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Abstract

Nonlinear multigrid methods such as the Full Approximation Scheme (FAS) and
Newton-multigrid (Newton-MG) are well established as fast solvers for nonlin-
ear PDEs of elliptic and parabolic type. In this paper we consider Newton-MG
and FAS iterations applied to second order differential operators with nonlinear
diffusion coefficient. Under mild assumptions arising in practical applications,
an approximation (shown to be sharp) of the execution time of the algorithms
is derived, which demonstrates that Newton-MG can be expected to be a faster
iteration than a standard FAS iteration for a finite element discretisation. Re-
sults are provided for elliptic and parabolic problems, demonstrating a faster
execution time as well as greater stability of the Newton-MG iteration. Results
are explained using current theory for the convergence of multigrid methods,
giving a qualitative insight into how the nonlinear multigrid methods can be
expected to perform in practice.

Keywords: Nonlinear Multigrid, Newton’s Method, Nonlinear Diffusion
2010 MSC: 35J60, 35J92, 35K55

1. Introduction

Nonlinear multigrid iterations such as the Full Approximation Scheme (FAS)
[9] and Newton-Multigrid (Newton-MG) [12, 48] methods have been widely
used to solve elliptic and parabolic nonlinear problems on large scales (cf.
[4, 17, 18, 21, 27, 42] amongst others). There exists very little convergence
theory for the nonlinear methods (e.g. [2, 22, 25, 28]) and only limited com-
parison as to which method should be preferred in practice [23, 26, 33, 34, 47],
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where the comparisons are limited to specific applications. In this paper we
present a more general framework for comparing the relative efficiency of the
Newton-MG and FAS methods for a broad class of nonlinear problems. This
requires a detailed discussion of the efficient implementation of these schemes,
followed by a theoretical assessment of their running times in a finite element
setting for a general second order nonlinear operator. The comparison is based
upon a detailed analysis of their costs per cycle, followed by a theoretical dis-
cussion of their convergence properties and how this theory may be used when
comparing the techniques. As there exists no algebraic variant of FAS multigrid,
the geometric algorithms are compared.

The remainder of the paper is structured as follows. In section 2 we briefly
present the linear and nonlinear multigrid iterations, followed by a detailed
discussion of the theoretical running time of Newton-MG and FAS in section
3. Section 4 describes and applies the relevant convergence theory for linear
and nonlinear multigrid iterations. In section 5 model problems are introduced,
which are used to produce results in section 6, to demonstrate the applicability
of the theory from sections 3 and 4. Conclusions are given in section 7, which
summarise the reasons why a Newton-MG iteration should be preferred over an
FAS iteration when using a finite element discretisation.

2. Background

In this section we introduce the basic concepts and notation required for the
definition of both linear and nonlinear geometric multigrid algorithms. A more
detailed introduction can be found in [12, 22, 48]. The problem to be solved
is presented as an operator equation. Once an operator is discretised, and an
appropriate basis for a discrete subspace has been chosen, the discrete operator
equation may be considered an algebraic system of equations. In the following
we move between considering operator equations and the corresponding alge-
braic systems of equations, as appropriate.

2.1. Linear Multigrid Algorithms

We wish to solve the linear operator equation given by

Au(x) = f(x), x ∈ Ω (2.1)

where the domain Ω ∈ R
d has boundary ∂Ω, and A : V → V for some vector

space V. From this point on we omit the explicit dependence on x ∈ R
d. It

is assumed that there is a unique u∗ ∈ V satisfying equation (2.1). We are
interested in the approximate solution of (2.1) based upon discretisations using
a sequence of finite-dimensional grids

Ω1 ⊂ Ω2 ⊂ . . . ⊂ ΩJ , (2.2)

which are sets of connected points in Ω. We also consider the sequence of
finite-dimensional function spaces

V1 ⊂ V2 ⊂ . . . ⊂ VJ ⊂ V, (2.3)
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where each Vl, l = 1, . . . , J is defined on grid Ωl. Given (2.3), we consider the
discretised system of equations

Alul = fl (2.4)

where Al : Vl → Vl is the projection of the continuous operator A onto the
finite-dimensional space Vl. We assume there are unique u∗

l ∈ Vl, l = 1, . . . , J
that satisfy (2.4). For the purposes of this paper Vl, l = 1, . . . , J is the standard
piecewise linear finite element function space defined on grid Ωl.

2.1.1. Linear Multigrid as a Solver

In this section we describe the linear geometric multigrid method and in-
troduce some notation. A discussion of necessary conditions for convergence of
geometric multigrid is presented in section 4.

We introduce operators

Rl : Vl → Vl−1, l = 2, . . . , J

Pl : Vl−1 → Vl, l = 2, . . . , J,
(2.5)

which are restriction and prolongation operators, respectively, that allow the
transfer of functions between different subspaces. Since the exact solution to
(2.4) is u∗

l ∈ Vl, the error el and defect rl in approximation ul, defined by

el = u∗
l − ul, rl = fl − Alul,

satisfy the operator equation
Alel = rl. (2.6)

We assume there exist operators Sl : Vl → Vl, l = 2, . . . , J , called smoothing
operators, that have the property that they are effective at removing high fre-
quency components from the error [12, 48]. A correction term is calculated on a
coarser grid in the coarse grid correction step. We fix a number ν of smooths to
perform before (pre-smoothing) and after (post-smoothing) a coarse grid cor-
rection step. In general the number of pre- and post-smooths may differ, and
one of the smoothing steps may be left out entirely [12, 22, 48].

