let vy be defined on L?*(M) by

- / f(xon(t)) dt

For yu € oy, and for 7 € 77, let Sy = %'

For any s > 2, we may project vy orthogonally in W~*(M) onto the basis %°(M)
and the orthogonal complement of its closed linear span, .#*(M)+. Then for all u € Qr,

there exists distributions

@:_{@i LEIE, ifpeay,,

Zo,

.@mo,T’u € .7, ifdu=-n?+2nforn € Zsy,



UNIFORM BOUNDS FOR PERIOD INTEGRALS AND SPARSE EQUIDISTRIBUTION 9

and #Z; » € W*(M) is such that

%S
vr = (VOI—I- Z @) D %T (2.6)
7

in the W~%(M) Sobolev structure.

[4] showed that for any s’ > 3, Sy _ (%% (19,T)) <s 1. We now use arguments in
[4, Section 5] and [5, Lemma 3.7], to prove that %* (zo,T) € W~ (M), for any s’ > 2,
along with a suitable bound for this norm. Being able to estimate the W?2*¢ norm of
remainder distribution would enable us to get a stronger decay estimate in theorem

Henceforth we assume 2 < s < 3, and let 8.5 1= sup..{[2s — ¢]}. Forn € Z,_,,
the above description of invariant distributions shows .#,(M) ¢ W~=*(M), implying
that these distributions do not appear in the decomposition ([26) of vy in W~5(M).
Therefore, using the definition of Z* ., we get

xo, 1
Ry 1 € P In(M) @ 75(M)*-. (2.7)

Lemma 2.2. Let 2 < s < 3. Let Z, 1 be as in (2.8). Then for all f € C*(M),

1
%" <, Syo(f).
2,1 € e ()

Proof. We begin by observing that for any n € Zso, for any s > n/2, and for any
feWs(M), Z; 1 |ss (f) =Tvr |z (f) . [ Lemma 5.12] further implies that

[Tvr Loy (P <s S2,5(f)-

These bounds clearly suffice for any 2 < s < 3, and for any n = 3,4, 5.

It is therefore enough to consider f to be a function on which each ¥ € (M)
vanishes. For such a function f, fOT f(zon(t))dt = %5, +(f). For any s > 2, [4, Theorem
4.1] imples the existence of a function g € C*°(M) (unique up to additive constants)
satisfying

Xg=f, (2.8)
such that for any 0 <t < s —1,

S2,1(9) <is Sos(f)- (2.9)

1
VI—Vi-n
The fundamental theorem of calculus then implies

T
2z ()] = I/0 Xg(zon(t))dt] = |g(zon(T)) — g(wo)|.

Now we estimate each term on the right-hand side. Let 75 € {0,7T}, and let x,, :=
zon(7p). As in the proof of [5, Lemma 3.7], the mean value theorem implies that

‘Ag@wﬁwhzﬂ%mwﬁ,
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for some 7 € (0,1). A further application of the fundamental theorem of calculus, and

[28)) gives us

/ oo n(r)) dr + / Famn(r) dr = g(zn(m)) / Xg(wnn(r))dt = g(zs)
(2.10)

We now apply the Sobolev trace theorem in [5, Lemma 3.7] to the operator which
maps ¢ to the trace fol g(x,n(t))dt, to get that for any € > 0,

|/ 1’7-0 dt| <<E 520 (([ — Z2 — Y2)1/2+Eg) <<5 52714_5(9) <<57)\1 5272_,_25(.1:). (211)

The trace theorem also analogously implies that

\/ f(xnn(7)) dr| <o, Sa212:(f) -

Combining these bounds, we get |g(2,)| <, S2,242:(f), thus implying
| Ry ()] Keny S2212:(f),

