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ABSTRACT

In this paper, a multiple neural network
architecture is proposed for undertaking the
problems associated with incomplete or missing
data in on-line learning and classification tasks.
An autonomously learning neural network
classifier, which has been previously devised
based upon the integration of Fuzzy ARTMAP
and the Probabilistic Neural Network, is
employed as the basis for the development of the
multiple neural network system. Each classifier
is dedicated to handle a set of input features
independently, and produces a prediction of the
target class. Bayes’ theorem is then applied to
combine the outcomes from disparate classifier
modules sequentially.  Applicability of the
multiple neural network system is demonstrated
using a simulated data set and a real medical
diagnosis database, and the results are compared
with other approaches.

Keywords: multiple neural networks, on-line
learning, pattern classification, incomplete data,
Bayes’ theorem, medical diagnosis

1 INTRODUCTION

In many real applications, data is sparse and of
variable quality. Often, a complete set of input
features may not be available for immediate use.
This problem occurs in many situations where
data is drawn from more than one source or by
different techniques. One of the limitations of
many neural network models is that no provision
is made to handle incomplete data sets or
missing data. It is assumed that all the input
items are accessible for the network to generate
a result. However, it is not unusual to encounter
the missing data scenario in many “real-world”
applications.  For example, in the case of
medical diagnosis, some of the data items such
as ECG measurements, X-ray, and other
radiographic images need to be interpreted and
encoded by domain experts and may not be
available instantaneously.

In our previous work [1], we have developed
a hybrid network which is capable of
incremental learning, and thus avoid the

problems of catastrophic forgetting and re-
training when operating on-line in non-stationary
environments. The network is based upon an
integration of two network architectures: Fuzzy
ARTMAP [2] and the Probabilistic Neural
Network [3]. This hybrid network has been
shown to be capable of providing outputs which
estimate the Bayesian a posteriori probabilities,
and of achieving the Bayes optimal results
autonomously without prior knowledge of
impending changes in data the environment. It
also achieves comparable performance with
other approaches in a number of benchmark
problems [1, 4], but with the ability of on-going
(causal) learning.

Based on the hybrid network described in [1],
a multiple neural network architecture is
proposed here for incremental leamning and
classification of incomplete data sets. The
system makes use of Bayes’ theorem to combine
decisions from multiple classifier modules
sequentially. 'When given an incomplete data
set, the important feature items can be grouped
together and presented to a classifier to give an
initial prediction. Then, data collected later can
be fused to another classifier to reinforce or
counteract the initial predictions. As a result,
the multiple classifier system is able to make use
of more and more information in generating a
predicted output with more confidence as time
goes on.

2 A HYBRID NETWORK

2.1 Fuzzy ARTMAP

It is well documented that the family of Adaptive
Resonance Theory (ART) networks offer an
alternative for solving the so-called stability-
plasticity dilemma—how a learning system can
absorb new information without forgetting
previously leamed information [5]. More
recently, a supervised ART network known as
Fuzzy ARTMAP (FAM) which realises a
synthesis of ART and fuzzy logic has been
introduced.  Figure 1 depicts a schematic
diagram of the FAM network. It consists of
two Fuzzy ART [6] modules, ART, and ART,,
linked by a map field, F,,. The ART, (ART})




module has two layers of nodes: F,, (F);) is the
input layer; and Fy, (F2) is a dynamic layer
where each node encodes a prototype pattern of
a cluster of input patterns, and the number of
nodes can be increased when necessary.