Consider that we wish to solve (2.4) on grid Ωl, l 6= 1, for the exact discrete
solution u∗

l ∈ Vl. A single step of the geometric multigrid algorithm is then

outlined in algorithm 2.1, where u
(j)
l ∈ Vl represents the approximation to the

solution u∗
l after j iterations of linear multigrid have been performed. This iter-

ation can be performed until some appropriate convergence / failure criteria are
met. On the coarsest grid level the exact inverse is very inexpensive to compute,
provided that |Ω1| is small, and the running time of the algorithm is O(n) for
particular choices of A (cf. [12, 48]). There is a closed form representation of
the linear multigrid V-cycle operator, which for the rest of this paper is denoted
Ml : Vl → Vl. The exact representation can be found in [48]. A multigrid op-
erator should possess the smoothing and coarse grid correction properties [22].
That is, the smoother should remove high frequency components from the error,
and the coarse grid correction should give a good approximation to the fine grid
error after the high frequency components have been removed.
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Algorithm 2.1 Multigrid V-Cycle

Require: Al, Al−1, Sl, Pl, Rl

1: function Linear-MG(l, u
(j)
l , fl, ν)

2: Set u′
l = Sν

l u
(j)
l

3: if l = 2 then Calculate ẽl−1 = A−1
l−1Rl(fl − Alu

′
l)

4: else Set ẽl−1 = Linear-MG(l − 1, 0, Rl(fl − Alu
′
l), ν)

return u
(j+1)
l = Sν

l (u
(j)
l + Plẽl−1)

2.1.2. Multigrid Preconditioned Linear Iterations

Multigrid iterations are frequently used as a preconditioner for a different
iterative method. For a more thorough discussion of such methods see [43].
The discrete problem (2.4) can be solved iteratively using a right-preconditioned
Krylov subspace method, such as conjugate gradients (CG) or GMRES [43]. As
the preconditioner we use a single multigrid V-cycle such that we solve

AlMlvl = fl, M−1
l ul = vl. (2.7)

Multigrid V-cycles used as a preconditioner for a Krylov subspace solver have
been shown to be optimal in many situations (e.g. [13, 16, 49]).

2.2. Nonlinear Multigrid Algorithms

In this section we introduce nonlinear multigrid methods, using concepts
introduced for linear multigrid methods.

2.2.1. Newton-Multigrid (Newton-MG)

An inexact Newton method is presented, which is given in detail in [14].
Consider the discrete nonlinear system

FJ (uJ(x)) = 0, (2.8)

for nonlinear operator FJ : VJ → VJ . ΩJ and VJ are the finest grid, and
associated subspace, in the hierarchies (2.2) and (2.3), respectively. Assume
there exists a solution u∗

J to (2.8) and that this is unique in

Bu∗

J
≡ {uJ ∈ VJ : ||uJ − u∗

J ||VJ
< δ} ,

for some δ > 0. Let FJ be Frèchet differentiable [38] in Bu∗

J
and assume that

this derivative is invertible. A single step of an inexact Newton method is then
given by algorithm 2.2.

Algorithm 2.2. Inexact Newton

u
(j+1)
J = u

(j)
J − AuJ

FJ(u
(j)
J )
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In algorithm 2.2 u
(j)
J is the approximation after j inexact Newton iterations,

and AuJ
is some approximation to the inverse of the Fréchet derivative of FJ

(i.e. AuJ
≈ F ′

J(u
(j)
J )−1). The definition of AuJ

is required, which may be any

linear operator that approximates the inverse of the derivative of FJ at u
(j)
J .

Letting AuJ
be a number of iterations of the linear multigrid operator MJ (i.e.

AuJ
= M

p
J for some (p ∈ N) > 0) applied to the equation F ′

J(u
(j)
J )eJ = FJ(u

(j)
J )

gives a Newton-Multigrid (Newton-MG) iteration. We may use other choices
for AuJ

, including iterative Krylov subspace methods, and their preconditioned
variants, as described in section 2.1.

2.2.2. Full Approximation Scheme (FAS)

Brandt [9] was one of the first to introduce nonlinear multigrid, which seeks
to use concepts from the linear multigrid iteration and apply them directly in the
nonlinear setting. The iteration devised in [9] is called the Full Approximation
Scheme (FAS) and it is this version of nonlinear multigrid that is considered
in this paper. The Nonlinear Multilevel Method (NMLM) of Hackbusch [22]
is a generalisation of FAS, but adds extra parameters into the algorithm. For
brevity of discussion we consider only the FAS algorithm here, but note that
the NMLM is a globally convergent iteration [25, 40]. Consider the discrete
nonlinear problem

Al(ul) = fl, l = 1, . . . , J, (2.9)

with exact solution u∗
l unique in some Bu∗

l
. This is equivalent to (2.8) with

Fl(ul) = Al(ul) − fl. The defect equation reads

Al(u
∗
l ) = rl + Al(ul), (2.10)

where the defect rl = Al(u
∗
l )−Al(ul). As in the linear case, FAS is a combina-

tion of smoothing and coarse grid correction. The smoothing operators Sl are
nonlinear, but should possess the smoothing property, as in the linear case [22].
There are nonlinear variants of standard Jacobi and Gauss-Seidel smoothers,
including variants to perform block smoothing (cf. [9, 12, 22, 48]). Using the
prolongation and restriction operators given in (2.5), the nonlinear V-Cycle is
defined in algorithm 2.3.