S S
1—VI—xn
any s > 2, upon suitably choosing ¢. O

where the implied dependence on A\ is C), = , thus proving the lemma for

2.4.1. FExplicit spectral decomposition for vr. In light of the improved regularity of the
remainder distribution in lemma 2.2 [4, Theorem 1.4] implies that for any s > 2 and
(x,T) € M x Ry, there exists distributions D5 wor € By | B and Xy € W*(M)
and a sequence of real-valued functions {cf,(-,-)}gezs on M x Rs; such that for all
felc*(M

/ fo)dg+ 3 Sl DIOT + Y o NIPT HlogT

s s,+
VN E N 9B}

‘@ixo,T(f) IOgT + ‘@;0,']1(][.)
+ T ,

(2.12)

where,

D ey (@0, TP + So—o(Z5(20, 1))+ <o 1, Soms( By 1) Kagus 1
D€ B,
using [4, Corollary 5.3] and lemma 2.2
Note that for any 0 < pu < 1/4, and for any 2 € fj’i N %S, the corresponding
value of Sy = (1 +v)/2. Thus the contribution in ([2ZI2) from terms corresponding to
9 € F2T N A is at most O(T~Y/?), for any s > 1. To summarize, for any ¢ > 0 we
have

/ fdg + (w0, T) 2y ()T Ou(Sa14(f)T % log" T)
ueﬂpm 01/4)
+ O4(Sanre(f)T Hog™ T, (2.13)

where for every € Qrn(0,1/4), 2, € I, So 1 (Z,) <, 1, and |02_@JC€(:170, T <1
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3. PROOF OF THEOREM
We start by recalling that for any f € C*(M),

Frora) = 7 [ o)
For any f € C°(M), the following can be easily verified:
X(n(t)- f) =n(t) - (Xf)
Y(n(t) - f) = n(@) - (Y +1X)[)
Z(n(t) - f)=n(t)- ((Z =2ty —t2X)f). (3.1)

These bounds imply that for any s € Z,, any degree s monomial By in XY, 7, and
any v € M,

|Bo(f xor)(@)] <D D D |IBf xof(a), (3.2)

j=0 BEO; k=0

where
fxoh(z /@b (t)t* f(xn(t))dt (3.3)

Note that fxo% is equal to fxop. It is therefore enough to obtain a suitable bound for
Seon(Bfxck), for k € Z,. Let 2y € M be a fixed arbitrary point. We begin by noting

((f x o) * o7) (o)
= % /0 /0 W(t+ 2)t* f(zon(t + 2)) dz dt

T+H pmin{y,H}
a2 ) dsay

~ 77 || vt o) dzdy-+ 0T S o)
— f+ b (w0) + O(HT* Suc(1),

implying S o(f*x ok — (fx o) *xok) < HT* 1S, o(f). An application of the Cauchy-
Schwarz inequality implies

((f % ou) xo7)(20)]* < T*vr(|f xoul?). (3.4)
In the light of (3.2)), this implies that for any By € O,
|Bo(f * o7)(20)| < Z Z vr(|Bf «ou|*)?T% + HT** 'Sy o(f). (3.5)
j=0 Beg,

In order to bound the term vy (|Bf * ox|?), it is enough to get an appropriate bound
for vp(|f xom|?). We begin by noting that for f € L*(M), we have | fxox|? € C®(M).
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We use the spectral decomposition in (2.I3]) to get that for any ¢ > 0,

vr(lf % oul?) = /M | xonldg (3.6)

+ Y ey (@0, D) (1f % ouTT2 4 Sy (If < oul?)T T logt T
MEQFO(0,1/4)

+ 5272+E(|f * O'H|2)T_1 10g+ T,
using the Fourier expansion ([L.1])
[foul> = @ (f xoul*).
HEQD
Lemma 3.1. For any € > 0, we have
el sonP)l <. [ |fronPdg+ T Y 0. 1) 5 oul)
M 1u€(0,1/4)NQr
+ So 146 (| f * O'H|2)T_% log®™ T + Syorc(|f xou|?)T~ log™(T),

where 3, |cu(wo, T)? <. 1.

