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Abstract

Aquilaria crassna Pierre ex Lec. and Tectona grandis Linn.f. are sources of resin-suffused agarwood and teak timber,
respectively. This study investigated arbuscular mycorrhizal (AM) fungus community structure in roots and rhizosphere soils
of A. crassna and T. grandis from plantations in Thailand to understand whether AM fungal communities present in roots
and rhizosphere soils vary with host plant species and study sites. Terminal restriction fragment length polymorphism
complemented with clone libraries revealed that AM fungal community composition in A. crassna and T. grandis were
similar. A total of 38 distinct terminal restriction fragments (TRFs) were found, 31 of which were shared between A. crassna
and T. grandis. AM fungal communities in T. grandis samples from different sites were similar, as were those in A. crassna.
The estimated average minimum numbers of AM fungal taxa per sample in roots and soils of T. grandis were at least 1.89 vs.
2.55, respectively, and those of A. crassna were 2.85 vs. 2.33 respectively. The TRFs were attributed to Claroideoglomeraceae,
Diversisporaceae, Gigasporaceae and Glomeraceae. The Glomeraceae were found to be common in all study sites. Specific
AM taxa in roots and soils of T. grandis and A. crassna were not affected by host plant species and sample source (root vs.
soil) but affected by collecting site. Future inoculum production and utilization efforts can be directed toward the identified
symbiotic associates of these valuable tree species to enhance reforestation efforts.
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Introduction for domestic and foreign markets such as Jamaica, Guatemala,
Mozambique, Sri Lanka, Indonesia, Laos, Malaysia, and Aus-
tralia. Most T. grandis plantations in Thailand are planted in the
northern provinces such as Chiang Mai, Chaing Rai and
Phetchabun, while A. crassna plantations are mostly in eastern
(Rayong, Trat and Chanthaburi provinces) and central (Nakhon-
Nayok) Thailand.

Arbuscular mycorrhizal fungi (AMF) are soil fungi in the
phylum Glomeromycota [5] that are mutualistically associated
with roots of a wide spectrum of tropical and temperate tree
species [6]. AM fungi have major effects on plant growth such as

Tropical forests are disappearing at the rate of 13.5 million
hectares each year owing to logging, burning and clearing for
agriculture and shifting cultivation [1]. At present, managed
woodlands are required for timber and non-timber products in
many countries. Aquilaria crassna Pierre ex Lec. (agarwood) and
Tectona grandis Linn.f. (teak) are perennial plants that are used
extensively to provide aromatic resin-infused wood products [2]
and good quality teak wood products [3], respectively. The
depletion of wild trees from indiscriminate cutting of Aquilaria

species has resulted in the trees being listed and protected as
endangered species. All Aquilaria species were listed in Appendix
II of the Convention on International Trade in Endangered
Species of Wild Fauna and Flora in 2005 [4]; however, a number
of countries have outstanding reservations regarding that listing.
Plantlets of A. crassna and T. grandis are produced in Thailand

PLOS ONE | www.plosone.org

enhance the nutrient uptake by plant roots (especially phosphorus),
particularly in low fertility soils [7,8], protected plant against
drought stress [9,10], protect plant from soil-borne plant
pathogenic infection [11], and improve soil aggregate stability
through the action of mycelia and glomalin [12,13,14]. AMF
inocula applied to plantlets and plant seedlings increased growth
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during early tree establishment in the field [2,15,16]. AM fungi
have been used to inoculate and enhance growth of T grandis
[3,17] and Aquilaria spp. [2,18] prior to planting out. Therefore,
studying the AM fungal communities of these plants in the field
should aid plantation establishment and reforestation efforts.
Information about the diversity of AM fungi associated with both
plants has been reported mostly from natural forests in India
[19,20,21,22,23] and only in T. grandis from Thailand [24].
These studies characterized communities based upon spore
morphology. However, there are no reports of AM fungal
communities of either tree using molecular tools. Identification
of AM fungi based on spore morphology inevitably has some
limitations, e.g. omission of AM fungi that did not produce spores
during the sampling period and inability to identify the AM fungi
within the roots.