Algorithm 2.3 FAS Multigrid

Require: Al, Al−1, Sl, Pl, Rl

1: function FAS(l, u
(j)
l , fl, ν)

2: Set u′
l = Sν

l (u
(j)
l )

3: Set u′
l−1 = Rlu

′
l ; fl−1 = Rl(fl − Al(u

′
l)) + Al−1(u

′
l−1)

4: if l = 2 then Calculate ũl−1 = A−1
l−1(fl−1)

5: else Set ũl−1 = FAS(l − 1, u′
l−1, fl−1, ν)

return u
(j+1)
l = Sν

l (u′
l + Pl(ũl−1 − u′

l−1))

Algorithm 2.3 is very similar to algorithm 2.1, the main difference being that
the value to solve for on the coarse grids in FAS is the exact solution instead
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of the error in the approximation. If the operators are linear then algorithm
2.3 is algebraically equivalent to algorithm 2.1 and hence is a generalisation of
geometric multigrid to the nonlinear setting.

3. Computational Cost of FAS versus Newton-MG

There are several papers in which FAS multigrid is compared against Newton-
MG for particular model problems [23, 33–35, 47]. Most of these compare the
running times as well as the convergence factors, and come to the same con-
clusion - that the execution time for Newton-MG methods is less than for FAS
multigrid [33–35, 47]. For a finite difference discretisation the running times of
the algorithms are shown to be much closer [26]. For finite differences the calcu-
lation of the nonlinear residual is cheaper than for finite elements, as integrals
over elements do not have to be calculated. The framework developed here can
be used to show that this means that the execution time of an FAS iteration,
relative to a Newton-MG iteration, will be less than for finite elements. For
brevity this is not discussed in this paper.

In this section we consider the Newton-MG and FAS iterations applied to
a general nonlinear problem. A theoretical bound on the running time is de-
veloped that allows a direct comparison between the two methods and makes
it clear why Newton-MG methods perform faster than FAS multigrid methods.
In section 6 the sharpness of these bounds is demonstrated for model problems
introduced in section 5. A note to make is that [23] finds that the Nonlinear
Multilevel Method (NMLM) [22] performs better than a standard Newton-MG
iteration. This is to be expected, though, as NMLM is a global algorithm. The
same advantages of using Newton-MG over FAS can be found when compar-
ing a global version of Newton’s method to the NMLM iteration, although this
comparison is not presented in this paper.

We characterise the amount of computational effort required to perform each
of the algorithms in terms of a work unit. One work unit (denoted Wl) is the
amount of time required to calculate the nonlinear residual on grid Ωl. The
amount of work required depends on the number of dimensions in which we are
working, as well as the discretisation and choice of smoothers. In this section
we present a general formula for calculating the amount of computational time
required for a single linear or nonlinear V-cycle when using a finite element
discretisation with piecewise linear basis functions on simplexes in arbitrary
dimension. We then take an illustrative example to demonstrate the sharpness
of the estimates.

We consider that we are working with the grid hierarchy described in (2.2),
where Ωl ⊂ R

d, l = 1, . . . , J . We consider a linear finite element discretisation
with nodal basis functions such that span{ϕl

i}
Nl

i=1 = Vl, l = 1, . . . , J on a quasi-
regular simplicial partitioning Tl (i.e. a triangulation in two dimensions, and a
partitioning into tetrahedra in three dimensions) on grid Ωl. The superscript l

for the basis functions is dropped when it is apparent from the context which grid
is referred to. Nl is the number of unknowns on grid Ωl. A fine grid simplicial
partitioning is gained from a bisection, quadrisection or octasection of the coarse
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simplicial partitioning in one, two or three dimensions, respectively. In two
dimensions and example of a quadrisection method is gained by connecting the
mid-points of the edges of the elements. Hence, if Nl represents the number of
unknowns on grid Ωl, the number of unknowns on the next finest grid Ωl+1 is
given by

Nl+1 ≈ 2dNl. (3.1)

We consider that a problem has been given in weak form as

F(u, ϕ) = 0, ∀ϕ ∈ V (3.2)

and solve the discrete weak form given by

Fl(ul, ϕi) = 0, i = 1, . . . , Nl, (3.3)

for l = 1, . . . , J . The application of Fl can be calculated as a sum over the
elements K ∈ Tl as follows:

Fl(ul, ϕi) =
∑

K∈supp(ϕi)

F
(K)
l (ul, ϕi), (3.4)

where F
(K)
l is the discrete operator restricted to element K ∈ Tl. Let the Frèchet

derivative of F(u, ϕ) at u be denoted by

Fu(ψ,ϕ) = D [F(u, ϕ)] (ψ) (3.5)

and assume that this exists and is invertible for all u ∈ V. Then the Jacobian
matrix

[

Fu,l(ϕj , ϕi)
]Nl

i,j=1
(3.6)

exists and is invertible, where Fu,l( · , · ) is the discretisation of the Frèchet
derivative on grid Ωl. For practical purposes we assume that the entries in the
Jacobian matrix are calculated using numerical differentiation, as for complex
problems this requires less computational time to calculate than using exact
formulas for the derivative. The entry in row i, column j of the Jacobian matrix
is constructed as follows:

Fu,l(ϕj , ϕi) ≈
∑

K∈supp(ϕi)∩supp(ϕj)

F
(K)
l (ul + ǫϕj , ϕi) − F

(K)
l (ul, ϕi)

ǫ
. (3.7)

The value F
(K)
l (ul, ϕi) is used in the calculation of the nonlinear residual, and

can be re-used when calculating the entries in the Jacobian matrix. Hence, per
simplex, when calculating the residual we can perform an extra local function
evaluation at each of the nodes to obtain the element-wise contribution to the
Jacobian matrix. This means that in d dimensions we require one function
evaluation to calculate the residual and an extra d+1 function evaluations (per
simplex) to calculate the contribution to the Jacobian matrix. Therefore the
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cost of calculating the Jacobian matrix and the residual is (d + 2)Wl, where Wl

is the cost of calculating the residual on grid Ωl. Using similar reasoning we see
that calculating the diagonal entries of the Jacobian matrix requires an extra
local function evaluation per node on each element. Hence the cost to calculate
the nonlinear residual and the diagonals of the Jacobian matrix is 2Wl. The
diagonals of the Jacobian matrix are used in the nonlinear smoothing operator.