The key feature of FAM is in the inclusion of
a novelty detector in ART, to measure against a
threshold the similarity between the prototype
patterns stored in the network and the input
pattern.  When the match criterion is not
satisfied, a new node is created, and the input is
coded as its prototype pattern. As a result, the
number of nodes grows with time, subject to the
novelty criterion, in an attempt to learn a good
network configuration autonomously and on-
line.  As different tasks demand different
network structures, this learning approach thus
avoids the need to specify a pre-defined static
network size, or to re-train the network off-line,
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Figure 1 The Fuzzy ARTMAP network

During supervised learning, ART, receives a
stream of input vectors, {4}, whereas ART,
receives the corresponding target-class vectors,
{B}. In general, ART, consists of an
independent Fuzzy ART module to self-organise
the target vectors. However, in one-from-N
classification (i.e., each input pattern belongs to
only one of the N possible output classes), ART,
can be replaced by a single layer containing N
nodes. Then, the N-bit teaching signal can be

coded to have unit value corresponding to the
target category and zero for all others.

The learning algorithm of FAM is similar to
the sequential leader clustering algorithm [7].
However, FAM does not directly associate input
patterns at ART, with target patterns at ART,.
Rather, input patterns are first classified into
prototypical category clusters before being
linked with their target outputs via a map field.
At each input pattern presentation, this map field
establishes a link from the winning category
prototype in F3, to the target output in F,,. This
association is used, during testing, to recall a
prediction when an input is presented to ART,.

2.2 The Probabilistic Neural Network

The Probabilistic Neural Network (PNN) is a
neural network model that implements the
Bayes’ theorem in its learning methodology. It
learns instantaneously in one-pass through the
data samples and is able to form complex
decision  boundaries  which  approximate
asymptotically the Bayes optimal limits. In
addition, the decision boundaries can be
modified on-line when new data is available
without having to re-train the network. Another
advantage of the PNN is its speed of learning,
which is often orders of magnitude faster than
that of the Multi-Layer Perceptron (MLP)
trained with back-propagation [3].
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Figure 2 The Probabilistic Neural Network
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The key feature of the PNN is its ability to
estimate the probability density functions (pdfs)
based on the data samples by using the Parzen-
windows technique [8]. Figure 2 depicts a
schematic diagram of the PNN for binary
classification tasks (class A or B). The PNN
consists of four layers of nodes: the input layer,
pattern layer, summation layer, and output layer.
Nodes in the pattern layer are organised in
groups corresponding to different target classes.
The pattern nodes belonging to the same output
are then linked to a summation node dedicated to
that particular target class.

During operation, the input pattern, x, is first
fanned-out to the pattern layer where each
pattern unit computes a distance measure
between the input and the weight pattern
represented by that node. The distance measure
(e.g. dot-product) is then transformed by a
Parzen kemel function. Outputs from the
Parzen kemnels are summed by the summation
nodes. These outputs correspond to estimates of
the pdfs of the input pattern with respect to each
target class, ie. P(x|A), P(xIB). These

probability estimates will be utilised for the
combination of predictions from multiple
classifiers as presented in section 3.

2.3 Probabilistic Fuzzy ARTMAP

One disadvantage of the PNN is that it encodes
every input pattern as a new node in the
network, thus increases the network complexity
and computational cost if large or unbounded
data sets are used. Nevertheless, this problem
can be alleviated by using a clustering technique
such as FAM.

Our studies have found that there is a close
similarity in the network topology between FAM
and the PNN. Notice that in Figures 1 and 2,
the F), and F, layers correspond to the input
and pattern layers whereas the map field layer
(Fu») corresponds to the summation layer. In
one-from-N classification, each node in F,, is
permanently associated with only one node in
Fup, which is then linked to the target output in

]

F,. Thus, the map field nodes can be used to
sum outputs from all the F;, nodes
corresponding to a particular target class, taking
the role of the PNN summation nodes.

In view of the suitability of the incremental
leaming property and the similarity of the
network topology between FAM and the PNN, a
novel hybrid network, based on the integration
of a modified version of FAM [9] and the PNN,
has been proposed for on-line classification and
probability estimation tasks, and is called
Probabilistic Fuzzy ARTMAP (PFAM) [1].
The on-line PFAM algorithm is divided into two
phases. First, the FAM clustering procedure is
used for classifying the input patterns into
different  categories (leaming  phase).
Subsequently, the PNN probability estimation
procedure is used to predict a target output
(prediction phase). The advantage of this
integration is two-fold: (i) a probabilistic
interpretation of output classes is established
which enables the application of Bayes, risk-
weighted, classification in FAM; (ii) the number
of pattern nodes in the PNN is reduced by the
clustering procedure of FAM.

