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Abstract: Analysis of the absorption spectra in the visible range has made it possible to
monitor the oxygen supply and metabolism of organic tissues continuously and non-
invasively. The nonlinear multicomponent analysis (NLMCA) is an evaluation method
for the reflection spectra of the tissues. In this report, the derivation of the relation
between the reflection and absorption spectra based upon Kubelka-Munk theory is
reviewed to introduce the foundation of the NLMCA technique. Then, the procedures
of the NLMCA algorithm are described and simulation studies are performed. The
results indicate that the NLMCA algorithm generally works well after a minor
modification but is sensitive to modelling errors due to invalid assumptions on the
scattering properties of samples. A direct algorithm based on linear least squares is
then suggested to deal with the same problem and simulation studies are performed to
make a comparision with the NLMCA algorithm, which demonstrate better robust
properties of the alternative strategy.

1. Introduction

-
The redox state of e respiratory chain gives information about the oxygen supply

and metabolism of living organisms. Due to some members of the respiratory chain
such as hemoglobin, myoglobin, and cytochromes having characteristic absorption
spectra in the visible range, spectrophotometric methods have been used to study the
redox states in vivo. This makes it possible to monitor the oxygen supply and
metabolism of organic tissues continuously and non-invasively.

For now, the technical developments have allowed a sufficiently accurate
measurement of reflection spectra of organisms which are under an illumination of




light. However, the question of correct evaluation of the spectra has only partly been
solved. One class of typical evaluation methods for the reflection spectra of biological
materials are the two-flux evaluation methods of multicomponent systems originally
developed based upon the Kubelka-Munk (1931) theory (Hoffman et al. 1984 and
1985). Apart from these, there are also the methods of dual wavelength evaluation and
reference spectra which were reported by Chance and Williams (1955) and Figulla et
al. (1983), respectively. In Hoffmann and Lubbers (1986), the validity and limits of
these different methods were compared using simulation studies.

The nonlinear multicomponent analysis (NLMCA) technique is one of the two-flux
evaluation methods for reflection spectra. For the samples of organic tissues with
either finite or infinite thickness or even for the samples with light path distribution, it
has been shown in Hoffmann et al. (1982) that, under certain conditions on light
scattering within the tissues, the natural logorism of the ratio between the reflected
light intensity to the incident beam intensity can be related to the total absorption
spectra by a function with mild nonlinearity. Consequently, a linear rational function
can be used to approximate the inverse of this mild nonlinearity and an iterative
nonlinear multicomponent analysis algorithm can then be applied to estimate the
parameters of this model from the observed reflection spectra and the spectra of
individual components associated with hemoglobin, myoglobin, and cytochromes, etc.
The results obtained is not only a model by which the reflection spectra can be
evaluated but also the model parameters can represent the concentrations of associated
components and the kinetics of the parameters reflect the oxygen supply and
metabolism of these components in the involved organism.

In this report, the derivation of the relation between the reflection and absorption
spectra based upon Kubelka-Munk theory is reviewed to introduce the foundation of
the NLMCA technique. Then, the procedures of the iterative NLMCA algorithm are
described and simulation studies are performed on examples including the model based
on Kubelka-Munk theory for a semi-infinite plane homogeneous medium. The results
indicate that the iterative NLMCA algorithm generally works well after a minor
modification but is sensible to modelling errors due to invalid assumptions on the
scattering properties of samples. A direct algorithm based on linear least squares is
then suggested to deal with the same problem and simulation studies are performed to
make a comparision with the iterative algorithm, which demonstrate better robust
properties of the alternative strategy.




