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Abstract 

Combustion of solid biomass in large scale power generation has been recognized as a key technology 

for the transition to a decarbonized electricity sector in the UK by 2050. Much of the near-term forecast 

capacity is likely to be by the conversion of existing coal-fired pulverized fuel plant [1].  In such 

applications, it will be necessary to ensure that the combustion behaviour of the solid biomass fuels is 

engineered to match, as far as practical, that of the original plant design. While biomass feedstock 

characteristics vary considerably, one controllable variable for pulverized fuel is the size of the particles.  

Useful modelling for adaptation and design of boiler plant can be improved with more detailed 

measurement of the real behaviour of individual particles of the varying fuels. Typical power plant 

biomass fuels including pine, eucalyptus and willow with particle sizes ranging from up to 3mm [2] and 

with differing moisture content and aspect ratios were selected for study. Single particles were supported 

in a water-cooled cover and then exposed above a flame, simulating biomass combustion in a furnace.  

Measurements of ignition delay, volatile burning time and char burn-out time were undertaken using 

high speed image capture. Temperatures of the surrounding environment and near to the particle surface 

were measured with thermocouples and thermometric imaging. Thermo-gravimetric measurements on 
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separate samples complement the single particle measurements as a means of verifying the demarcation 

between the different stages of combustion and providing kinetic data.   

Analysis of the data identified correlations between the biomass fundamental characteristics, particle 

size, and the observed combustion profiles. Empirical expressions for the duration of each combustion 

stage have been derived. These have been validated with basic modelling including the predicted 

devolatilisation stage calculated by the FG-Biomass model [3]. 

 

Keywords: Biomass combustion; single particle; pulverized fuel 

 

1. Introduction 

Use of biomass as a fuel for electricity generation has, up until recent years, been a rather marginal 

application and the preserve of small scale installations. With the pressures of EU requirements to 

reduce nitrogen oxide pollution [4] and increasing political weight behind greenhouse gas emission 

controls, biomass has become a fuel choice for some of the largest power generation plant in Europe. It 

is likely that more conversions and perhaps new dedicated “flexi-fuel” conventional thermal power 

stations will feature in many European states’ energy policies. Indeed, the UK government 2012 

bioenergy strategy recognises large scale power generation from biomass as being a key technology for 

the transition to a decarbonised electricity sector by 2050 [1]. By 2020, it is projected that the UK will 

have over 30 TWh of electricity generation derived from combustion of up to 16 million dry tonnes of 

biomass [5].  

 

For over a decade, most biomass in large scale operations has been crudely inserted into the existing fuel 

handling stream of conventional coal-fired stations. This co-firing, at levels of 10% (by mass) or so has 
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been a relatively simple means of displacing some of the coal and associated pollutants without 

significant alteration to the mills or burners. However, 2013 saw the first 100% biomass-fired 645MWe 

unit at Drax coming on-line - an unprecedented scale for electrical power generation in the UK. 

 

Plant of such scale (>0.4GWe) requires more than 1GW of thermal input. Furnaces in conventional coal 

power stations of this size favour the use of pulverised fuel burners, coal having a tendency to pulverise 

consistently and reliably.  Biomass, on the other hand, is less disposed to fracture uniformly especially 

transverse to the fibre alignment of anisotropic cellulosic materials. Whereas coal can be broken-down 

to <100µm particle sizes without excessive effort, similar milling effort on woody biomass can result in 

a spread of particle sizes and shapes ranging up to 3mm or so [2]. Since most solid biomass fuels have 

around 80% volatile content and generally less than 20% “fixed carbon”, the burning profile differs 

somewhat from that of coal. Biomass combustion in furnaces designed for pulverised coal therefore 

needs careful consideration to ensure effective operation. The volatile combustion stage will tend to 

produce more rapid release of fuel energy in the early part of the furnace [6]. Larger particles can extend 

the period of heat release in this stage but the remaining char will also have an extended burn-out time, 

this can be at the expense of a high proportion of un-burned char passing through to the ash [7] or 

particles dropping out of suspension unburned in the furnace. Achieving a good balance between milling 

effort, heat release profile and char burn-out is therefore one of the main challenges for efficient use of 

biomass in conventional plant. Particle size and shape is therefore a key variable to be controlled so 

understanding the effects of particle size for various biomass is important. 

 

In order to model and predict the combustion behaviour of pulverised biomass in large scale furnaces, 

some have taken a fundamental approach whereby the combustion of a single particle is used as a sub-
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model (e.g. [8]).  This approach requires the model of the single particle combustion to be refined before 

meaningful larger scale combustion can be extrapolated.  The fundamental approach also requires good 

knowledge of the physical and chemical characteristics of the material such as thermal conductivity, 

heat capacity, porosity and kinetic parameters for pyrolysis and char combustion. Few, if any of these 

are known precisely for any given biomass fuel and there is a general paucity of experimental data to 

draw upon for refining and verifying such modelling.  