It remains to estimate the terms on the right-hand side of lemma [3.1]

3.1. Estimate of [, |f*oy|*dg. In order to bound [, |fxopu|?dg = Sao(f*ou)?, we
start by obtaining a slightly more general bound S, ,(f * o7)?, the utility of which will

be evident in the later part of this section. Using the explicit action of the Lie algebra
B0, a bound similar to ([3:2)) can be obtained for any s € N:

s 27
Sos(from)® <Y YN Soo(Bf x o). (3.7)

j=0 Bed; k=0

For any f € L*(M), and any p € o,, \ {0}, let f, be the projection of f in the

component V,. Using the fact that the operators x o}, are limits of discrete sums of

operators of type t*n(t) - f, which map V,, into V,,, for any u € Qr, we can easily see
that the operation x o, splits across irreducible components, i.e.

(f*glki)u:fu*gllfl' (3-8)
Proposition 3.2. Let f € C*°(M) be such that [ f(g)dg = 0. Then for any s € Ry,
So,s(f xo)? < (L4 |a| ™) H" " Sp01(f).

F=6ep .

HEQD

where f, € V, for all p € Qp. By B8], we have
frol =P (fuxoh).

HEQD

Proof. Write
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In the light of ([B.7), it is enough to get the corresponding bound for Syo(f * o).
Parseval’s identity implies that,

S2,0(f*01f{)2 = Z S2,0(fu*01f{)2-

HEQD

For any 1 € Qr, we start estimating Soo(f, * of;)? in the Kirillov model for V. For
fu € K,, the explicit action of x 0¥ is given by

I
frof(z)=— / the' et dt f(x). (3.9)
H Jo
Let C' > 3, then if |[Ha| < C, then we obtain the trivial bound
]

dx
/ ok 0y (@) 2L < HPS, (1)
R/{0}

Henceforth, we assume |Ha| > C. Let Iy = (a—1/H,a+1/H), I, = (—=1/H,1/H)\ {0},
and I3 =R\ (I; U Iy U{0}). Then the trivial bound

J

is enough upon further using lemma[2ZIl On I,U /3, using repeated integration by parts,
we get

/Izufg

2
dx _ _
2] K H | fullfoe (1 + a7,

I
i(a—x)t

2

dx

||

I
i(a—x)t

1 — e—i(a—x)H 2 dx k - f (I) 9 dr

] [ e [ bt e

1,uzs | H (@ — x)k+l 1 || ; Lo, | H(z —a)k+1=7| |z
capr [ b
Ip UI3 |Zl§'(l’ - a’)2|

2d
< aty [ LA e o [ el e o

Lo 7l I3
< H? ' (14 a7")S0(f)° + (14 a™ Y H* 19, (f,)
Combining these bounds, we get
So0(fur o) < (14 Ja| =) H* 7185, (f)*.
Using these bounds, along with ([3.7)), we get that for any s € N,
Sas(fuxon)” < (1+[al H 1% ()"

Upon interpolation, we prove the above bound for any s € R, , and upon further adding
over all y € Qr we get the proposition. O
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3.2. Estimate of 7, (|fxox[?). In this subsection, we will estimate 7, (| fx ox|?) for
0 < pu < 1/4. Recall that v = /T — 4p. Our main goal will be to establish the following
proposition:

Proposition 3.3. Let f € C*(I'\G) be a function of zero average, and let 0 < p < 1/4.
Then

Yo 12 (f xoul) <r (L4 lal ™V H ' So0-072(f)7

1e(0,1/4)NQr
We use the spectral decomposition to get
— 2 _ —
Dy (Ifxoul)= Y D, (fs *oufs, xon).
B1,82€0r
In order to estimate 7, (fa, *om fa, *om), we start by defining a bi-sesquilinear func-
tional &, 5 5 on Vge x V2, given by:

w61
‘@;51,52@01’ f2) = -@M_(flfﬂ

For any b € B, .@;’ 51 5o satisfies
'@u_ﬁl,ﬁz((b f1), (b f2)) = Xu(b)-@,;m,@(fla f2)

where
Xu(n(@)a(t)) = el =2,
Let &), 5,3, be the space of bi-sesquilinear functionals & on Vi° x V¥ satistying