2. The Relation between the Reflection and Absorption
Spectra

2.1 Kubelka-Munk theory

According to the Kubelka-Munk (K-M) theory (1931), for a layer of organic tissues
with thickness d and under light illumination, the reflection spectra R, which is the
ratio of reflected light intensity 7 to the incident beam intensity 7, can be described by

po L _ _sinh(kd) &
T 1, sinh(kd +y) '

where

k=.la(a+2s) ' 2.2)

(a-i-s—k)}

y= —ln[ p (2.3)

and a and s are referred to as the K-M absorption and scattering coefficients

respectively. @ and s are generally functions of the wavelength A of the incident
light, i.e.,
a=a(A)

s=s5(A)

In the case of infinite thickness (d — o),

kd —kd kd
; e’ +e . e _
R=R_=lim lim =e™

_ _f{a+s—k)
praroms ekd+y +e—(kd+y) - dee ekd+y -

A)

(2.4)

Substituting £ into (2.4) yields

R = [a+s—+Ja(a+2s)]
5

(2.5)

which can be rewritten, after some manipulations, as

a() _(1-R.)’
s(A) 2R

=f(R.) (2.6)

to yield a relationship between the reflection spectra R_, the absorption a(A) and the
light scattering coefficient s(A), and f(.) is called Kubelka-Munk function (Heinrich et
al. 1981). Notice that for 0 < R_ <1, f(R_) is a monotonically decreasing function.
In practice R_ always lies in the interval (0,1).

2.2 Lubbers Model

Heinrich and Lubbers et al. (1981) decomposed s(A) into a large wavelength
independent part s, and a small wavelemgth dependent part s,(A) to give




s(A)=s,+5,(L) 2.7
Substituting (2.7) into (2.6) yields
a(A)=s,f(R.)+s,(A)f(R.) (2.8)

The absorption coefficient a(A) is usually modelled as the sum of the absorption
spectra of the components of hemoglobin, myoglobin, and cytochrome, i.e.,

aM) =Y ca, (M) =s,f (R.)+5, (M (R.) 2.9)

where a;(A) denotes the spectrum of the ith component (e.g., pure hemoglobin,
myoglobin, or cytochrom) and ¢, is the concentration of the corresponding component.

Since 5, (A) is assumed small, the last term in (2.9) is approximated by Heinrich et al.
(1981) as
s;(MF(R)=c, A (2.10)

where c, is a small constant. Substituting (2.10) into (2.9) gives

Ycah)-ed=s,f(R.) (2.11)

Because f(.) is a monotonic function for 0 < R_ <1, equation (2.11) defines a
one-to-one relationship between Y c,a,(A)—c,A and R_ for 0<R_<1.

i

Under a particular illumination of wavelength A, a,(X) are given by the book
spectra. If f(-) is as defined in equation (2.6), one could estimate ¢, and ¢, up to a
scalar. By noting that R_ is related to the ocular density (OD) function y(A) as

R = ¥®
which is also a monotonically decreasing function, equation (2.11) can be written as
Yca —ch=s,f(e"™)=g(y(\)) (2.12)

Clearly g(.) is a monotonic function, therefore the inverse of this function exists.

Using this property, Lubbers et al. (1981) attempted to extend the K-M function to a
more general case by introducing another function H() such that

H7'()=g()
Then equation (2.12) becomes
Yca —cA=H"(y1) 2.13)
or
yM)=H(Y ca -cA) (2.14)




It is therefore possible to explore a range of nonlinear functions & (+) which could be
used as an approximation to the relationship between book spectra and y(1.).

Heinrich et al. (1981) and Hoffmann et al. (1984) further assumed that
g(.)=H'(.) is a function with only mild nonlinearity and can therefore be sufficiently

well approximated by a hyperbola as

_ A)+B
= B (y)= DA*P 2.15
g(y) ») HO)T] (2.15)
where o, B, and v are constants. Consequently, equation (2.14) can be written as
oy(A)+p
a(M)—ch=—-"=1 2.16
2t —eh =y @19

and a nonlinear multicomponent analysis (NLMCA) algorithm can be applied to (2.16)
to estimate the parameters a., B, 7, ¢, and ¢, based on the measurement y(A) and the

book spectra a;(A). We refer to equation (2.16) as the Lubbers’ Model.