 

Yang et al. [8] developed a computational model including heat transfer, mass transfer and chemical 

kinetics for cylindrical shaped particles in the range 0.5 – 20mm. While this compared favourably to 

experimental data presented for a single particle burning in entrained gas flow, a more robust validation 

would require more extensive experimentally derived data to be produced, covering the range of particle 

sizes. Other useful single particle modelling approaches have been set out by Haseli et al. [9] and 

Saastamoinen et al. [10]. 

 

Experiments on single particles of biomass have practical limitations in replicating the conditions in a 

pulverised fuel (p.f.) furnace. However there have been a number of experimental methods documented 

which examine combustion behaviour of biomass particle dimensions in the order of 1mm [11-15]. 

These have investigated the influence of variables including particle size and shape, gas temperature and 

oxygen concentration with the intention of informing and validating models.  

 

Flower and Gibbins [11] developed apparatus in which single particles of biomass were suspended on a 

wire mesh and heated to 900°C in less than 0.5 seconds using an electrical element radiant heater. 
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Experimental data for the drying, devolatilisation and char burn-out was obtained for European Ash 

wood with differing moisture contents. 

 

Lu et al. [12] suspended single particles in an enclosed chamber reactor with a pre-heated air/nitrogen 

feed and internal heating elements enabling gas temperatures up to 1037°C. Using poplar wood and 

hardwood sawdust particles in the size range 0.3 – 9.5mm, the experiment focussed on the effects of 

shape differences on devolatilisation times, demonstrating that shape and aspect ratio differences affect 

the heat transfer and thereby show measurable differences in pyrolysis rates. Lu and Baxter [13] 

proceeded to directly measure the internal thermal gradients produced in these conditions using 

thermocouples in the centre and surface of 11mm diameter particles. The data from this was used for 

validation of CFD modelling by Gubba et al. [14]. 

 

Momeni at al. [15, 16] developed experimental apparatus using a gas burner and mass flow controllers 

to control the temperature and oxygen concentration in a vertical tube reactor in which single particles 

were placed for observing the combustion behaviour. The experiment examined ignition, 

devolatilisation and char burn-out for cylindrical particles with similar mass (12.5mg) with aspect ratios 

ranging from 1 to 6 and for gas temperatures ranging from 1200°C to 1600°C (with oxygen 

concentrations ranging from 5 to 20% for the burn-out tests).  Similar experiments performed by Riaza 

et al. [17] using a drop tube furnace and high speed camera on moving particles milled to <150µm, 

report burnout times for various biomass and oxygen concentrations. 

 

While it is recognised that “biomass” fuel covers large variations, previous experiments have tended to 

examine only one or two materials with a relatively small number of data points. The time-consuming 
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and laborious nature of preparing and burning individual particles places a limit on the volume of data 

that can be easily extracted.   

 

In this investigation, we present an experiment examining the correlations between particle mass and the 

combustion behaviour; in particular, the conversion times for each stage of combustion, namely: ignition 

delay; volatile flame duration and char burn duration. In order to identify correlations amidst the 

variability and measurement noise, a large sample set (>100) has been used for each material. 

 

2. Method 

2.1 Preparation of samples 

Three different biomass materials were selected for comparison: Pine, Eucalyptus and Willow. For 

consistency, the particles selected from the woody materials were selected without bark or obvious 

knotty structure (i.e. apparent as clean white wood).    

Each particle was trimmed to a roughly cuboid/cylindrical shape using a razor to dimensions in the 

range 0.5mm to 4mm. The dimensions in the 3 principal axes were measured using a handheld 

micrometer (+/- 0.01mm). Each particle was weighed on a microbalance (+/- 0.01 mg). Although the 

particle shapes were not precisely regular, a good estimate of the volume and surface area was obtained 

using the mean values calculated for a cuboid and cylinder with the same principal dimensions. The 

mean particle density for each material, as presented in table 1, was derived from these measurements. 

These mean values were used subsequently to derive from the particle mass, an equivalent spherical 

particle size in heat transfer calculations. 

Small batches of particle samples were wetted by adding small amounts of deionised water and storing 

in a sealed container for >24 hours. These were weighed again just prior to combustion. The typical 
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delay between weighing and ignition was 90 seconds ensuring not more than 10% loss of moisture, the 

loss rate being verified by measurement of control samples. Moisture content is reported as the ratio (%) 

of mass of water to the total mass of the particle. 