The above description provides a conceptual
framework for incorporating FAM and the PNN
into a unified, hybrid system, and the rationale
behind their integration. In practice, several
modifications are necessary to allow effective
combination of both the networks, and to
increase generalisation ability of the hybrid
system. These include methods for estimating
kernel centres and widths, and for pre-
processing the inputs using fuzzification
technique. An explanation of these procedures
can be found in [1, 4].

3 SEQUENTIAL EVIDENCE
AGGREGATION

In the field of pattern recognition, researchers
have shown that combining decisions from
multiple classifiers applied to the same data set
can improve the performance of individual
classifiers [10]. Here, a multiple neural network
system 1s developed where decisions from




multiple PFAM classifiers are combined so that
(1) performance of the resulting system can be
enhanced; (ii) an alternative approach for
handling on-line learning and classification tasks
with incomplete data can be realised. Figure 3
depicts a multiple classifier system based on
PFAM.

Overall Prediction

Decision Combination Algorithm

/T\
Predic}'ion 1 Prediction 2 Predic‘(ion N
| PFAM.1 | | Pram-2 1 C | PFAM-N—I

Figure 3 A multiple neural network system

Bayes’ rule has been used for reasoning
about partial beliefs under uncertainty in
multiple classifier systems [10], artificial
intelligent systems [11], as well as multiple
neural network systems [12]. To understand the
Bayesian update of evidence under uncertainty,
let H;, i=1,--,M denote a set of hypotheses,

and each HJ- be associated with a set of

evidences, ¢,,---,e, . The posterior probability

of the i-th hypothesis can be computed as

Ple,,-,e,|H;)P(H,)
P(e, ,---,en)

where P(H,) is the prior probability of H, and

Pley, e, ZP e lH)P(H) is  a

normalising factor to ensure the posterior
probabilities sum to unity. To enable
computation of the posterior probabilities, it is
assumed that the pieces of evidence are
conditionally independent given H; (although

P(HlTel,---,e”)= (1)

this assumption may not always be true in every
domain). Thus, equation (1) can be simplified to

P(H;-Eei.--',en) = }%ﬁ P(ejIHj) 2)
o) =)

One of the attractive properties of Bayes’
theorem is its amenability to recursive and
incremental  computation  schemes. The
recursive Bayesian update of belief functions is
implemented here to aggregate evidence from
multiple neural classifiers sequentially. Let the
input vector to the j-th classifier be x ;- Upon

receiving x;, classifier j will yield a set of
conditional probabilities for M target classes
(hypotheses), i.e., P(ijC,-), i=1,---,M, which is

equivalent to P(ejIH,-) above. For the first

classifier, the posterior probability of class C,

1

can be computed as:
P(CIx,)= MP(x,ICi)P(C]) 3)
ZP(xlIC,.)P(C

where P(C;) is the prior probability of C,. In

response to the second piece of evidence from
the second classifier, the update of posterior
probability can be computed incrementally
based on the first evidence as

P(Q|X|.X2) MP(xllci)P(C'lxl) (4)

ZP x,1C)P(Clx,)

By comparing equanons (3) and (4), we can see
that the current belief, P(CiIx,) assumes the

role of the prior probability in the computation
of new belief, P(Clx,,x,). Equation (5)

generalises the recursive Bayesian update of
belief functions to include the most recent piece
of evidence provided by the (j+1)-th classifier,

HGixym,e )- MP( x;1G )P(Cilx;) &

Y P(xulG)P(CIx;)

i=1

Recall that during the prediction phase, the
PFAM network uses the Parzen-windows
technique to approximate the pdfs. In a multiple
classifier platform, the output pdfs from various
PFAM classifier thus constitute the supporting
evidence for the estimation of the posterior
probabilities of target classes. The above
Bayesian formalism can then be employed to




combine predictions from multiple classifiers
sequentially. During operation, the multiple
classifier system utilises whatever information is
available to give a set of initial predictions for
the target classes. Subsequently, these
predictions will be reinforced or counteracted on
arrival of new information. Since not all
information will be readily accessible for use in
many real applications, this multiple classifier
system coupled with the recursive Bayesian
belief update formalism serve as a simple but
effective approach to handle problems with
incomplete or missing data.