AD(f.9) = 2(Nf,9) = D(f. Ng), Z(b- f,b-g) = x.(D)2(f.9), (3.10)

for any b in the Borel subgroup of PSL(2,R), and A € C. We begin by finding the
dimension of &}, 5, 3,:

Lemma 3.4. For 5,82 € $r, &,3, 8, @5 a two dimensional space. Moreover, if for
J =12, ¢;: Vs — Kp, is the equivalence map, then the space &,p, p, is spanned by
the following two linearly independent functionals:

Bllhﬁhﬁz(fﬁl’ fﬁ2) = /0 |ZE|_(H_V)/Q(Cblfm)(z)(¢2f52)(l’)d:ﬁ, (3.11)
0 e —
B 5, 5,(f61, f3.) 12/_ 2|~ 2( 6y f5,) () (Do fay) () duv. (3.12)

Proof. We start by considering the space .%#, 3, 5, of bi-sesquilinear functionals on the
line models Hg x HES satisfying (B.10), where v; = /1 —4f;, if §; > 0, and v = n; — 1
for n; € Z*, if B; = —n? + 2n;.

We follow the recipe in [8, VII, 3.1] to prove that the space %, 3, 5, is at most
two dimensional. This follows in a rather straight forward manner. Therefore, we
only provide an outline of the argument here. By definition, .%#, s, 3, is the space of
functionals 2 € &' (Hg?, HE) satisfying

D (n(t) - b1, n(t) - h2) = D(Y1, o)
P(a(t) -1, alt) - ¢n) = €T ED( 4y, ).
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Using (2.10), these conditions translate to
Z(hi(x — 1), Yao(x — 1)) = D(V1,12) (3.13)
D(r(e™'x), Yae ™)) = TG (), ). (3.14)

By [8, VII, 3.1, (2)], condition (BI3) implies that Z(¢n,vs) = Zy(w), where % is a
one-dimensional distribution, and w is the convolution

w(r) = /¢1($1)del.

Condition (B:I4) now implies that Zy(w) = e~ (F1+2+0t/2 g (y(e7tx)), or equivalently,
Do(w) = |a| M2t g (w(ax)).

This shows that % is a generalized homogeneous function of degree (—1 + vy + 15 +
v)/2. The space of homogeneous functionals on R have been characterized completely
and it is at most two dimensional. See [8, VII, 3.1, (6) and (7)] for more details.

Moreover, note that any functional in &), 6, 3, can be realized as a functional in
F 5.5, via the equivalence of Vi with Kj for any 8 € Qp, and using the map ¢
in (23) between the Line model and the Kirillov model. This implies that the space
&,.,81,8, 15 also at most two dimensional. However, it can be easily checked that the func-
tionals B} 5 5 and B?. ; 5 defined by (BII) and [BI2) are in &, 4,5, Furthermore,
since the space of Kirillov model Kjg, for any 8 € {lpr, contains the space of smooth
compactly supported functions CZ°(R\ {0}), it can be easily deduced that B} 5 5 and
Bi’ 5,5, are linearly independent, thus proving the lemma.

We start by proving the bound:

Lemma 3.5. Let 0 < u < 1/4. Then B} 5 5, and B}, 5 5 belong to &, g, and satisfy

|B;1L,61,62(f617 f52)| + |Bi,51,52(.f517 f52)| < 52,0(X(1_V)/2f51)52,0(X(1_V)/2f62) .