Once the above parameters are estimated, the extent to which y(A) is
approximated by the estimate J(A) can be evaluated using the error (residue) signal

e,(h) = YOO - () = y(0) - ﬁ[z Ga, ()~ fzx} (2.20)
Alternatively, the following residue signal
P S ~ PR 7 (O ha
«(M=H"0)-H ()= 2éaM)-er—r o (221)

can be estimated.,

3. Simulation Studies of the NLMCA Technique for
Reflection Spectra

3.1 The NLMCA Technique

The NLMCA algorithm used by Hoffman (1984) computes the parameters of

equation (2.16) iteratively as follows.
(1) Set a=a® =1, p=p" =0,y =y =0, use the OD y(A) and apply the
linear least squares algorithm to equation (2.16) to estimate c, and c,. The

results are denoted as ¢, ¢".

(2) Based on the estimation model

A1) _amy _ (A)+B
Z‘ci a,(A)—=c.’A e, (3.1




a nonlinear least squares procedure is used to estimate o, B, andy to yield the
estimates ¢, B, and .

(3) From the estimation model

&®y(\) +B®

TPy +1 =)

Y. ca(M)—ch=

estimate ¢; and c, by a linear least squares. Denote the estimates as ¢, &®
and repeat the iteration until the parameters converge, or a pre-specified number

of iterations is reached.

It is worth pointing out that the parameters c;,c,,o, and B can only be estimated

up to an arbitrary scalar. This is evident by noting that multiplying a constant p on
both sides of the Lubbers model yields

__poy(A)+p B
ZP cfai(;\')'p C_s?\, ,Yy+1

and the equation holds whatever value this constant takes.

3.2 Simulation results

3.2.1 Simulation 1
e Data generation:
The OD y(A) was generated using the K-M theory as

(3.3)

a(L)+ s(x)-k(x)J
s(A)

y(A)= —ln[

where

k(L) = Ja( )(@a(rh) +2s(r))

and assuming the scattering is a linear function of wavelength such that
S(A)=s,+sA

The absorption term is given by
4
aM) =Y c.a,(A)

i=1
where a,(A), i=1,2,3,4, and A are book spectra and wavelength in the range
500 — 700nm respectively, and c, , i =1,2,3,4, are concentration coefficients chosen

arbitrarily as
¢, =057v, ¢c,=043v, ¢c; =035y, ¢, =021v

with v=0.01.




One objective of this simulation is to test the robustness of the NLMCA w.r.t. the
assumption of s, being small. Thus, we chosen s5,=312v and 5,=0, 0.018v, 0.18v,

and 1.8 v, respectively, to produce four sets of data for y(A) using equation (3.3).

e Parameter estimation:
The objective is to model the data y(A) generated above using Lubbers model
equation (2.16) in order to estimate the concentration coefficients c,. Note that these

coefficients can only be estimated up to a scalar. Thus comparison between the true
and estimated parameters can only be made in terms of ratios.

By applying the NLMCA iterative méoﬁthm directly to each of the four data sets,
the estimates for concentrations c, are shown in Table 1 and Figs.1,2,3, and 4..

The parameter estimates thus obtained do not converge in the process of iterative
computations even when s, = O and are therefore unsatisfactory. This is believed to be

due to the unstable property of the iterative process caused by the considerable
difference between the real and applied estimation models.

To deal with this problem, the Lubbers model (2.16) is slightly modified as

A
Tead)-eh+n= %%XETB (3.4)

Notice that equation (3.4) is essentially the same as (2.16) because shifting 1 to the
right hand side and combining 1 and the fraction associated with o, B, ¥ into one

term yields an equation which is exactly the same as (2.16) in structure. However, the

iterative computations using (3.4) are based on a relatively general model which
contains a constant term when setting o =0 =1, B=pP =0,y =yP =0 to
estimate c; and c,. This could produce relatively reliable estimation results.

The simulation results using this modified model are shown in Table 2 and Figs.
5,6,7, and 8 and the following points can be observed from these results..