4 EXPERIMENTS

In the following two sets of experiments, the
PFAM network was set to operate at its basic
conditions: o, =00 (conservative mode);

P,=00 (forced choice); p,=10 (fast
learning) [2]; overlapping parameter, r =20 [1].

4.1 Extension to the “Circle-in-the-Square”
Benchmark Problem
The “circle-in-the-square” problem requires a
system to identify which points in a square lie
inside or outside a circle whose area equals half
that of the square. It has been used as a
benchmark problem for system performance
evaluation in the DARPA artificial neural
network technology program [13]. Asfour [14]
extends the two-dimensional “‘circle-in-a-square”
task to a three-dimensional case such that the
system now needs to identify if a particle is
travelling inside or outside a tube residing within
a rectangular box (Figure 4). This task is
employed to evaluate the effectiveness of FAM
and the Fusion ARTMAP network [14] (a
modularised ART-based network for multi-
sensor data fusion and classification) in handling

problems with missing data.
Sensor 2 Sensor 4

g 1 T

Sensor | Sensor 3 Sensor 5

Figure 4 The extended “circle-in-the-square™ task
requires a system to identify whether a particle is
travelling inside or outside a tube residing in a
rectangular box.

In the experiment, it is assumed that 5
sensors have been placed along the rectangular
box to detect the position of a moving particle as
shown in Figure 4. The sensor readings are then
fused to 5 different PFAM classifiers to generate
a prediction about whether the particle is
travelling inside or outside the tube. To simulate
a classification domain with missing data,
information from the sensors are shut down one
by one as if the sensors are faulty.

Algorithm No. of sensors
5 < 3 2 1
Fuzzy 82.24 82.96 83.46 82.28 76.82
ARTMAP
Fusion [98.22 97.23 95.86 91.32 88.53
ARTMAP
Multiple |98.49 98.08 96.49 92.66 86.41
PFAM
System

Table I  Off-line learning results (expressed in
percentages) of different number of sensors used in
the classification process.

A training set of 100 samples and a test set
of 1000 samples were used in the experiment.
The experiment was repeated 10 times, and the
results were averaged across the 10 runs. Table
1 show the performance of the multiple PFAM
system as well as the results of FAM and Fusion
ARTMAP as reported in [14]. The results show
that the modularised approach of Fusion
ARTMAP and the multiple PFAM system
outperform the concatenated approach of FAM.

Since the PFAM is capable of learning on-
line, a dual-mode learning experiment was
conducted where each PFAM network was
trained, off-line, using 100 data samples. Then,
the trained network was engaged in on-line
learning using 900 data samples. During the on-
line operation, an input pattern was first
presented to ART, with its target output to
ART,. A predicted class was sent from the F3,




winner to ART,, and the prediction was
compared with the target class to produce a
classification result (prediction phase). Then,
learning ensued to associate the input pattern
with its target class (learning phase). A 100-
sample moving window was applied for
calculating the on-line accuracy, e.g. the
accuracy at sample 200 was the percentage of
correct predictions from trials 101-200.

| No. of classifiers

1)

Accuracy (%)

7% ! i 1 L L s

llm 20 k1] 40 Sont 60 Y ntlll WK
Nu. of Input Sam ples
Figure 5 On-line results of different number of
classifiers used in the extended “circle-in-the-
square” problem

Figure 5 depicts the on-line results averaged
over 10 independent runs. The error bars are the
standard deviations of the 10 runs to indicate
how the results spread across the averaged
results. It is clear that the accuracy improves in
accordance with the number of classifiers used
to give the final prediction, hence justifying the
application of multiple neural network systems
in classification tasks.