Proof. Recall that for j = 1,2, X(¢;f) =ix¢,f, then iX is a self-adjoint operator with
spectrum R. The spectral theorem then shows X*¢;f = e™/2z%¢;f for any s > 0.
Therefore we have

‘Bllff761762(f61 ® fﬁ2>| + |B/21751752(fﬁ17 f52)|
< [ el ) @) T e
R/{0}

1/2 1/2
<([ el @ban) ([l ) k)
R/{0} R/{0}

o\ /2 1/2
([ ol ) ([ e 0P
R/{0} 2] R/{0} 2]

= So0(X 26, f5,)550(X T2y f5,) .
]

Since ,, 5, 5, belongs to &, 4, 5,, it can be written as a linear combination of B}, 5 5,
and B?. 5 5 as follows.



16 JAMES TANIS AND PANKAJ VISHE

1 2
Lemma 3.6. There are constants €, 5, 5,,C; 5, 5, € C such that

(51,0 | 1€y, < (L4 [BI)Y2(1+ (o]
and
Dot = CaprpBuprss T €y By o
on V3 x V3.

Proof. Let (f,g) € (Va,,Vs,) be such that ¢1(f), p2(g) € C°((1,2)) are non-negative
valued functions taking the value 1 on the interval (5/4,7/4). By a direct computation
in the Kirillov model, we may further choose f, g such that for any integer k£ > 0,

Son(f) < (1 +|Bu))*
Sa(g) < (14 [B2])"

Using interpolation, the above bounds hold for any k& € Ry. Since (f,g) € (Vg7, Vsy)
and B?. 5 5 vanishes on (f,g), we get

—( = 1 1
,(F9) = €18 Bupr,6.(f>9):
Moreover,

2
By sa(f.9) = / 2702 (0 1) () (Gag) (D) > 1.

Since the W=3/2=¢(M) norm of 2, is bounded by a constant C' > 0, using the fact that
W#(M) is a Banach algebra for any s > 3/2, we get

G, 5] <N Dy ()| < Sa3242(f7) < Sa3242(f)S28/242(9)
< (L+ B2+ |B)Y2r,
thus giving the bound on %”Hl 5,5, A similar treatment implies the result for %”3 P
oy . . . 1 2
We now use proposition to obtain the following bound for B, 5 5, and B} 5 5 .
Lemma 3.7. For p € Qrn(0,1/4) and i = 1,2, we have

1B}, 5, 5, (o % 01, oy % om)| << (L4 |a| ™ ) H ™' So 320 2(f5,)S2,3-0)/2(f5,) -
i=1,2.

Proof. We only deal with bounding B/i 5,5, here, the other case is analogous. We begin
by applying lemma B3] to get

B} 5,5, (fo0 * 011, fa, % o) < Sa0((XT2 )5, % 01))Sa0(XP2f) 5, % 01r)

since X commutes with xog. We now invoke the estimate in proposition to get

B, 5,5, (o % 01, oy % om)| << (L4 |a| ™ ) H 1Sy 3202 (f5,)S2,3-0)/2(f5,) -
O

Finally, we use these functionals to estimate &, (| f«oy|?*) and prove proposition
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Proof of Proposition[3.3. Using Lemma B.7 and Lemma B.6, we get
- 2
12, (If *oul")] (3.15)

= @;( Z (f*UH)ﬁ1(m>Bz> < Z ‘.@;51752 (fﬁl*o-H7fﬁ2*O-H)‘

B1,82€Qr B1,82€r

< (@+]a™HT Y 1+ B 5y (Fa) (1 + |B2])*7 T S0, 320 2 f)
B1,82€0r

< (1+lal™) Z So,9-v) /2422 (f58,) 52,91 j242¢ (82

B1,82€Qr

using the fact that (1+|3;])"Sa2(fs,) < Sz,s426(f3,), for j = 1,2, and for any k, s € R..
Now using the Cauchy-Schwarz inequality and the Plancherel formula, we get

< #{r N (0,1/4)}(1 + |a|™h) (Z S2,(9-1) /2+2e(fﬁ)>

BEQr

< #{ QN (0,1/4)}(1 + |a| ) H! (Z (1+ |5|)_1/2_5/2527(11—,/)/%35(fﬁ))