(1) All estimates using modified Lubbers method seem to converge after about 20

iterations.
> . . . .
(2) The errors asso. .ted with estimates of c,/c, increase as s, increases. Even at

s, = 0 the estimation errors are significant.

® Conclusions from the simulation

The original NLMCA iterative algorithm needs to be modified in order to overcome
the divergence problem with the original Lubbers model.

The derivation of the NLMCA iterative algorithm is based on K-M theory and the
following key assumptions:




(1) The scattering coefficients can be approximated by s(A)= s, +5,(A) for s,(A)
being very small.

(ii) The term s f(R.) can be approximated by c,A. The implication of this
assumption is that s f(R_) can be approximated as proportional to the
wavelength A .

(iii) The nonlinearity in f(.)is mild and the term f(e™) can be approximated by

ay+B
Yy +1

The above simulation results showed that even by setting s,(A)=0 Lubbers

model yield biased estimates for concentrations. This suggests that the assumption
(iii) is not very good as far as the K-M function is concerned. It also implies that

Lubbers method is sensitive to modelling errors. The second assumption above is
also questionable because f(.)is unknown and is to be estimated. In fact it could be

argued from the simulation above that a better approximation to s, f(R_) could be
e

Table 1. Parameter estimates using the original Lubbers model where

the output data are produced using y=—InR, =—1nff;;k
(Results at the 1500™ step iteration)
] L) & ¢
c & ¢ Z
Frag ok 0.7544 0.6140 0.3684
C]
§=0v 0.73770 0.86802 0.51211 -0.01245
_(Relative Error) | (2.21%) (-41.36%) (-39.00%)
Parameter Estimates | 5,=0.018 v 0.73678 0.88436 0.52183 -0.01221
and Relative Errors | (Relative Error) | (2-33%) (-44.02%) (-41.64%)
under Different Cases |  5,=0.18v 0.73182 1.00616 0.58879 <0.01094
of s (Relative Error) | (2.99%) (63.86%) (-59.81%)
5,=1.8v 0.72685 1.37663 0.75927 -0.00962
(Relative Error) | (3.64%) | (-124.19%) | (-106.09%)
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Fig. 1. Simulation results for the original Lubbers method in the case of 5, =0
Generated OD y is solid and the estimated OD y dashed. Residue e,(A) is defined by equation
(2.20). For the estimates of ¢; /c, , solid lines show the real values and dotted lines the estimates.

For the results of OD and residue, the horizontal axis represents the wave length. For others, the

horizontal axis represents the times of iteration.
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Fig. 2. Simulation results for the original Lubbers method in the case of s, = 0.018v
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Fig.3. Simulation results for the original Lubbers method in the case of s, = 0.18v
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Fig. 4. Simulation results for the original Lubbers method in the case of s, = 18v
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Table 2. Parameter estimates using the modified Lubbers model where the

. a+s—k
output data are produced using y=—InR_=-In——
S
L2 L L C,
G G S [
: 0.7544 0.6140 0.3684
True —
Cl
s1=0v 0.69698 0.50520 0.44859 0.01026
(Relative Error) | (7.60%) | (17.72%) (-21.76%)
Parameter Estimates s1=0.018 v 0.69661 0.52026 0.45670 0.01051
and Relative Errors | (Relative Error) | (7.65%) (15.27%) (-23.96%)
under Different Cases s1=0.18 v 0.69427 0.62360 0.51089 0.01245
of sl (Relative Error) (7.96%) (-1.55%) (-38.67%)
sl=1.8v 0.69067 0.87842 0.63210 0.01901
(Relative Error) | (8.44%) | (-43.05%) (-71.57%)
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Fig.5. Simulation results for the modified Lubbers method in the case of s, =0 v
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Fig.7. Simulation results for the modified Lubbers method in the case of s, =018 v