PCR-based methods have been widely used in AM fungal
community studies. Various studies have designed sets of specific
primers for AM fungi [25,26,27] to facilitate rapid detection and
identification directly from field-grown plant roots. Previously,
Terminal restriction fragment length polymorphism (T-RFLP) has
been used to study the AM fungi community in roots of arable
crops [28], perennial herbs [29], herbaceous flowering plants [30],
grass species [31,32], grass species with herbaceous flowering
plants [33,34], and temperate deciduous trees [35]. Populations of
AM fungi have been well studied in a number of ecosystems
around the world, but there is scant information available for
tropical forests and plantations of tropical and sub-tropical species.

This study provides the first molecular community analysis of
AM fungi associated with field-collected roots and rhizosphere
soils of the tropical trees A. crassna and T grandis, and is part of a
long term goal of optimizing AM fungus inoculation strategies to
enhance reforestation efforts with these trees. It also provides an
early insight into the biodiversity of AM fungi in Thailand to test
the hypothesis that differences in AM fungal communities present
in the roots and rhizosphere soils are determined by collecting
sites, host plant species, and local environmental factors.

Materials and Methods

Ethics Statement

No specific permits were required to carry out research in the
plantations: Chiang Mai (99°15’ E, 18°58’ N), Chiang Rai (99°29’
E/19°14" N), Nakhon-Nayok (101°16" E, 14°9" N), Phetchabun
(100°47’ E, 16°2’ N) and Thai Orchids Lab Ltd. (101°7" E, 14°16’
N). The field studies did not involve endangered or protected
species in Thailand. Aquilaria crassna is defined to be the
forbidden forest item in only the forest area as the Forest Act.
Therefore, the A. crassna planting and deforestation in the land of
ownership is legal. All A. crassna samples were obtained from
privately-owned plantations and are therefore not subject to the
restrictions of the Forest Act of Thailand. Permission to sample the
T. grandis and A. crassna were granted by the landowner.

Study sites and sampling

Rhizosphere soils and roots were sampled from plantations of 7.
grandis and A. crassna in four provinces of Thailand (Table 1).
Two sampling sites were located in Chiang Mai and Chiang Rai
provinces in the northern region. These sites are monocultures of
T. grandis planted at 2 m spacings and left to grow naturally with
accumulated leaf litter and negligible understory perennial plants.
Only roots attached to the main roots of 7. grandis were sampled.
At the sites in the central region; Nakhon-Nayok and Thai
Orchids Lab Ltd., Nakhon-Nayok province, and in the northern
region; Phetchabun province, 7. grandis and A. crassna were
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planted alternately 2 m apart at Thai Orchids Lab Ltd. and
Phetchabun. At both sites, weeds were controlled by ploughing
and herbicide treatment. Thus, both species were planted without
any above-ground vegetation, while in Nakhon-Nayok site, A.
crassna was left to grow naturally. Paired soil and root samples
from each plant species were randomly collected from 3 locations
per site at 0-15 cm depth within 50 m® and taken to the
laboratory. All collections were carried out in July 2010. Root
fragments were washed free of soil and air dried on tissue paper.
Root fragments and soil samples were stored frozen at —20°C
until further analysis.

Soil analyses

Soil pH and electrical conductivity (EC) were determined in a
I:1 soil: water slurry by direct measurement with pH-meter
(Waterproof EC Testr, EUTECH instruments). Available phos-
phorus was measured employing the Bray II method [36]. Total
inorganic nitrogen, exchangeable potassium and soil organic
carbon were quantified following the methods of soil analysis
outlined in Sparks et al. [37].