BEQr

< (L4 |al Y H Q0 0,1/ (1+18) 7S 1107205 (f)°

BeQr
The Weyl’s law for the distribution of eigenvalues [IT, Lemma 2.28] implies that #{/5 €
Qr, |8] < To} < Tp, thus implying > s |B]717¢ < co. Further adding over all u €
(0,1/4) N Qr establishes the proposition. O
3.3. Proof of theorem [[.2. We start by bounding the ¢ norm of | f x o>
Lemma 3.8. Let f € C*°(M), H > 1 and e > 0. Let n > 0 be such that for any k € N,
Soor(fxom) < Cox H* 1S5 111042 (f),

where Cy 15 a constant depending on a and k, satisfying Cop < Cort1. Then for any
s € Ry, we have

Sas(|f xoul?) <o (1 |al ™2 Cop H 72775 S 11242 ()7,
where [s] denotes the nearest integer greater than or equal to s.

Proof. Let s > 0 be an integer. We can easily see that after using proposition we
get

S2,8(|f* UH|2)2 < Z SOO,j(f*UH)2S27s—j(f * O'H)2 < Ca,S(l + |a|)H4S_1_2n52,s+11/2+s(f)4'

Jj=0

The bound can then be extended for any s € R, after using interpolation. U
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Proof of theorem[I.4. We begin by observing that (3.5) implies that for any xy € M,
we have

f xor(zo)l <D > vr(|IBf xoul’)'*T% + HT* ' S,.(f). (3.16)

j=0 Beo,

We are now ready to finish the first part of theorem [[.2] namely the bound (L.5]). Using
[B2), and Sobolev embedding, it is easy to establish the bound

Sook(from) < CoH* S s(f) < CLH™ Ss 513212 (f), (3.17)

where (), is an increasing sequence. Thus, the hypothesis of lemma is valid with
1 = 1o := 0. This implies the bound

Sos(|f xoml?) <o (L4 |a| )CLHP 2485 1o ().

Keeping the explicit dependence on n will be useful in proving the later part of the
proof. By substituting the above bounds, along with the ones from proposition B.2, and
proposition , into lemma B.1] for any ¢ > 0, we have,

H1+€ H7/2—?70 +e

1
(B o) er (1 1al™) (7 + e + ) (SugaeoBOP,

Applying these bounds to ([B.I6]), we get

12 ) 12 H7/4—n0/2+&‘
Soo,s(f*UT) <<a,I‘ (1 + |a|_ / )T S (H_ / + T) 52754_11/24_5(]:).
Optimizing, we set H = T%/O=2m)=¢ which yields
Soos(fx07) Ko (L+ |a| VA T?HO20%e 5, 1ne(f), (3.18)

thus proving the bound (L)), upon recalling that ny = 0. The explicit dependence of 1)
and T in ([BI8) will be crucial in the application to the sparse equidistribution.

Henceforth, we assume that a # 0 is fixed. The validity of the bound (L)) implies
that the hypothesis of lemma B8 holds with n = 7, = 1/9—¢, and C, ;. <, (1+|a|7/?).
Now, the process of obtaining (BI8]) can be bootstrapped to obtain that for any j € N,
we have

SOO,S(f * UT) <<E,F,s7j (1 + |a|_1/2)j+1T2S_1/(9_27U)+ES2,s+11/2+s(f)a (3'19)
1
9—2m;
the sequence 7); converges to (9 —+/73)/4, which is a solution to the quadratic equation
2y% — 9y + 1, thus proving (L), and the theorem. O

where 7y = 0, and the sequence 7; satisfying 7,41 = . It can be easily seen that

4. PROOF OF THEOREM AND THEOREM [.4]

4.1. Proof of theorem [I.3l We follow a variant of the recipe in the proof of [I8]
Theorem 3.1]. We start by proving effective equidistribution for arithmetic progressions:
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Lemma 4.1. Let xo € M, and let f € C*°(M) be such that [,, f(g)dg = 0. Let b, by, e

be positive numbers satisfying b+ ¢ < él(;_zg‘gii and by + ¢ < 1/9. Then

S flaon(Kj))| <o K,

1<j<Kr—1
for any r > 3/(b+ 2by).