oD vy Residue c2M7el1n
O.a - . 0.01 - - " o.8
: : : : OB+ revmenennss I
: E : : \ :
i : : oahb--oo SRR O—
£ : - = ' ]
1 i : : 1 :
; : : : 0.75 T =
i : ; \ :
: : H Q.7 fee Mg s
: : .0 : : .65 :
800 550 600 =9 gOO 550 600 e o 50 100
c3INe1A ca~N/c1A cs~No1n
e 7 0.7 : 0.1 :
o - & R i il O:8 ot RIS T TR T
! _.r QLOE s v sws FERRLERLETTR SEEE S
0.8+ 0.5 R T u e '
! ! L e e W A L Siee i
o - T PR SO [ B e S Dosl ,,,,,,,,,,,,
1 I i
O. 2 - - e 0.3 ! ............. .............. 0.04a ‘ ___________________________
L RS R Lovinssin m opisin o A S A
D-i 0'25 ] (o 1o | SR N
— R Pt st e e s e L2 B T AT S PSPPI -
. d g :
—0.4 - ~ o H
o 50 100 o 50 100 o 50 100
Convergence of alfa Convergence of beta Convergsnce of gamma

50 100

Fig.8. Simulation results for the modified Lubbers method in the case of 5,=18v

3.2.2. Simulation 2

® Data generation:
In many cases, the Beer-Lambert Law is assumed in analysing the relationship
between the reflection and absorbstion spectra. Based upon this law,

R = g~ e ysd)]

(3.5)

Thus, in this set of simulation, data y(A) was generated using

Y(A)=~=In(R) =v[a(A)+s, +5,(1)] = "[Z ca,(A)—c A+ so} (3.6)

where it is assumed that 5,(A)=—c,\ , which is similar to the approximation given in
(2.10). Clearly, (3.6) is a special case of (3.4) with o =1, =7 =0and the
NLMCA technique shc?"d, therefore, apply.

The parameters are chosen as follows.
v=0.01, ¢, =0.57, ¢,=0.43, ¢; =0.35, ¢, =0.21, s, =312.

a; and A are the same as above and four different values of ¢,=0, 0.018, 0.18, and 1.8

are also considered.

e Parameter estimation:

13




Modified Lubbers model (3.4) is now used to estimate the concentration
coefficients. Table 3 and Figs. 9, 10, 11, and 12 show the results. They are clearly
very satisfactory and irrespective of different values of s,. This is because the model
structure is always consistent with the real data generation structure.

e Conclusions from the simulation

If the real data y(A) is generated by the Bear-Lambert law, parameter estimates
obtained using the modified Lubbers model are very close to the real ones for all s,

due to the fact that the model structure and the data generation structure are

identifical.

Table 3. Parameter estimates using the modified Lubbers model where the

output data are produced by y=-InR_ =-v[a(}) + s]
5 5 & <
G ¢ ¢ El—
Troe 5L 0.7544 0.6140 0.3684
G
s1=0 0.7544 0.6140 0.3684 0
(Relative Error) (0%) (0%) (0%)
Parameter Estimates s1=0.018 0.7544 0.6140 0.3684 -0.03157
and Relative Errors | (Relative Error) (0%) (0%) (0%)
under different Cases s1=0.18 0.7544 0.6140 0.3684 -0.31578
of sl (Relative Error) | (0%) (0%) 0%)
s1=18 0.7544 0.6140 0.3684 -3.15789
(Relative Error) (0%) (0%) (0%)
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Fig.10. Simulation results for the modified Lubbers method in the case of s, = 0.018

and when y is generated using Beer-Lambert Law
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Fig.11. Simulation results for the modified Lubbers method in the case of s, =018

and when y is generated using Beer-Lambert Law
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Fig.12. Simulation results for the modified Lubbers method in the case of s, =18
and when y is generated using Beer-Lambert Law
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4. A Linear Least Squares Based Direct Algorithm (Ratio Method)

The NLMCA iterative algorithm for reflection spectra analysis is an iterative
method for obtaining solutions to nonlinear least squares optimisation problems. The
disadvantage with this algorithm is the problem associated with the iterative
computation procedure which involves an important issue of convergence. In order to
circumvent this problem, a linear least squares based direct algorithm is proposed
below to directly estimate the parameters associated with o, B, ¥, ¢,, and c, based

on the original model structure (2.16), thus no iteration is necessary.