 

2.2 Combustion apparatus 

To ensure a stable and consistent combustion environment, a Méker type natural gas burner was used. 

This produces a flame with a wide base and a stable and relatively uniform core. The temperature profile 

of the flame on a selected burner was measured using a type-R thermocouple with corrections for 

radiative heat loss accounted for. The central part of the flame was recorded to be at 1550°C +/- 25°C. 

The oxygen concentration at the centre of the flame was also measured using a gas-analyser probe and 

recorded to be a consistent 10.75% +/- 0.25%. The temperatures in large scale pulverized fuel furnaces 

are in a similar range and, while oxygen concentration varies depending on fuel/air mix and position in 

the flame, this is also not unrepresentative. An extension to the experiment may consider creating 

different oxygen conditions as has been achieved in others’ experiments using alternative apparatus [15].    

In the experiments performed in this work, the particles of fuel were supported on a fine steel needle, in 

turn supported in a ceramic tube fixed to a solid support frame. A moveable water-cooled sleeve running 

coaxially over the needle/ceramic tube allowed the fuel sample to be protected from the gas flame. 

When the video recording was underway, the water-cooled sleeve was rapidly withdrawn thus exposing 

the sample to the combustion environment in a moment which can be identified to within one frame of 

the high speed video in the post-analysis.  

 

2.3 Video image 
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A FujiFilm Finepix HS10 camera was used for video recording. In general, a recording speed of 120 

frames per second was used to obtain a reasonable balance between timing accuracy and image quality. 

The post-analysis of the video images was performed using standard software which allows frame-by-

frame viewing and counting (and therefore timing) and adjustment of the image contrast and brightness.    

 

2.4 Characterisation of materials 

Samples of each material were analysed to determine fundamental characteristics by means of proximate 

analysis, ultimate analysis (CHNO) and calorimetry in accordance with applicable European Standards 

[18-21].  Chemical kinetics characteristics were obtained by thermo-gravimetric analysis performed on 

samples milled to <90µm particle size using a TA Instruments Q5000 analyser.  Kinetics parameters 

were derived assuming single step first-order Arrhenius reactions for both pyrolysis stage and char burn 

stage. The pyrolysis kinetic parameters are obtained from analysis of the first stage devolatilisation 

reaction since this will dominate at fast heating rates [22]. 

 

3. Results 

3.1 Characteristics of materials 

The proximate analyses, elemental composition and estimated Higher Heating Value (HHV) for the 

three materials studied are presented in Table 1.  It can be observed that their volatile and fixed carbon 

contents are comparable. All samples have relatively low ash contents ≤2% and similar HHVs (~19-20 

MJ kg-1). Their moisture contents were  10%, with the willow sample being significantly dryer than the 

other two (2.8 %H2O). 

 There were no major differences in their elemental composition, with the exception of their nitrogen 

contents, which ranged between 0.1-1.3%.  
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3.2 Drying and ignition 

The time-interval between the withdrawal of the protective sleeve and the on-set of volatile combustion 

is taken to be the “ignition delay”. The delay is governed by the time required for the moisture to 

evaporate from the particle and also for the particle to heat up and start devolatilisation sufficient to 

produce a visible volatile flame. While the early stages of devolatilisation are difficult to identify 

visually, a consistent criteria for defining the start of the volatile flame was taken to be the first frame in 

which strong luminance could be detected using 100% contrast filter on the video. 

In many cases, the ignition delay was measured in the order of 10-20 frames which implies an error of 

+/- 10% in the timing. However, the imprecision of this particular measurement appears to be 

overshadowed by other factors which disturb the nature of the “drying” phase such as the tendency of 

smaller parts and protuberances of the particles to ignite before the main bulk thus recording shorter 

ignition times for some relatively large particles than smaller ones. 

 

Figures 1 (a)-(c) show the ignition delay plotted against the particle dry mass for each material, both “as 

received” (<10% moisture) and with added moisture (>40% moisture). Despite the noisy data, there are 

certain trends and correlations that can be inferred. As would be expected, there is a discernible trend for 

larger particles to have longer ignition delay even though there is a good deal of scatter in the data. The 

plot for the ignition delay versus moisture content for all materials (Fig. 1 (d)) shows an expected 

general trend for ignition delay to be longer for higher moisture content.  

 

3.3 Devolatilisation and volatile combustion 
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The criteria for determining the visible start of the volatile flame was described in the previous section. 

The end of the volatile flame was determined in a similar manner with the luminance of the visible 

flame being strongly demarcated by setting the video playback to maximum contrast. The end of the 

volatile flame is much more distinct and the margin of error for this measurement is no more than one or 

two frames (<1%) of the total duration.   The volatile flame duration for both dry and wet particles was 

plotted against particle dry mass for each of the fuels and is presented in Figure 2. In this instance, over 

100 data points were recorded for each fuel.   