Molecular analysis

Three replicate rhizosphere soil and root samples from each
plant species were used to represent each site of collection. DNA
was extracted from rhizophere soils and roots using the PowerSoil
DNA isolation kit (MoBio Laboratories, CA) and Nucleospin Plant
II (Macherey-Nagel GmbH & Co. KG, Diren), respectively
according to the manufacturers’ protocols. DNAs were amplified
separately by nested PCR and then 20 pl of each of the three
replicates from each sampling site were pooled and purified before
restriction digestion [38]. The first round of AMF-specific PCR
amplification was performed using the unlabelled primers AMLI
and AML?2 [26] with 30 cycles. In this first PCR, 40 pl reactions
were carried out and each mixture contained 10 pmol of each
primer, 1 unit of Taq polymerase (Promega) and 25 mM of each
dNTP (Invitrogen) in manufacturer’s reaction buffer (Promega).
PCR was performed on a PT'C100 thermocycler (MJ Research)
with an initial denaturation at 94°C for 15 min, followed by 30
cycles of denaturation at 94°C for 30 s, annealing at 57°C for 45 s,
extension at 72°C for 45 s, followed by a final extension of 72°C
for 5 min. PCR products were visualized on a 1% agarose gel
containing 0.1 X SybrSafe (Invitrogen). The second round primers,
0.5 unit of Taq polymerase (Promega) and 20 pmol of HEX-
labeled NS31 and FAM-labeled AML3 were added directly into
24 ul of each resulting product. Second-round PCR was
conducted with 5 additional cycles using the same PCR conditions
as the first PCR. The PCR products were purified using the
QIAquick PCR purification kit (Qiagen). The purified PCR
products were digested separately with the selected restriction
enzymes, Hinfl, Hsp92II and Mbol (Promega) [31,39] for 3 h at
37°C.. Digested products were purified as mentioned above.
Terminal restriction fragment (TRF) sizes from each sample were
determined using the ABI PRISM 3130 Genetic Analyzer System
(Applied Biosystems) with GeneScan LIZ-600 (Applied Biosys-
tems) as internal size standards. The GeneMapper software
(Applied Biosystems) was used for the analysis of fragment data.
To reduce data noise, only fragments containing intensity above a
baseline threshold (50 fluorescence units) were recorded. Relative
peak heights were calculated and fragments with an average
relative abundance <5% were excluded from further analysis.

Screening and DNA sequence analysis

The remainders of the first PCR products were combined and
purified using the QIAquick PCR purification kit (Qiagen).
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Purified DNA was cloned into pGEM-T Easy Vector (Promega)
and transformed into Escherichia coli JM109. One hundred
transformants were selected randomly and their insertion checked
by PCR using the same primers, AML1 and AML2. The amplified
DNAs were digested by the restriction enzymes Hinfl and Hsp92I1
separately. One clone of each RFLP type was screened and
sequenced using sequencing primers SP6 and T7 on an ABI
PRISM 3130 Genetic Analyzer System (Applied Biosystems).
Sequences were trimmed to the NS31-AML3 region and virtually
digested with the restriction enzymes Hinfl, Hsp92II, and Mbol
using an online restriction mapping website (RestrictionMapper).

Phylogenetic analysis

Phylogenetic analysis was carried out on the sequences obtained
in this study and those corresponding to the closest matches from
Genbank, as well as sequences from cultured AMF taxa including
representatives of the major groups of Glomeromycota from
GenBank. All sequences obtained from this study were aligned by
ClustalX using the BioEdit sequence alignment editor [40] along
with 28 AMF sequences from GenBank. The aligned SSU rRNA
dataset was trimmed to 450 bp by excluding the terminal primer
sequences. A neighbour-joining (NJ) phylogeny was constructed
using PAUP*4b10 [41] with the Kimura 2-parameter model and
1000 bootstraps. The nucleotide sequences of the clones retrieved
in this study have been deposited in GenBank (accession numbers
JO8643324-JQ864355).

Statistical analysis

The total number of TRFs was used as an AM fungal
community diversity measurement [31]. The main and interaction
effects of collecting sites, host plant species and sample source (root
vs. soil) on number of TRFs using three restriction enzymes were
tested with two-way factorial ANOVA using SPSS 11.5 for
Windows (SPSS Inc., Chicago, IL, USA). Jaccard similarity
coeflicients were calculated for the T-RFLP patterns of root and
soil samples of both plants, which were clustered by the
unweighted pair-group average (UPGMA) algorithm with 1000
bootstrap replicates to obtain confidence estimates. These
calculations were performed using FreeTree [42] and the results
displayed using TreeView [43].