We finally note that using (3.1) we can characterise the cost of calculating
the nonlinear residual on grid Ωl−1 as

Wl−1 ≈
1

2d
Wl. (3.8)

Let C
(l)
NMG be the cost of performing a single Newton iteration on grid Ωl, and

C
(l)
FAS the cost of performing a single FAS V-cycle. From algorithms 2.2 and 2.3

we see that

C
(l)
NMG ≈ C

(l)
RJ +

l−1
∑

i=1

C
(i)
J + pC

(l)
LMG (3.9)

C
(l)
FAS ≈ C

(l)
S (ν1 + ν2) + C

(l)
RHS + C

(l−1)
FAS (3.10)

for C
(l)
RJ the cost of calculating the nonlinear residual and Jacobian; C

(l)
J the

cost of calculating the Jacobian; p the number of linear V-cycles to perform

per Newton iteration; C
(l)
LMG the cost of performing a linear V-cycle; C

(l)
S the

cost of a nonlinear smoothing operation; ν1 and ν2 the number of pre- and

post-smoothing iterations, respectively; and C
(l)
RHS the cost of calculating the

perturbed right-hand side for FAS. In the characterisations (3.9) and (3.10) we
have made the assumption that the nonlinear operations dominate the execution
time of the two iterations, except for the inclusion of the linear multigrid cycle.
As will be seen this is a fair assumption for the simple model problems presented,
and becomes more accurate the more complicated the nonlinear operator is.

In (3.9) we see that the cost of the Newton iteration is given as the cost of
calculating the residual and Jacobian matrix on the current grid level plus the
cost of performing the linear multigrid iterations. We also include the calculation
of the Jacobian matrix on the coarser grid levels here. This is because the results
presented are for when the linearisation of the nonlinear operator is re-discretised
on each grid level. We may instead use a Galerkin coarse grid operator (cf.
[12, 48]), in which case the cost of interpolating the fine grid operator onto
coarser grids should replace the cost of re-discretising the Jacobian on each grid
level.

In (3.10) we see that the cost of the FAS iteration is given as the cost of
smoothing on the current grid, calculating the perturbed right-hand side for the
next coarsest grid, and performing an FAS V-cycle on the next coarsest grid.
From previous discussion we have that

C
(l)
RJ = C

(l)
J = (d + 2)Wl. (3.11)
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To calculate the cost of the nonlinear smoother we need to know which nonlinear
smoother we are using. Assuming that we are performing a pointwise nonlinear
smooth, such as nonlinear Jacobi (cf. [38]) we have to calculate the nonlinear
residual in each iteration, as well as the diagonals of the current Jacobian matrix.
Using previous discussion the cost of this is

C
(l)
S = 2Wl. (3.12)

This cost is accurate if we are performing a pointwise nonlinear Jacobi iteration.
A pointwise Gauss-Seidel iteration requires the recalculation of the operator over
the support of a basis function every time that a pointwise value is updated
[47]. Hence a full pointwise nonlinear Gauss-Seidel iteration is considerably
more expensive than the Jacobi iteration. If some block smooth is performed
we need to calculate at least some off-diagonal entries in the Jacobian matrix.
This means that the cost of a block smooth will also be considerably higher than
the cost of the pointwise Jacobi smoother. In this investigation we consider the
case of a Jacobi smoother, as this gives the smallest cost per iteration. Note that
it is possible that a novel nonlinear smoother may be developed which is more
efficient, or has much improved convergence properties, compared to a pointwise
Jacobi iteration. Then FAS may become more competitive. However, it is highly
unlikely that a novel smoother will give a large increase in performance, as when
dealing with a nonlinear operator the nonlinear residual must be re-calculated
in each smoothing step.

Finally we need to find the cost of calculating the perturbed right-hand side
for the next coarsest grid level. From algorithm 2.3 we see that to calculate the
perturbed right-hand side we calculate the residual on the current grid level,
and apply the nonlinear operator to the restricted approximation on the coarser
grid. The cost of applying the nonlinear operator is approximately the cost of
calculating the residual on a given grid. Hence we have that

C
(l)
RHS = Wl + Wl−1 = (1 + 2−d)Wl. (3.13)

We can now characterise the cost of both of the nonlinear iterations. We
first consider Newton-MG, leaving the characterisation of the running time of
the linear multigrid iteration until later. We find that

C
(l)
NMG = (d + 2)Wl +

l−1
∑

i=0

(d + 2)Wi + pC
(l)
LMG

= (d + 2)

l
∑

i=1

1

2id
Wl + pC

(l)
LMG

≤ (d + 2)
2d

2d − 1
Wl + pC

(l)
LMG.