 

The plot of the volatile flame duration times for the particles with added moisture reveals that flame 

durations are longer with respect to dry mass of the particle. This is evidence of the catalytic effect of 

alkali metal content in the devolatilisation stages which has been described previously in Jones et al. 

[23] and Saddawi et al. [24]. Particles with added moisture were subjected to excess water in the wetting 

process which, unavoidably, dissolved and extracted a significant proportion of potassium salts from the 

solid. 

 

3.4 Char combustion  

In the entrained gas flow, the particles do not burn evenly since the leading edge of the particle in the 

flame is subject to a higher heat transfer than the trailing edge. One effect of this one-sided heating is 

that the bottom of the particle commences char combustion before the top part of the particle has 

completed devolatilisation. Demarcating the start of the char combustion stage is therefore difficult to 

define. For the purposes of the experiment, a consistent and well-defined criterion for identifying the 

start of char combustion is required and, for convenience, it is taken to be coincident with the end of the 

volatile flame burn. The end of char combustion is taken to be the end of the discernible luminescent 
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emission from the char combustion. Identifying the latter of these markers visually is not as precise 

since there is a long diminuendo in the luminescence of the char combustion. However, use of the video 

contrast and brightness controls was found to assist in identifying a consistent end point for 

measurement purposes.    

 

The char burn duration plotted against particle dry mass for each of the fuels is presented in Figure 3. 

The data is less consistent than that for the volatile flame duration and this is attributed mainly to the 

difficulty in identifying a clear cut-off criteria. The plot of the char duration times for the particles with 

added moisture shows a small difference with the as received samples. There appears to be some 

variation showing longer burn times in the eucalyptus and willow but with few data points and with 

much noise on the timing measurement, a significant difference is difficult to infer. Similar marginal 

differences between raw and water-washed particles have been reported by Jones et al. [23] with the 

suggestion that the soluble metals are either lost during devolatilisation or are not as active in catalysing 

the char burn out stage as they are in the devolatilisation stage. 

 

4. Discussion and analysis 

The usefulness of the data presented above depends on whether meaningful relationships can be 

extracted from it which can be shown to be: a) predictive to a practical level and: b) consistent with 

theoretical explanations of the physical processes. Empirical expressions derived from the data to predict 

ignition delay, volatile burning duration and char burn duration will certainly be of practical use in the 

design of furnaces and fuel preparation (drying and milling criteria). The results show relationships 

between particle mass and burning times which, although not directly comparable owing to differing 
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operating temperature and oxygen content, are similar to those presented by Flower and Gibbins [11] 

which, having fewer data points and particles greater than 5mg, are approximated to linear functions.  

 

4.1 Comparison of experimental data with modelling 

 

4.1.1 Ignition Delay 

As particles of fuel enter the furnace environment they are introduced into the established flame with a 

gas temperature in a similar range to that of the experiment (~1800K).  Exposure to this environment is 

sudden, virtually a step change in temperature also in a similar manner to the experiment. 

In an idealised model, the particle will heat up in accordance with convective and radiative heat transfer 

mechanisms described by the equation: 

 

!!!

!"
!

!!

!!!!

! !! ! !! ! !!!!!!
!
! !!

!!         (1) 

 

Where: 

mp is the mass of the particle  

Ap is the surface area of the particle 

Cp is the specific heat capacity of the particle 

Tp is the temperature of the particle 

Tf is the temperature of the flame 

TR is the temperature of the enclosing surface 

εp is the emissivity of the particle surface 

σ is the Stafan-Boltzman constant (5.67×10−8 W m−2 K−4) 
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! is the convective heat transfer coefficient for the particle in a moving hot gas stream 

 

There are significant differences between the experiment and a p.f. furnace: the relative gas flow over 

the fixed particle in the experiment is around 3.0 m s-1 whereas the relative velocity of the gas to a freely 

moving particle in a furnace will be lower as the particle is carried in the flow; the radiative heat loss in 

the experiment is against an ambient surface temperature of ~300K whereas in a furnace, the heat 

transfer surfaces may be in excess of 800K. 

  

An approximation for modelling the drying rate for small particles (~2mm) is given by Peters [25]. 

Adapting for the loss of moisture in terms of mass we can use the function given by equations: 

 

!!!

!"
! !! ! !!

!!

!!!

!!!!!!!"

!!!
    Tp ≥ Te     (2a) 

!!!