Results

Soil analyses and correlation with TRFs

Chemical characteristics of soil varied among sites (Table 1).
Soil pH values ranged from 5.23 to 6.68. No significant different
was observed in electrical conductivity, exchangeable potassium,
and total inorganic nitrogen. Available phosphorus in soils tended
to be highest at the Thai Orchid Lab site (370 mg kg~ 'soil) and
differed significantly from the Chiang Rai site (24 mg kg™ 'soil).
Soil organic carbon was highest at the Chiang Mai site (6.10%)
and differed significantly from the Chiang Rai and Nakhon Nayok
sites. Pearson correlation analysis between the soil properties
measured and TRFs showed that TRFs were positively correlated
with available phosphorus, organic matter, and pH (Table S1).

AM fungal community of root and soil samples from
T. grandis and A. crassna

The total number of different TRFs was used as a measure of
AM fungal community diversity. Thirty eight TRFs were found in
total for the AML3 (FAM-labelled) primer, while the NS31 (HEX-
labelled) primer identified 30 TRFs. Since the AML3 primer
revealed many more TRFs than the NS31 primer, only the AML3
fragments were used. Overall, in the roots and soils of T grandis
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and A. crassna, we found 13 different AML3 TRFs after digestion
with Hinfl, 14 after digestion with Hsp92II and 11 after digestion
with Mbol. The mean number of TRFs in T'. grandis root and soil
samples was 5.67 and 7.67, respectively when the TRF data of the
three enzymes were pooled (Figure 1). It is possible to estimate the
minimum average number of AM fungi colonizing the 7. grandis
root samples by dividing the average number of TRFs by 3 (three
enzymes and one labeled end) [31]. Thus, there were on average
at least 1.89 fungal taxa colonizing each 7. grandis root sample
and 2.55 fungal taxa in surrounding soils, respectively. The values
for A. crassna were at least 2.85 fungal taxa per root sample and
2.33 fungal taxa in surrounding soils. The mean number of TRFs
per sample was not significantly affected by source of samples (root
and soil) (F=0.159, P=0.693) and host plant (F=3.452,
P =0.074) (Table S2), but there was a statistically significant effect
of collecting sites (FF =42.77, P<<0.01), and a significant interaction
among those three factors (Table S2). The cluster analysis of TRF
patterns in roots (R-) and rhizosphere soils (S-) of A. crassna and T.
grandis, based on Jaccard similarities, showed no significant
grouping of samples by sites and source of samples (root and soil)
(Figure 2a). This suggested that the AM fungal community in roots
and rhizosphere soils was almost independent in A. crassna (A)
and T. grandis (T) plots. Some TRF patterns in roots and
rhizosphere soils that were collected from the same site were
similar, e.g. R-CRT versus S-CRT and R-TOA versus R-TOT.
Combining roots and rhizosphere soils of each plant by sampling
site (CM: Chiang Mai, CR: Chiang Rai, NN: Nakhon-Nayok, PB:
Phetchabun and TO: Thai Orchids Lab) indicated a tendency for
T. grandis plots to be grouped together (PBT, CMT and TOT) as
well as some A. ¢rassna plot samples (PBA and TOA) (Figure 2b).
This suggests that the AM fungal community associated with each
tree species was more similar across plots than were communities
for different trees species at the same location. The response for
CRT and NNA, however, does not support this.

Occurrence of AM fungi in soils and roots of both plants

Nearly all of the distinct TRFs (31 out of 38) were found in both
host plant species (Figure 3). There were some differences in AM
fungal communities between T. grandis and A. crassna because
the TRF 329c¢ (TRFs are identified by their relative mobility and a
code indicating the restriction enzyme that generated them: a:
Mbol, b: HinfI and c: Hsp921II) was not found in 7. grandis, while
5 TRFs (135¢, 141b, 158¢, 176b, and 435b) were not found in A.

- o
® 8 N

Number of T-RFs
o

teak root teak soil agarwood root agarwood soil

Figure 1. Effects of host plant, Aquilaria crassna (agarwood) and
Tectona grandis (teak), and source of samples (root and soil) on
mean number of terminal restriction fragments (TRFs) per
sample using three restriction enzymes Mbo/ (open bars), Hinfl
(hatched bars) and Hsp92// (cross-hatched bars). Values are mean
* SEM (n=4 for teak and n=3 for agarwood).
doi:10.1371/journal.pone.0112591.g001
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crassna. Comparison of the population in roots and soils of 7.
grandis (Fig 3a) showed that 6 TRFs (135¢, 158¢, 176b, 18lc,
435b and 438b) were found only in roots, while 141b and 281a
were only found in soils. In A. crassna (Figure 3b), TRFs 176c,
181c and 438b were only found in root samples.