4.2  Diagnosis of Myocardial Infarction

This diagnostic study involved a database of 500
patient records admitted to the Northern General
Hospital, Sheffield, United Kingdom, with a
major complaint of chest pain (chest pain is
known to be strongly associated with
Myocardial Infarction (MI) or heart attack). A
total of 26 items of electrocardiagraphic and
clinical data such as Q waves, ST elevation, age
etc. were used as inputs to the multiple PFAM
systems. These input features were divided into
4 groups according to their significance to MI

(in consultation with a medical expert), and
distributed to 4 independent PEAM networks.

In the off-line experiment, the database was
divided into a training set of 300 samples and a
test set of 200 samples. The most significant
feature set formed the inputs to classifier 1,
whereas the least significant feature set formed
the inputs to classifier 4. Table 2 presents the
classification accuracy for the binary decision,
MI or not MI, from combining the predictions
from multiple PFAM classifiers consecutively.
It can be seen that the performance based on the
most significant feature set (Classifier 1) was as
good as those by combining more than one
classifier. In other words, contribution from
other input features which are not strongly
related to MI would increase the performance
slightly, as indicated in Table 2 (the results of 2,
3, and 4 classifiers).

No. of Classifiers
4 3 2 1
84.1 839 829 828

Table 2 Off-line learning results (expressed in
percentages) of the MI diagnosis.

As a comparison, the performance of the
admutting clinicians, and the best performances
achieved by an MLP network (with optimal
decision threshold on a super-set of the same
data) [15], as well as by FAM (with voting
strategy) [16] are presented in Table 3. The
results from the multiple PFAM system are
inferior to those of MLP and FAM. Note that
the results of MLP and FAM were the best ones
after fine-tuning the system parameters.
However, the multiple PFAM system was
operated at its “basic” settings without any
efforts to “optimise” the network parameters.

Algorithm | Accuracy (%)

Clinician 82
MLP 90
FAM 90

Table 3 A comparison with other methods,
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A further dual-mode learning experiment was
conducted where the multiple PFAM system was
trained using the first 100 samples and then
tested, along with on-line learning, using the
remaining 400 samples. Again, the on-line
accuracy was calculated with a 100-sample
moving window. Figure 6 indicates the on-line
performance, averaged over 10 runs, by
combining the predictions from the 4 PFAM
classifiers successively. The standard deviations
of the 10 runs are plotted as error bars. Unlike
Figure 5 where there is a clear improvement in
performance with respect to the number of
classifiers used, here a single classifier is able to
achieve a similar performance comparable to
those from more than one classifiers. This
phenomenon is understandable as the input
feature set to classifier 1 is most significant to
the prediction of MI. Nevertheless, as the
system encounters more and more samples, it
was able to achieve a better performance with a
clear delineation between the results by
combining various classifiers as demonstrated
by the accuracy of the last 100 samples in
Figure 6.

¥R .
No. of classifiers

Y

4
3
2

Avcuraey (%)

L L
Y] 200 a0 4K}
No. of Input Samples

Figure 6 On-line learning results of the MI
diagnosis.

5 SUMMARY

A composition of multiple neural network
classifiers has been studied to solve pattern
classification problems with incomplete or
missing data. An autonomously learning, hybrid
system of FAM and the PNN network is utilised
as the basis for the development of the multiple
classifier system. One advantage of the system
is the ability to combine decisions from multiple

classifier modules sequentially using Bayes’
theorem. In this way, the most significant and
instantly available data items can be grouped
together to a classifier to give an initial
prediction. Then, data collected later can be
fused to another classifier to reinforce or
counteract the initial predictions. As more and
more information becomes available, this
multiple classifier platform coupled with the
sequential decision combination algorithm
enables the system to make predictions with
greater accuracy as time goes on.
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