(3.14)

We are interested in knowing the running time per linear V-cycle, so we intro-
duce a scaled variable

C̃
(l)
NMG ≡

C
(l)
NMG

p
(3.15)
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to be the cost per linear V-cycle of the Newton-MG algorithm.
Now consider the FAS multigrid iteration. We can approximate the cost of

a single nonlinear V-cycle using the previous discussions as

C
(l)
FAS = 2Wl(ν1 + ν2) + (1 + 2−d)Wl + C

(l−1)
FAS

=
(

2(ν1 + ν2) + 1 + 2−d
)

Wl + C
(l−1)
FAS

=
(

2(ν1 + ν2) + 1 + 2−d
)

(

Wl +
Wl

2d

)

+ C
(l−2)
FAS

= · · ·

=
(

2(ν1 + ν2) + 1 + 2−d
)

(

l−1
∑

i=1

Wl

2d(i−1)

)

+ C
(1)
FAS

≤
(

2(ν1 + ν2) + 1 + 2−d
) 2d

2d − 1
Wl,

(3.16)

where in the last step we have assumed that the time taken to solve on the

coarsest grid level C
(1)
FAS is negligible compared to Wl. This is usually the case,

but requires that the solution of the nonlinear equation is well approximated on
the coarsest grid. If this is not the case then higher dimensional coarse spaces
are required and the cost of the coarsest grid solve starts to have an adverse
effect on the execution time.

We now compare the cost of a single nonlinear V-cycle to the cost of a linear
V-cycle for a more specific problem. We restrict ourselves to d = 2 and estimate
the running time of the linear multigrid algorithm in terms of a work unit. From
empirical experiment we have found that an upper limit for a single V-cycle is
given by

C
(l)
LMG ≤

3

2
Wl, (3.17)

where three linear pre- and post-smooths are performed. This ratio is a very
good estimate for a simple model problem (cf. discussion of the p-Laplacian
in section 5), and becomes more and more pessimistic as the complexity of
the nonlinear operator increases. As the complexity of the nonlinear operator
increases the cost of a work unit Wl increases. However, the cost of the a
linear multigrid iteration remains constant as we calculate the linear operators
required prior to starting the linear iteration. Hence, the more complicated the
problem the less time a linear V-cycle takes compared to the cost of calculating
the nonlinear residual. Therefore, the results presented here are for a worst-case
scenario.

We consider the case that we perform equal numbers of pre- and post-
smooths by setting ν1 = ν2 = ν, and consider the amount of time spent per
FAS iteration to get

C
(l)
FAS ≈

(

4ν +
5

4

)

4

3
Wl =











7Wl, ν = 1
37
3 Wl, ν = 2
53
3 Wl, ν = 3.

(3.18)
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The cheapest iteration therefore costs approximately 7Wl. We compare this to
the cost of the Newton-MG iteration per linear V-Cycle

C̃
(i)
NMG ≈

(

16

3p
+

3

2

)

Wl =











41
6 Wl, p = 1
25
6 Wl, p = 2
59
18Wl, p = 3.

(3.19)

The most expensive cost per iteration for Newton-MG is less than the cheapest
cost per iteration for FAS, and see that the more accurately we solve the Newton
step (i.e. the more linear V-cycles we perform) the less the cost per linear V-
cycle is. Hence a good approach for the Newton-MG method would be to
minimise the number of Newton iterations, whilst maximising the convergence
factor per linear V-cycle. There are discussions on how to do this (for example
[48]). For the discussion in this paper we concentrate on using a fixed number
of linear iterations per Newton step, which is often enough to get an efficient
optimal order iteration. In practice it is found that using three linear V-cycles
per Newton step often gives the fastest execution time for the iteration.

Increasing the number of smoothing iterations for the FAS iteration increases
the cost per V-cycle, but does improve the convergence factor. Our empirical
experiments suggest that three smoothing steps per FAS V-cycle are often op-
timal. Using three pre- and post-smoothing steps the cost per FAS V-cycle is
approximated by

C
(l)
FAS =

53

3
Wl (3.20)

and the cost per linear V-cycle for Newton-MG is approximated by

C̃
(l)
NMG =

59

18
Wl. (3.21)

The ratio between the costs per iteration is then given by

C
(l)
FAS

C̃
(l)
NMG

=
318

59
≈ 5.4. (3.22)

This shows that, so long as we don’t perform more than 5.4 times more lin-
ear V-cycles in the Newton-MG iteration than nonlinear FAS V-cycles to get
convergence, the Newton-MG will be the quicker iteration. Results supporting
this, as well as demonstrating that similar numbers of V-cycles are required for
convergence for Newton-MG and FAS, are given in section 6, indicating that
Newton-MG is faster than FAS in terms of running time. The results given in
section 6 also highlight the sharpness of the estimates presented above.

4. Convergence Theory

Having carefully analysed the cost per V-cycle in the previous section we
now present an overview of the existing theory for the convergence of nonlinear
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multigrid methods, including some of the most relevant gaps, for which the
theory is still lacking. We begin with a discussion of the convergence theory for
linear multigrid and apply this in the case of Newton-MG. We then compare and
contrast what is known about the convergence of nonlinear multigrid methods.

4.1. Linear Multigrid

The linear multigrid theory is well established for the case of symmetric posi-
tive definite operators. There are three main ways in which a multigrid iteration
can be analysed: the theory suggested by Hackbusch [22]; local Fourier analysis
[9, 10, 32, 37, 50]; and subspace correction theory [7, 8, 52]. In this overview we
concentrate on subspace correction theory, as this gives the strongest results,
although in practice it is often useful to use the local Fourier analysis, as this is
capable of giving quantitative estimates on the convergence factor of a multigrid
iteration [12, 48, 50].