!"
! !    Tp < Te     (2b) 

 

Where: 

!!is the mass of moisture in the particle at time t 

!!!!is the initial mass of moisture in the particle 

!! is the density of water (1000 kg m-1) 

ΔH is enthalpy of vaporization of water (~2.26x106 J kg-1) 

!!" is the specific heat capacity of water (~4181 J kg-1 K−1) 

!! is the volume of the particle 

Te is the temperature above which, moisture evaporates from the particle (~373K) 
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Equation 1 can then be modified to include the mass and heat capacity of moisture and also the heat loss 

component associated with the loss of moisture: !"! ! !!. These are accounted for in the heating-up 

model. 

 

With a fluid velocity of 3.0ms-1, the Reynolds number,!!" for 1-4mm diameter (~1-12mg) particles 

range from 10-50. In this range, the Nusselt number, !"!may be approximated [26] by the expression: 

 

!"! ! ! ! !!!!!"
!

! ! !!06!"

!

!!!"!!!
!

!!

!!!

       (3) 

Where: 

!

!!
 is the ratio of fluid dynamic viscosities at the flame temperature and the particle surface temperature 

!" is the Prandtl number for the fluid (~ 0.71 as for air) 

 

The heat transfer coefficient for the cold particle placed in the flame is calculated from: 

!

! !
!"!!!"#

!
          (4) 

 

Where: 

!!"# is the thermal conductivity of the hot gas (~0.12 W m−1 K−1 at 1800K) 

! is the equivalent diameter of the particle (for a sphere with same volume as the particle and where the 

volume is derived from the particle mass and mean particle density) 
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Taking a flame temperature of 1800K  (1527°C) as in the experiment, the heating rate and drying rate 

expressions can be evaluated over small discrete time steps to make an indicative model for the expected 

ignition delay. Emissivity of the particle is taken as 0.9 and ambient surface temperature is taken as 

300K.  Figure 4 (a) shows the effect of increasing moisture level on the heating rate of a 2x1x1mm 

(~1mg) particle based on this model. 

 

This model is useful in deriving a simplified empirical relationship between particle size, moisture 

content and ignition delay.  While there is no clear specific point on the heating curve where we can 

identify consistently that ignition will occur, there will be a relationship between the temperature of  the 

particle and the moment at which ignition can be observed as a luminescent volatile flame. From 

thermo-gravimetric analysis, we can examine the onset temperature of devolatilisation, which starts at a 

very low rate; as low as 420K. By 500K the mass loss is proceeding at a significant rate, and the 

appearance of a visible volatile flame should be expected around this point. The time taken for the 

modelled particle to reach 500K may then be taken as an index to relate to ignition delay. Since the real 

particle is not uniform as in the idealised case, some parts of the particle may dry, heat up and 

devolatilise faster than other parts. It is noted that moisture loss continues to occur for a significant 

duration after the particle temperature is above 500K. Drying and devolatilisation will therefore be 

occurring simultaneously for part of the time in accordance with the drying and devolatilisation 

behaviour of 1mm scale particles reported by Thunman et al. [27]. 

   

From the model, the relationship between particle size and the 300-500K heating time is close to the 

function: 

!!""!!"" ! !!!!
!         (5) 
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Where a and b are functions of the initial moisture content, M (where ! !
!!

!!!!!

!! For the modelled 

1mg particle in the example, the functions are approximated as linear giving four coefficients in the 

equations: 

 

! ! !!!! ! !!16                              (6a) 

! ! !!!!! ! !!49          (6b) 

 

The heating up time modelled on this basis is shown for 3 different moisture levels in figure 5(a). The 

form of this function appears to correspond well with the ignition delay data so it is reasonable to base a 

model of ignition delay !!"#on the same form with the function:  

!!"# ! !!!"!!
!!"#         (7) 

Where !!"# and  !!"#are empirically derived coefficients. 

Fitting the data from the single particle combustion experiments to a function of the same form using 

least squares regression, ignition delay should then be predicted as a function of mass and moisture. 

The modelling coefficients can be derived from best-fitting to the experimental data with different 

moisture content. Based on the experimental data for the three different materials, modelling functions 

are presented in Table 2.  

 

In the case of the willow data, the model functions for M=3% and M=50% are plotted in figure 5 (b) 

alongside the measured data for particles with similar moisture content. While there is much variation 

and noise in the data, the model is capable of indicating an expected average ignition delay for different 

moisture contents. The coefficients evaluated from the experimental data vary by factors up to 5 from 



17 
 

those derived from the simplified model in equations (6a) and (6b) since these were based on heating up 

times rather than actual ignition times.    

 

4.1.2 Volatile flame duration 

The form of the best-fit function to the measured data for the volatile flame duration !!"# is: 

!!"# ! !!"#!!
!!"#         (8) 

Where !!"# and  !!"# are empirically derived coefficients. 