Proof. Let gs = max(6—2(d — |t]),0) be a function on R. Using the Poisson summation
formula, it can be easily seen that

Zg5(t +jK) = Zexp(27riK_1kt)ak,
jez keZ

where ay = K~ [, exp(—2miXt)gs(t)dt. It can be easily seen that [a,] < K~' and
S lax] < 671, Note that

/0 (Zg(;(t—i—Kj)) flaon(t))dt = " ay /0 exp(2mi K~ k) f(zon(t))dt.  (4.1)

JEZ kezZ

We use the bound in lemma [[.T] to bound the integrals on the right hand side of (4.1l)
when |k| < Ky, say, and use the bound of theorem [[.2] to bound the rest. We then have

/0 (z%(t - Kj)) f(xon(t))dt

JEZ

<<F7f,€ [(O[(_lirl_b_a —+ (K/KO)1/2T1_I)1_E(S_1,

(4.2)

Moreover, since gs is supported in a ¢ neighborhood of 0, and it has integral 1, we can
easily deduce that

/0 (Zga(t+Kj>> f(zon(t))dt — Z flzon(K7))| <5 (1 4+ TK™1).

Combining with (Z.2]), we get

> flaon(Kj))| <rge 1+ TK 6 + KoK TV 4 (K ) Ko) /T 0671
lnge'jZST

(4.3)
Choose T = K", Ky = K™, and § = K¢ to get

Z f(l’on(K])) L1 fe 1 —|—Kr_1_6—|—Kr_1_ra—I—KT_1+(3/2_T(b/2+b1))_(T_l)a.

1<j<Kr—1

The lemma now follows upon choosing r > 3/(b + 2b,).
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Proof of theorem [1.3. By possibly subtracting f by a constant, we may assume that f
is a function of zero average. The implied constants appearing in the proof here are
independent of N, but may depend on f,I', and a parameter £ chosen in due course.

The theorem follows easily from lemma FL.1] after approximating the sequence {j'*7 :
0 < j < N} by a union of arithmetic progressions. In particular, let Ny € N be a large
number. For a small ¢ we have

(Ng + )7 = NPV (1 4+ t/Nog)'™ = N7 + (1 +4)tNJ + O(t2Ny ). (4.4)

This is a good approximation for ¢ < N, (1=)/2e , where ¢ is a small positive number.

For Ny = N'7¢ we write {j771: 0 < j < N} {j'YH 0<j< N —1}u{y*: N, <
j < N}. The second set can be decomposed into a disjoint union of I — 1 sets of the
form

URTHING T, (N + 1), (N NPT g™ N,

where for any k > 1, Nyyy = Ny + N2 41 and N, < N < Npoy. Clearly, the
terms in the tail N~! Z;V: ~, f(zon(j'77)) can be bound appropriately. Since each of

(1-7)/2-¢

these above sets have IV, elements, we have

L—-1
SN < N

For each 1 < k < L, we can now apply the lemma (1] along with (£4]) as long
as N7 5 NOUOTD here 1y = 3/(b + 2by). If 12_—77 > rg — 1, equivalently if
v <1/(2rg—1) =1/(6/(b+2by)—1), a suitable value of ¢ > 0 can be chosen so that the
above condition as well as the hypothesis of lemma [£1] hold. The theorem now follows
easily from the following estimates

I— 1N(1 v)/2—¢ ) -1 N}ilf’y)/276
S IRNCIEERASTES DU IS W AR
k=1 j=1
1 L—1
L (1=7)/2—e—ne —e —(1-¢)
<<N;N < N <« N~Umene