Rewrite equation (2.16) as

-y S amy-SL yop - 2B
Y0 =X aMyM)+ X ora ()= m YO - A= s
= Zpiai(l)y(?\‘)-i-zqi a,(A)—d, y(MA -d, K—d3
L P QT N :
where p, = el L d, ot d, = Py d, = s 8 linear least squares algorithm

can be applied directly to model (4.1) to obtain the estimates p,, §,, 3], 32, ‘?3 for the

. : c; :
parameters p,, q,, d,, d,, d,. The estimates for the ratios of -~ can then be obtained

G
as
A
(&] T (42)
9 4 P
and = from —L . The OD can be evaluated using the obtained parameters estimates as

G D

Zéiai(}‘) - £§27\' i ‘33

O TS et i “

Simulation 1:

e Data generation:
The same as in Section 3.2.1.

e Parameter estimation:

The results for the estimated c,/c, are shown in Table 4, indicating that similar
results can be obtained for all cases of s, but considerable biases of estimation exist in

the obtained results. Figs.13, 14, 15, and 16 show the residues of the obtained models
in the different cases of s, , which are evaluated as

y(A)=3(A)
where y(A) is defined by equation (4.3).
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e Conclusions from the simulation

The simulation demonstrates that this alternative strategy yields estimates which are
rather robust over a wide a range of s,. However the estimates are still significantly
biased. The biases are believed to be caused by the errors of the model.

Table 4. Parameter estimates obtained by the ratio method where the output

. a+s—k
data are produced using y=-InR_ =—In—— =
7 5
%. €3 S C,
< cl (&) c
c 0.7544 0.6140 0.3684
True —
<
s1=0v 0.80428 0.69935 0.69267 0.02838
(Relative Error) (6.61%) | (-13.89%) (-88.01%)
Parameter s1=0.018 v 0.80384 0.69663 0.69323 0.02827
Mas (Relative Error) | (6.55%) | (-13.45%) | (-88.16%)
and Relative
Errors
under Different s1=0.18 v 0.79893 0.67788 0.69838 0.02757
Cases of sl (Relative Error) | (-5.90%) | (-10.39%) |  (-89.56%)
s1=1.8v 0.76434 0.63099 0.72669 0.02658
(Relative Error) (-1.32%) (-2.76%) (-97.24%)

O v & Eestrmated v el

—o .0 — sia -

1=
e lenath e e lenath

Fig. 13. Residueinthe case of s, =0v
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Fig. 16. Residue in the case of 5, =18 v
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Simulation 2
e Data generation:

The same as in Section 3.2.2.
e Parameter estimation:

Simulation studies for the direct least squares based method are performed to yield
the estimation results for ¢, given in Table 5 and corresponding model residues shown
in Figs. 17, 18, 19, and 20. Clearly, satisfactory results are obtained in this case.
© Conclusions from the simulation

Satisfactory parameter estimates can be obtained using the ratio method when the
estimation model applied is consistent with the model by which the simulation data are
generated.

Table 5. Parameter estimates obtained by the ratio method where the output
data are produced using y=-InR_ =-v[a(A)+s]

L s Cs <,
Cl Cl C] c1
C; 0.7544 0.6140 0.3684
True —
G
s1=0 0.7544 0.6140 0.3684 -0.003157
(Relative Error) (0%) (0%) (0%)
Parameter s1=0.018 0.7544 0.6140 0.3684 -0.031578
estimates (Relative Error) (0%) (0%) 0%)
and Relative
Errors
under Different s1=0.18 0.7544 0.6140 0.3684 -0.31578
Cases-of 6l (Relative Error) (0%) (0%) (0%)
s1=1.8 0.7544 0.6140 0.3684 -3.1578
(Relative Error) (0%) (0%) (0%)