In order to determine if these coefficients can be consistently predicted as functions of the material 

characteristics, a model of the devolatilisation process is required. A simplified model of the volatile 

flame duration can be made on the basis of the initial volatile mass, rate of reaction and particle 

temperature.  

 

We have already presented a model for the heating rate of the particle in terms of convective, radiative 

heat transfer and moisture evaporation. We make a definition that the start of devolatilisation is the point 

of “ignition” which, in the model above, has been taken to be coincident with a particle temperature of 

500K even though there may have been a small amount of devolatilisation before the appearance of a 

volatile flame.  The rate of devolatilisation may be modelled in a simplified form as a first-order, single 

step Arrhenius reaction [8]  as: 

 

!!!"#

!"
! !!!!!!

!
!!

!!!           (9) 

 

Where: 

!!"# is volatile mass content of the particle at time t 
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!! and !! are the reactivity pre-exponential coefficient and activation energy for devolatilisation 

respectively. 

 

The form of the relationship between particle mass and devolatilisation time can be extracted from the 

model by selecting reference values of  !! and !! and determining the time interval between the points 

at which the particle has 1% and 99% volatile mass for various sizes of particle. An index of the 

devolatilisation time can then be plotted against the particle dry mass. 

Figure 6 (a) shows the effect on the devolatilisation times using this model on particles with kinetic 

parameters as measured for the pine sample (see table 1) and for particles with mass ranging from 0.5 to 

8 mg. The particle heating profiles from the model were also applied to the FG-BioMass model [3] and 

devolatilisation times derived in a similar manner. It should be noted that the FG-BioMass model has 

been deemed accurate for very small particle sizes since it is based on intrinsic kinetics, and as such it 

does take into account any mass transfer or heat transfer limitations encountered in larger particles.  

Nevertheless, as a means to validate the devolatilisation model, it is a useful baseline.  Figure 6(b) shows 

the calculated devolatilisation times from the FG-Biomass model alongside the equivalent best-fit 

function derived from the experimental data. The FG-Biomass devolatilisation modelling confirms the 

form of the relation between particle mass and devolatilisation time as being a power function. 

However, there is a discrepancy in scale of about a factor of 2. This can be accounted for by including a 

term of the internal heat transfer to the centre of the particle !!"#. The characteristic time for the internal 

heat transfer can be approximated using the expression for heat transfer in a spherical solid [28]. In 

terms of the particle size and its thermal properties this is given by: 

!!"# ! !!17
!
!!!!

!!"#

         (10) 
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Where: 

 !!"# is the thermal conductivity of the solid particle (~0.14 W m−1 K−1) 

!! is the specific heat capacity of the solid particle (~1800 J kg-1 K−1) 

! is the density of the particle (~480 kg m-3) 

! is the particle radius (derived for a sphere with same volume as the particle) 

 

By including this additional term proportional to the square of the radius, the devolatilisation time model 

can be extended. The resulting function, also plotted in figure 6(b), shows a good approximation to the 

experimental data and validates the use of the best fit function given in equation (8). Having established 

that the relation between particle mass and flame duration is power function consistent with simplified 

modelling, the experimental data can be fitted to a least-squares regression to determine the respective 

volatile flame duration model coefficients for each material. These are summarised in table 3. 

 

4.1.3 Char burn-out duration 

  

The data recorded for the duration of char-burn out with respect to particle dry mass is affected by 

measurement noise, mainly as a result of the indistinct visual signs indicating the end of the burning. 

Nevertheless, the large data set allows trends to be identified. The char burn duration is, for 

convenience, measured as starting from the end of the volatile flame. However, since the convective 

heat transfer is asymmetrical, with the leading side of the particle heating most quickly, there is 

overlapping between the volatile and char combustion stages.  As char burn actually starts in the lower 

part of the particle before the upper part has completely devolatilised and the duration of the overlapping 

has been discounted in the measurements of char combustion, there is then a distortion between the 
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measured and actual char burn duration. Nevertheless, an analysis can be made of the measured data and 

an adjustment applied to obtain a consistent predictive model. 

 

The char oxidation reaction may be modelled in a simplified form as a first-order, single step Arrhenius 

reaction [8]. At the start of the char burn, the particle is near to the maximum temperature that would be 

achieved through convective heat transfer alone. The heat of the char reaction adds to the particle 

temperature further so a continued temperature rise occurs. To simplify the analysis in the first instance, 

we can assume a fixed particle temperature and therefore a fixed rate of reaction. In such a case, for a 

given mass of char, the rate of mass loss would be an exponential decay with a characteristic time 

proportional to the mass.  The time for the char to burn out in this model would then be a simple linear 

function of mass. Examination of the experimental data shows that a least squares linear regression 

function produces a reasonable fit (R2 >0.7). The char burn duration !!!! can then be approximated by: 

!!!! ! !!!!!!         (11) 

Where !!!! is an empirically derived coefficient. 