O

4.2. Proof of theorem 4. Let L3(M) := {f € L*(M): [,, f(g9)d,g =0} , where
p € WO(M) is a positive function. Using the commutation relations

X, V] = (221X, 1%, 2 = = + 22X,
p PP

and solving a system of O.D.E’s, the tangent flow {Dn}} on TM is computed in [7]
Lemma 1]. It follows that there are continuous functions yx,, zx,, 2y : R — R satisfying

lyx, ()] + 2y (8)] <, [t [2x, (0)] <, |2,
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such that for every f € C*°(M),
Y1) £) = (ux, (OR2(0) - X, + 00(0) - V) (F)
Znf(t) - f) = (ex,(On(8) - Xy + 2y (O0(1) - Y +0°(t) - Z) (f),
Xo(n(t) - f) = nP(t) - X, f . (4.5)
The main step in proving theorem [[.4]is the following lemma.
Lemma 4.2. For all f € C®°(M)NL3(M), and all T > 1, and £ > 0,
Sacn(f % 0h) <, T~ (1700l /Q00—da0)teg) o (f)

where
Fraf(ie) =5 [ o)

Proof. The proof will follow by combining the argument in [I8, Lemma 3.1] with re-
sults on the quantitative equidistribution and quantitative mixing of {n”(¢) };er in [T,
Theorems 2,3].

We provide slightly weaker versions of these results here. Recall that ag = /1 — 4\, €
(0,1], where A; is the spectral gap of the Laplace-Beltrami operator on M.

Lemma 4.3 (Theorems 2 and 3 in [7]).
o Foranyr>3,T>1,z0€ M, and f € W' (M), we have

T 17040
| / Flaon”(8)) dt — / 1(9) dyg| €y T~ F2(1 + 10g T)S0,(f)
0 M

e For anyr > 11/2, (x,t) € M x Rsy, and for any f € W"(M) N L3(M) and any
ge W (M),

[(nP() £, 9) 12avol )| Korp Sap(F)San(g)t™ 2 (1 +logt) .

Let v4.(f) = % fOT f(zonP(t)) dt. We can easily derive a bound analogous to (3.1,
nd I8 (05
P H p P12
[Sec0(f % 07)] < 5 S000(f) + 4/ vp(lf * o ?)
H

1 - 1/2
—_ — . P .
TSoo,o<f> + (H [ ol T e
1 1/2
< Sl + (73 | [0 (s~ o) 1)t
T (h1,h2)€[0,H]?

1/2
+ <T_1200(1 +1logT) sup  Sae(nf(h)f - nﬂ(h2)f)) .
(h1,h2)€[0,H)?
(4.6)

Using (H), we also can derive bounds analogous to (B17)
Sa6(n”(ha) - f P (ha) - f) < (14 [ha] + [h2])S215/0(f)? -
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Applying the Sobolev embedding theorem, along with the mixing statement in lemmal4.3]
to (0] gives that for all € > 0, we have

H HS
ESB) <, (7 + Ho /e 4 ———)52,15/2(f)- (4.7)
T T

4
Optimizing, set H = T(1=@0)/(25=e0)=¢ and we get
(lm) <<p T_(1_a0)2/(100_4a0)+852715/2(f) )
This concludes the proof of lemma O
Proof of Theorem 1.} Let f € LZ(M). The method used to prove lemma ] can be

recycled here upon setting Ko =1, b = b; = (1 — ag)?/(100 — 4cy), and replacing n(t)
with n?(t). A formula analogous to (A3]) then gives

> flaon”(Kj))| <, 1+ TK 6+ 176718y 150(f)

As before, let T'= K" and 6 = K¢ to get

Z flaon? (Kj))| <, (1 + K" + K7077975) 6, 1500 f) - (4.8)
jez
1<j<K"

Now using the notation in the proof of theorem [[3], we approximate the sequence
{7 :0 < j < N} by a union of arithmetic progressions. We use (8] in the place of
lemma 1], and conclude that theorem LA holds for any v < 2. O
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