For the problem
Au = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(4.1)

in the case where A is a symmetric positive definite linear operator the subspace
correction theory [52] tells us that when A contains a coefficient function that
varies mildly over the spatial domain then the multigrid convergence factor is
independent of mesh parameters and the coefficient function. There are no
regularity assumptions made on the solution u or the right-hand side f , as
there were prior to [7]. In the case where coefficient functions in A are highly
varying, and possibly discontinuous, over the domain, the theory by Scheichl
et al [44] tells us in which situations the convergence of a multigrid method is
independent of the size of the jumps in coefficient.

As well as the convergence factor being independent of mesh parameters, it
can be shown [12, 48] that the time complexity of geometric multigrid is O(n)
(for n the number of unknown nodes on a grid) when a reduction in the norm
of a residual is required below a fixed tolerance. This means that multigrid is
referred to as an ‘optimal order’ algorithm.

Convergence proofs for symmetric positive definite operators representing
linear second order differential operators use the fact that the energy norm can
be used to define a norm on a Hilbert space, which is equivalent to the H1

0 (Ω)
norm [5, 52]. The extensive theory from Hilbert spaces can then be used to
demonstrate the convergence of the iteration in the H1

0 (Ω) norm under mild
assumptions (cf. [44] and [52]).

In the case where A is a non-symmetric or indefinite operator the standard
geometric multigrid algorithm with a Jacobi (Gauss-Seidel) smoother may be a
sub-optimal iteration. Convergence has not been proved to be independent of
mesh parameters beyond cases where the operator is a ‘compact perturbation’ [6]
from the symmetric positive definite case. There has been little work to extend
the theory beyond this limited statement as it is known that, in practice, the
standard geometric multigrid algorithm is not suited, without modification, to
solve problems that are indefinite or highly non-symmetric. Also, the subspace
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correction theory is not applicable in the non-symmetric or indefinite cases, as
the operator can no longer be used to define an inner product on a Hilbert
space. Hence the theory by Hackbusch [22] or local Fourier analysis needs to be
applied.

4.2. Newton-Multigrid (Newton-MG)

Newton methods are well established and there are many resources regarding
the implementation and analysis of the technique. The monograph by Deuflhard
[14] is referred to often here, although there is a wealth of other resources avail-
able. The convergence theory of Newton methods may be classified as local or
global convergence proofs. Local proofs show that a standard Newton method
applied to the discrete problem

F (u) = 0 (4.2)

will converge to a local solution u∗ given some initial approximation u(0) ∈
Bu∗ ≡ {u : ‖u − u∗‖ < δ} for some δ > 0. Bu∗ is termed a ball of guaran-
teed convergence. Local convergence results for Newton’s method often show
quadratic convergence of the method as the approximation approaches the exact
solution.

Global Newton methods use some damping parameter such that the iteration
reads

u(j+1) = u(j) − γF ′(u(j))−1F (u(j)), γ > 0. (4.3)

The parameter γ can be chosen to depend on u(j), F (u(j)), and/or F ′(u(j)) to
extend the radius of the ball of guaranteed convergence [14], and hence give a
more global convergence. Here we have used the notation F ′(u) to denote the
Jacobian matrix of F evaluated at u.

As with the convergence results of all nonlinear iterative methods the choice
of the initial approximation is very important, as this must be ‘close enough’
to the exact solution to guarantee convergence. For a more thorough discussion
of Newton methods and the convergence thereof we refer to [14]. In the scope
of this paper we are interested in what the linear multigrid theory can tell us
about the convergence of a Newton-MG iteration. Due to the construction of
an inexact Newton method (cf. algorithm 2.2) the analysis may be split into
the analysis of the nonlinear outer iteration and the linear inner iteration. The
only assumption that needs to be made is that the linear inner iteration must
be solved ‘accurately enough’ [14, 28] to allow for an appropriate correction to
be calculated in the nonlinear outer iteration. As this is a matter of choosing
appropriate stopping criteria for the inner iteration it is possible to consider the
convergence of the linear and nonlinear iterations separately. The requirement
that the linear inner iteration is convergent is a necessary but not sufficient
condition for the convergence of the nonlinear outer iteration. Therefore the
linear multigrid theory may be used to indicate when the outer iteration will
not converge (i.e. when the inner iteration is not convergent).
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We now introduce the general second order PDE with homogeneous Dirichlet
boundary conditions given by

−∇ · {a(u,∇u, x)∇u} + b(x)∇u + c(x)u = 0, x ∈ Ω

u = 0, x ∈ ∂Ω.
(4.4)

In this paper we allow a to depend on either u or ∇u, but, for simplicity, not
both. Let c ≥ 0 for all x ∈ Ω be a bounded function. We assume that there
exists a weak solution u∗ ∈ V unique in Bu∗ ≡ {u : ‖u − u∗‖

V
< δ} for some

δ > 0. The weak formulation of (4.4) is given by

F(u, v) ≡

∫

Ω

a(u,∇u, x)∇u∇v + b(x)∇uv + c(x)uv dx = 0, ∀v ∈ V (4.5)

and the Frèchet derivative

Fu(w, v) ≡ D[F(u, v)](w) =
∫

Ω

D [a(u,∇u, x)] (w) · ∇u∇v + a(u,∇u, x)∇w∇v + b(x)∇wv + c(x)wv dx.

(4.6)

The notation Fu(w, v) is chosen to reflect that the Frèchet derivative is linear
in both w and v. It is assumed that Fu exists and is invertible in Bu∗ .