The coefficients for the three wood materials examined are given in Table 4. It is noted that there is a 

stronger divergence in the char burn duration between the three materials than for the volatile burn 

duration. This is reflected in the larger differences in the measured kinetics (see Table 1) for char burn. 

Indeed, there appears to be a simple correlation between the kinetic parameters for char combustion and 

the resulting char burn duration coefficient !!!!. Additional materials would need to be added to the 

data set to fully evaluate this correlation. 

 

4.2 Analysis of other particle properties 
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4.2.1 Effects of particle density 

The density of each particle could be estimated from the measured dimensions and mass of each 

particle. The density for particles of the same materials from the same samples was variable. Although 

some of this variability can be accounted for in the bands of error in measurement of volume (+/- 10%) 

and mass (+/-1%), the spread of density in each sample (+/- 1.96σ) was between 24 and 32% indicating 

that there is significant variability within the same material. The density was calculated on the dry mass 

basis for the samples of each material. Analysis of the data showed a close fit to a normal distribution. 

The curves based on the normal distribution parameters for each sample are shown in Figure 7.   

 

For the different materials, a simple comparison of burning times with respect to density shows that 

there is no clear correlation. Eucalyptus, having a relatively high density (ρ=0.67 mg.mm-3) has a 

somewhat slower volatile and char burn than willow with a lower density (ρ=0.52 mg.mm-3). However, 

pine, with a density (ρ=0.48 mg.mm-3) more similar to willow has a volatile and char burn duration 

closer to eucalyptus.  

The volatile burn duration data for a single material can also be analysed with respect to density by 

dividing the data for each material into “higher density” (ρ>mean+0.5σ), “middle density”  (mean-

0.5σ<ρ<mean+0.5σ) and “lower density” (ρ<mean-0.5σ) fractions. 

The results of this analysis for the Eucalyptus data are presented in Figure 8(a). Using the best fit 

regression line with the form of equation (8) for each fraction shows a discernible effect whereby the 

volatile burn duration is longer for higher density particles with equal mass. Analysis on the pine data 

showed a similar effect although the willow data was less discernible.  

The char burn out data may be examined in a similar manner. As shown in figure 8(b), the char burn 

duration is plotted against the different density fractions of each material. The trend is similar to that of 
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the volatile flame data: the higher density particles have longer char burn duration. Modelling of 

pulverised fuel combustion should therefore take into account the spread of particle densities since this 

has a distinct effect. 

 

4.2.2 Effects of Shape 

Since the dimensions of each individual particle were recorded, the sample size allows some 

examination of the effects of shape on the volatile flame duration. The shape of a particle can be 

examined in a number of ways.  Four shape types for convex particles can be classified using Zingg 

classification [29]. The shape types are based on the various aspect ratios of the 3-axes of the particle 

which are classified as: equant (ball), prolate (rod), oblate (disc) and bladed (strip). Figure 9 (a) shows a 

plot of the data which discriminates the four shape types. The differences are minor but trend lines show 

that bladed particles have a shorter volatile burn duration than equant. 

 

The disparity of the dimensions of a shape, characterised by the “aspect ratio”, can also be examined. 

The aspect ratio of each particle can be taken to be the ratio of the largest orthogonal dimension to the 

shortest orthogonal dimension. While all equant shapes have an aspect ratio of less than 2, prolate, 

oblate and bladed particles can all have large aspect ratios.  Figure 9(b) shows a plot of the Willow data 

which discriminates four aspect ratio ranges (<2, 2-3, 3-4 and >4). In this analysis, there is a more 

discernible trend in the volatile flame duration characteristic time with respect to aspect ratio such that 

increased aspect ratio tends towards a quicker volatile burning time. The effect is expected since the heat 

transfer per unit of mass is greater, and consequently the devolatilisation time shorter, for higher aspect 

ratio particles - as confirmed in the findings of experiments by Momeni et al. [15] and in modelling 

investigations as reported by Gubba et al.[14]. 
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While the effect of the orientation (with respect to the gas flame) of higher aspect ratio particles was also 

examined, the observed differences were marginal and not significant against other measurement noise.    