Sequence and phylogenetic analysis

Clones were selected for sequencing on the basis of Hinfl and
Hsp92II RFLP typing. DNA sequences of 32 selected clones were
determined, 7 clones from A. crassna and 25 clones from 7.
grandis. Predicted TRFs from the 32 virtually digested clone
sequences were compared to observed TRFs from all three
restriction enzymes (Table S3). A difference in size of up to 7
nucleotides was accepted as a match, because migration in
capillary electrophoresis is sequence-specific, so that mobility (in
rmu) is only approximately equivalent to sequence length (in bp).
All predicted TRFs were observed, and the great majority of the
observed TRIFs were represented in the cloned sequences.

Our phylogenetic analysis was based on the new classification of
Kriiger et al. [44]. The 32 clone sequences were aligned with 23
sequences identified as closely related reference sequences in
GenBank and a phylogenetic tree was constructed using the 18S
rRNA gene sequences of Paraglomus occultum (GenBank
accessions AJ276081 and JN687477) as outgroup. This indicated
the presence of five AM fungal clades belonging to the families
Claroideoglomeraceae, Diversisporaceae, Gigasporaceae, and
Glomeraceae (Figure 4), the most frequent sequences correspond-
ing to Glomeraceae. The subclusters contained close matches to
taxa previously identified by Singh et al. [22] based on spore
morphology of AM fungi in rhizosphere soils of 7. grandis: TR1-
16, TR1-43, TS4-4, AR5-7 and TS6-1 are close to Rhizophagus
intraradices or R. irregularis, while TR1-27 is close to Redeckera
Sfuloum. Clone sequences TS4-9 and TS4-32 are similar to
Duversispora aurantia, while TR3-R10 is probably Gigaspora
margarita. When sequence data are compared with individual
TRFs (Table S3 and Figure 4), it is clear that individual TRFs
cannot be used to identify sequence type, because many different
species may generate a TRT of the same size. For example, the
FAM fragment at 164b could equally well be from G. indicum, Re.
Sfulvum or Claroideoglomus etunicatum.

Discussion

This study examined the AM fungal communities of A. crassna
and 7. grandis plantations in Thailand. The estimated numbers of
AM fungal taxa in roots and soils of 7. grandis seedlings were 1.89
and 2.55 respectively, while in roots and soils of A. crassna there
were 2.85 and 2.33 respectively. The AM fungal diversity was low
compared with other plants. Using similar methodologies and
definitions, Vandenkoornhuyse et al. [31] reported an average of
6.1 AM fungal taxa colonizing grass roots in a temperate
seminatural grassland system, and 5.5 AM fungal taxa were found
colonizing each Solidago virgaurea L. seedling root sample in low-
Arctic meadow habitat [29].

Previous studies quantified the AM fungal diversity in rhizo-
spheres of T. grandis and A. crassna mainly based on spore
morphology and aimed to select efficient AM fungal isolates for
growth enhancement. For example, Singh et al. [22] found an
average of nine species per 100 g dry soil in a Jhum fallow site at
which T. grandis was the dominant tree species, and most species
belonging to the genus Glomus. Tamuli and Boruah [21] studied
the AM fungi association of agarwood (Aquilaria malaccensis)
plantations in Jorhat District of the Brahmaputra Valley, India.
They found that the genus Glomus was dominant; among these
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Figure 2. Cluster analysis of terminal restriction fragment length polymorphism patterns from AM fungal communities associated
with Aquilaria crassna (A) and Tectona grandis (T); a) TRFs patterns in roots (R-) and rhizosphere soils (S-) and b) TRFs patterns in five
sites (CM: Chiang Mai, CR: Chiang Rai, NN: Nakhon-Nayok, PB: Phetchabun and TO: Thai Orchid Labs). The unweighted pair-group
average (UPGMA) algorithm was used to cluster patterns based on Jaccard similarities. Percentage values based on 1000 bootstrap replicates are
given at each node.