For this paper we consider a particular structure for (4.5) such that the
linear multigrid theory can be applied to the linear inner iteration. We set
b(x) = 0, because, depending on the choice of the nonlinear function a(u,∇u, x),
a non-symmetric term similar to that multiplied by b may arise in the Frèchet
derivative. It should be clear from later discussions what effect the addition of
the extra function b(x) has on the convergence of an iteration. We split the
Frèchet derivative into a symmetric and non-symmetric part

Fu(w, v) = Fs
u(w, v) + Fns

u (w, v) (4.7)

with symmetric Fs
u and non-symmetric Fns

u . The model problems in section 5
will consider the case of Fns

u = 0 and ‖Fs
u‖ ≫ ‖Fns

u ‖ for ‖ · ‖ some appropriate
norm. This leaves the following linear equation to solve for w∗ ∈ H1

0 (Ω) at each
Newton iteration

Fu(w, v) = −F(u, v), ∀v ∈ V, x ∈ Ω

w = 0, x ∈ ∂Ω.
(4.8)

In (4.8) we note that the homogeneous Dirichlet boundary condition is main-
tained from (4.4). In fact, any boundary conditions specified for the nonlinear
problem become homogeneous for the arising linearisation. This is an advan-
tage of the Newton method over FAS, as the treatment of difficult boundary
conditions is made a lot simpler in the homogeneous case.

We now consider the space in which a solution to (4.5) exists, if at all.
Since the nonlinearity is in the highest order derivative, if a weak solution exists
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it must exist in the Sobolev space W
1,p
0 (Ω) for some p > 2 [28] (see [11, pg.

235-6] for a detailed discussion). As is usual W
1,p
0 (Ω) is the set of functions

in W 1,p with compact support in Ω. To the best of our knowledge there are
no fixed-step techniques that can guarantee convergence in the W

1,p
0 norm.

In [28], the convergence of the Newton iteration is proved in this case, but a
special iterative operator needs to be constructed in order to make the energy
norm equivalent to the norm in some Hilbert space [28, §5]. In section 6 we
demonstrate that when using a standard geometric multigrid algorithm we can
observe mesh independent convergence of a Newton-MG method, such that we
can avoid the construction of these linear operators. To the authors’ knowledge
there is no theory that proves convergence in this case, which is the most simple
to implement, often giving optimal results.

4.3. Nonlinear Multigrid (FAS)

There are very few rigorous results regarding the convergence of nonlinear
multigrid methods, in particular the FAS scheme. An almost complete bibliog-
raphy on the matter is given by [22, 24, 25, 40, 41, 46, 51], although most of
these deal with the case of the Nonlinear Multilevel Method (NMLM) proposed
by Hackbusch [22], which is a generalisation of the FAS scheme. The most com-
plete results in the field were obtained by Reusken and Hackbusch [25, 40, 41],
in which convergence was proven for a class of nonlinear elliptic problems where
the nonlinearity occurs in the zero order term. To the best of our knowledge
there exists no valid theory for the convergence of FAS for the case where the
nonlinearity is in the highest order term. This is due, in part, to the fact that
it is not known how to show that the method is convergent in the natural W 1,p

norm for p > 2. The theory by Xie [51] and Hackbusch [22] are set in Banach
spaces, but the assumptions required to be satisfied are not easy to show in the
case where the nonlinearity is in the highest order derivative.

Whilst there does not exist any theory for FAS in the case where the non-
linearity is in the highest order derivative, there does exist some convergence
theory for the case of nonlinear iterations (such as nonlinear Gauss-Seidel and
Jacobi iterations) [38] which could give a qualitative insight into the convergence
behaviour of an FAS iteration. In [38, §10] it is shown that the convergence of
nonlinear Jacobi (Gauss-Seidel) iterations is bounded by the convergence of
an inexact Newton iteration using linear Jacobi (Gauss-Seidel) iterations. A
condition for the convergence, therefore, of the nonlinear iterations is that a
Newton method should be convergent. Since FAS is a combination of nonlinear
smooths it seems sensible to assume that a similar result could hold for FAS.
This conjecture is supported by results given in section 6.

5. Model Problems

The problems for which empirical results are presented in section 6 are in-
troduced in this section, with a short discussion and justification as to why they
are considered. All of these model problems are defined on some Ω ⊂ R

2.
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5.1. 4-Laplacian

The p-Laplacian operator is given by

−∇ ·
(

|∇u|p−2∇u
)

= f(x), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5.1)

In this paper we concentrate on the case p = 4 as this example allows us to high-
light differences between Newton-MG and FAS methods. Qualitatively similar
results are observed in numerical experiments for p > 4, so the results are not
presented here. A ball of guaranteed convergence is found to shrink as p is
increased. A more careful treatment is required in the discretisation of the
problem for p ∈ (1, 2) than will be presented here, cf. [15]. Existence and
uniqueness of solutions for the p-Laplacian are known for p ∈ (1,∞) [15]. The
weak formulation of the problem is given by

F(u, v) ≡

∫

Ω

|∇u|2∇u∇v dx −

∫

Ω

fv dx = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω

(5.2)

and the Frèchet derivative by

Fu(w, v) =

∫

Ω

|∇u|2∇w∇v dx +

∫

Ω

2(∇u∇w)(∇u∇v) dx. (5.3)

By inspection of (5.3) we see that Fu(w, v) gives a symmetric positive definite
bilinear form. Using the linear multigrid theory we can therefore say that under
mild assumptions a standard geometric linear multigrid method will be conver-
gent for the linear inner iteration, as is supported by empirical results in section
6.