5. Conclusions 

An experimental method for examining the duration of the different stages of combustion of single 

particles has been presented and this has been applied to three woody biomass fuels. The volume of data 

has allowed the evaluation of empirical expressions for the relationship between particle mass and 

ignition delay, volatile flame duration and char burn duration. These empirical relationships have been 

reinforced by verification of the form of the functions by simple models of the principle physical 

processes.  This approach can lead to a much simplified means of characterising fuel with regards the 

expected ignition delay, volatile combustion duration and char burn-out times. This means of 

characterisation may be used to inform modelling of combustion of pulverised biomass as well as being 

a means of validating existing models. Further detailed analysis has provided insight into the effects of 

the particle density and shape on the duration of the different stages of combustion.  

Future work should aim to develop more consistent empirical “rules of thumb” for solid biomass fuel 

combustion characteristics correlated to readily measureable properties such as density. Furthermore, 

use of modelling together with analysis of single particle combustion behaviour may be used to infer 

less readily measureable properties such as thermal conductivity and heat transfer parameters. This can 

be achieved by extending the range of materials to include other varied woody biomass and also 

herbaceous materials.  

Refining this technique to characterise fuels, in a timely manner, in terms of the measured duration of 

various stages of combustion would provide a useful tool to predict burn-out behaviour for varying 

particle size. This could then inform operators with regards to adjusting milling requirements to achieve 

optimum particle size distributions for the furnaces.”   
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TABLES 

 

Table 1 - Characteristics and kinetic parameters of biomass samples 

Parameters Basis Units Pine Eucalyptus Willow 

Moisture content as received %wt 8.3 8.1 2.8 

Ash content dry %wt 2.0 0.9 1.9 

Volatile content daf %wt 82.5 83.3 83.6 

Fixed carbon daf %wt 17.5 16.7 16.4 

HHV  dry MJ.kg-1 18.6 19.4 19.8 

Elemental      

C daf %wt 47.4 49.2 50.8 

H daf %wt 5.3 5.6 6.0 

O daf %wt 45.9 45.1 42.7 

N daf %wt 1.3 0.1 0.4 

Mean particle density dry mg.mm-3 0.48 0.67 0.52 

Pyrolysis kinetics      

Pre-exponential, A  s-1 32900 1100 3170 

Activation energy, Ea  kJ.mol-1 72 56 65 

Char burnout kinetics      

Pre-exponential, A  s-1 1.27E+05 9.20E+05 672 

Activation energy, Ea  kJ.mol-1 94 113 70 
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Table 2 - Coefficients for the calculation of ignition delay. 

  Pine Eucalyptus Willow 

Ignition delay  !!"# ! !!"#!!
!!"#      

!!"#    1.3M  1.4M  1.5M + 0.05 

!!"#    0.4M + 0.32 0.3M + 0.37 0.4M + 0.25 

 

 

 

Table 3 - Coefficients for the calculation of volatile flame duration. 

  Pine Eucalyptus Willow 

Volatile flame duration !!"# ! !!"#!!
!!"#    

!!"#    1.33 1.27 1.17 

!!"#    0.59 0.62 0.60 

R2  0.98 0.94 0.93 

 

 

 

Table 4 - Coefficients for the calculation of char combustion duration. 

  Pine Eucalyptus Willow 

Char burn duration !!!!!! ! !!!!!!   

!!!!    2.52 2.90 2.02 

R2  0.80 0.72 0.86 
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FIGURES  

Figure 1 – ignition delay versus particle dry mass for: (a) pine; (b) eucalyptus; (c) willow; (d) 

ignition delay versus moisture content for all samples. 
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Fig 1C
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Figure 2 – Volatile flame duration versus dry particle mass for samples as received and with 

added moisture: (a) pine; (b) eucalyptus; (c) willow.  
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Figure 3 – Char burn duration versus dry particle mass for samples as received and with added 

moisture: (a) pine; (b) eucalyptus; (c) willow.  
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Figure 4 – initial heating rate of a wood particle: (a) modelled with respect to initial moisture 

content; (b) as measured using thermometric imaging of particle surface, M=40%, m=10mg; (c) 

modelled with respect to particle size. 
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Figure 5 - (a) modelled 300K to 500K heat-up time for 3%, 20% and 50% moisture content; (b) 

modelled ignition delay for 3% and 50% fitted to data for willow 
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Figure 6 - (a) modelled devolatilisation for particles with increasing size; (b) devolatilisation times 

versus particle mass: modelled with FG-Biomass; modelled with simplified one-step reaction; 

best-fit function to volatile flame duration data for pine. 
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Figure 7 – Particle density distributions for pine; willow; eucalyptus. 
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Figure 8 – Experimental data for pine separated into 3 density fractions for: (a) volatile flame 

duration versus particle dry mass; (b) char burn duration versus particle dry mass 
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Figure 9 - volatile flame duration versus particle dry mass for: (a) 4 shape types – all samples; (b) 

4 aspect ratio ranges for willow  
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