SO0 ¥ & Setirmate > % N bt

- L H h
rdoo = 1= 3 =coS s=o ==
aveienat et

Fig. 17. Residue in the case of 5, =0 and when data are produced using
y=-InR_ =-v[a(A)+5s]
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Fig.18. Residue in the case of s, = 0.018 and when data are produced using
y=—=InR_=-v[a(A)+s]
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Fig.19. Residue in the case of 5, =0.18 and when data are produced using
y=-=InR_=-v[a(A)+s]
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Fig.20. Residue in the case of 5, =1.8 and when data are produced using
y==InR_=—v[a(L)+s]
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S. Simulation Using the Exact Kubelka-Munk Model

Instead of using Lubbers model which attempts to generalise the Kubelka-Munk
model to cases with mild nonlinearities, the following set of simulation uses the
Kubelka-Munk model for parameter estimation.

The Kubelka-Munk model is given by equation (2.6) as

a(\) _(1-R.)’

= = f(R
s(A) 2R, FR)
which can be written as
2 ca,
f =5, + S\

J(R.)

Since the functional form of f is known, a least squares routine can be easily used to

obtain the estimates for the concentration coefficients of the model.

Simulation 1
¢ Data generation: :

¥(A) is generated using the Kubelka-Munk model with other data and parameters
the same as those in Section 3.2.1.
e Parameter estimation:

The parameter estimation results obtained using the least squares routine are given
in Table 6 indicating that excellent parameter estimates are obtained.
¢ Conclusions from the simulation:

Least squares method works well for the Kubelka-Munk model when the data are
generated using the same model as expected.

Simulation 2
¢ Data generation:
¥(A) is generated using the Beer-Lambert law model with other data and
parameters the same as those in Section 3.2.2.
e Parameter estimation:

The parameter estimation results obtained using the same least squares routine
above are given in Table 7 indicating that the parameter estimates are very poor.
 Conclusions from the simulation:

Least squares method does not work if the estimation model applied is totally
different from the real model.
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6. Discussions

In this report, the NLMCA technique for reflection spectra is evaluated using
simulation examples. It has been shown that the technique needs a minor modification
and even so it yields biased estimates. The bias increases as the assumption about the
scattering coefficient is more violated. A direct linear least squares based algorithm has
been proposed which has been shown to be more effective in terms of robustness over
the scattering coefficient but further investigation is required to resolve the problem of
biased parameter estimates.

Table 6. Parameter estimates obtained when applying the pure Kubelka-
Munk method where the output data are produced using

a+s—-k
y=—lnR_ =-ln———
)
] LY £y [
¢ ¢ ¢ &
c 0.7544 0.6140 0.3684
True —
Cl
sl=0v 0.7544 0.6140 0.3684 0
(Relative Error) (0%) (0%) (0%)
Parameter s1=0.018v 0.7544 0.6140 0.3684 0.03157
eSUmAtes | R elative Error) 0% (0%) (0%)
and
Relative
Errors
under s1=0.18 v 0.7544 0.6140 0.3684 0.315789
]ﬁ;eg} (Relative Error) 0%) (0%) (0%)
sl
s1=18v 0.7544 0.6140 0.3684 3.15789
(Relative Error) (0%) (0%) (0%)
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Table 7. Parameter estimates when applying the pure Kubelka-Munk method

where the output data are produced using y=-InR_ = -v[a(L)+ 5]
& & L <
c) ¢ C &5
C; 0.7544 0.6140 0.3684
True —
Cl
s1=0 15.57028 444371 -3.92722 -0.22781
(Relative Error) ——- — —-
Parameter s1=0.018 16.23947 45.95412 -3.99314 -0.21653
= b8 (Relative Error) — — ——
and Relative
Errors
under Different s1=0.18 23.32767 60.70938 -4.42376 -0.13447
s (Relative Error) ===
s1=1.8 -18.56905 -7.13678 -0.7384 1.11391
(Relative Error) memmma-
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