doi:10.1371/journal.pone.0112591.g002

G. fasciculatum (now known as Rhizophagus fasciculatus; [45]) crassna. According to previous studies, we also found that most
was the most dominant followed by G. aggregatum. We are not sequences belonged to the family Glomeraceae that includes
aware of any information on the diversity of AM fungi on A. Glomus and Rhizophagus. This result is consistent with previously
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published phylogenies [29,39,46]. The dominance of this family
suggests that they able to survive under various agricultural
conditions such as soil disturbance from plowing and cultivation
and pesticide usage like that used here in the Phetchabun and
Nakhon-Nayok sites. Those conditions may be unfavorable for
other AM fungi. One possible reason why Glomus species have the
ability to survive in a disturbed system is related to differences in
propagation strategies [29]. Glomeraceae are capable of coloniz-
ing via fragments of mycelium, mycorrhizal root pieces, and
spores, while Gigasporaceae are only capable of propagation via
spores because they do not produce intra-radical vesicles: lipid-rich
storage structures which allow for re-growth of hyphae from
previously colonized root pieces [46,47,48,49]. This difference can
explain the dominance of the Glomeraceae over Gigasporaceae

PLOS ONE | www.plosone.org

members in an environment with repetitive agricultural distur-
bance. Ochl et al. [50] revealed a clear seasonal and successional
AMF sporulation dynamics and implied that different life
strategies of different ecological AMF groups could be defined
on the basis of diverging temporal sporulation dynamics.

This study shows that the choice of restriction enzymes (Hinfl,
Hsp92II, Mbol) did not significantly affect AM fungal diversity
found per sample. Using a combination of those three restriction
enzymes could detect possible species of AM fungi in the samples,
even if they resulted in similar-sized fragments. Hinfl and Hsp92II
were chosen in this study because they showed the highest
polymorphism of cleavage sites at the extremities of the amplified
DNA fragment [31]. Mummey and Rillig [39] and Wolfe et al.
[51] also found that Hinfl and Mbol can separate different closely-
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related species of AM fungi identified from phylogenetic analyses.
For example, R. irregularis and R. intraradices are closely related
species that group in the same clade (Figure 4). Six clone
sequences (TR1-16, TR1-43, TS4-4, AR5-2, AR5-7and TS6-1)
that were related to both species were not completely separated
using phylogenetic analysis, but virtual digesting with those three
enzymes did separate them by using the combination of restriction
pattern of each enzyme (Table S3). Clone sequences TR1-16, 1-
43, and 6-1 grouped with R. d@rregularis and TS4-4, 5-2, 5-7
grouped with R. intraradices.

Some TRFs were only found in roots or only in soils, suggesting
that some AM fungi may be rare in soil but produce fungal
structures in roots that are rich enough for T-RFLP detection,
while some were found only as spores in soils and did not colonize
roots. While the majority of TRFs were associated with both 7.
grandis and A. crassna, some TRFs were associated with just one
plant (i.e. 135¢c, 141b, 158c, 176b, 329c and 435b). In clustering
analysis, samples from each plant species were grouped together
even if they were collected from different sites. A. crassna samples
seemed to group together, but since many AMF taxa were shared
by both trees, A. crassna shared some AM fungal community
patterns with 7. grandis (Figure 2). Statistical analysis revealed
significant effects of collecting sites and the interaction between
collecting sites, host plant species and source of samples on TRFs
(Table S2). Thus, specific AM taxa in roots and soils of T". grandis
and A. crassna were affected by site but not affected by host plant
species and source of samples (root and soil). This is in accordance
with the observation of Bever et al. [52] that the host-dependence
of the relative growth rates of fungal populations may play an
important role in the maintenance of fungal species diversity.
Previously, it has been reported that neighboring plants may have
a significant impact on the AM fungal colonization and
community composition of AM fungi in plant roots [34]. Although
T. grandis at the Chiang Mai site had other 7. grandis as closest
neighbors with some negligible understory perennial plants, and at
the other two sites the closest neighbors were A. crassna, the
cluster analysis did not reveal any effect of this difference in
neighbors. AM fungal community patterns in CM'T were grouped
with PBT and TOT sites in which weeds were controlled by
agricultural management.

In conclusion, we demonstrated here that AM fungal commu-
nity patterns in rhizosphere soils and roots of T. grandis and A.
crassna were similar even if they were collected from different
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