Three perturbations of the 4-Laplacian are presented in this paper, given by

−∇ ·
(

α|∇u|2∇u
)

= f (5.4a)

−∇ ·
({

1 + α|∇u|2
}

∇u
)

= f (5.4b)

−∇ ·
(

α
{

1 + |∇u|2
}

∇u
)

= f (5.4c)

for piecewise constant function α(x) > 0, x ∈ Ω̄, which may be highly varying.
The domain considered is the unit square Ω ≡ (0, 1)2. The model problems in
(5.4b) and (5.4c) include a linear Laplacian term (and hence the Jacobian is still
symmetric positive definite), and are used to show the convergence behaviour
of a Newton-MG iteration as the size of the nonlinearity grows compared to the
linear term.

5.2. Porous Medium Equation

The porous medium equation is given by [36]

ut = ∇ · (um∇u) , x ∈ Ω ≡ (−1, 1)2, t > t0,

u = 0, x ∈ ∂Ω,

u(t0) = u0.

(5.5)
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For a discussion on the finite element formulation see [1]. In this paper we
consider the case of m = 2.

Equation (5.5) may be discretised in time using a single-step implicit method
such as backward Euler or Crank-Nicolson to give (at each time-step) an equa-
tion of the form

u(n+1) −
∆t

K

(

∇ · ((u(n+1))2∇u(n+1))
)

= f(u(n)), (5.6)

for u(n) = u( · , tn), tn = t0 + n∆t for fixed ∆t. The right-hand side f(u(n)) and
the constant K depend on the time discretisation scheme that is used. Treating
the function u(n+1) as the unknown variable and considering f(u(n)) as some
given right-hand side we can consider equation (5.6) to be of the form

u − C∇ ·
(

u2∇u
)

= f, (5.7)

for unknown u, known f , and constant C > 0 having the same effect as the
time-step in (5.6). This is the form of equation to which a nonlinear multigrid
method is applied in an implicit time discretisation. Hence the evaluation of
how the nonlinear multigrid methods will behave for the solution of a porous
medium equation with an implicit time discretisation requires only to evaluate
how each nonlinear method operates for the problem (5.7) with homogeneous
Dirichlet boundary conditions.

We consider the weak form of (5.7), given by

F(u, v) ≡

∫

Ω

uv dx + C

∫

Ω

αu2∇u∇v dx −

∫

Ω

fv dx (5.8)

and the Frèchet derivative

Fu(w, v) =

∫

Ω

wv dx + C

∫

Ω

2uw∇u∇v dx + C

∫

Ω

u2∇w∇v dx. (5.9)

There is a symmetric positive definite and a non-symmetric part of the Frèchet
derivative given by

F s
u(w, v) =

∫

Ω

wv dx + C

∫

Ω

u2∇w∇v dx, (5.10)

Fns
u (w, v) = C

∫

Ω

2uw∇u∇v dx. (5.11)

From the discussion of the convergence of standard geometric multigrid algo-
rithms in section 4, we should find that, so long as ‖F s

u‖ ≫ ‖Fns
u ‖, a standard

linear multigrid algorithm will be convergent for the inner iteration. We note
that this condition can be controlled by ensuring that C is small enough, and
hence we can always obtain a convergent iteration. Results provided in section
6 support these statements. We note that the form of the non-symmetric part
is similar to the inclusion of the function b(x) in (4.4), which contributes to the
non-symmetric part of the linearisation. This does not change the condition
‖F s

u‖ ≫ ‖Fns
u ‖ from the above discussion, but may require a smaller time-step

to be taken in order to obtain a convergent nonlinear iteration.
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6. Empirical Results

In this section we present results demonstrating the superiority of the Newton-
MG iteration over the FAS iteration. For the results presented the coarsest grid
used for all experiments was a uniform 4× 4 grid, with 9 interior nodes and 32
triangular elements.

6.1. Running time of Newton-MG vs FAS

In tables 1 and 2 we contrast the predicted with the actual running time
to perform one hundred nonlinear iterations (either Newton iterations or FAS
V-cycles). We show the predictions for varying numbers of linear V-cycles per
Newton iteration (Table 1) and varying number of pre- and post-smooths for
the FAS V-cycle (Table 2). The timing results show the cost of performing the
nonlinear iterations and disregard the amount of time taken to initialise the
algorithms (e.g. calculation of the right-hand sides for the nonlinear equation,
grid set-up, memory (de-)assignment, etc.). A single work unit Wl was taken
as the average time to perform one thousand residual calculations (note that
the choice of coefficient α(x) has no effect on the running time). The grid for
which the results are presented is a regular 512× 512 triangular grid. The work
unit for the 4-Laplacian was found to be 0.075s, and for the PME 0.079s, on
this grid. These values were used in equations (3.19) and (3.18) to calculate the
approximate execution time (denoted C̃NMG for Newton-MG and CFAS for FAS
multigrid).

Linear MG-Cycles
Cost

4-Laplacian PME

C̃NMG (5.4a) (5.4b) (5.4c) C̃NMG (5.7)

1 51.25 49.61 49.93 49.45 53.98 44.11
2 62.50 59.62 60.30 60.53 65.83 56.01
3 73.75 70.84 72.53 72.06 77.68 69.43
4 85.00 82.06 82.48 84.32 89.53 79.57

Table 1: Predicted and actual running times (s) for the execution of 100 Newton
iterations with varying numbers of linear V-cycles applied to the model problems from
section 5

As can be seen in table 1, the theoretical value is remarkably close for the
Newton-MG iteration applied to the 4-Laplacian equation. The bound is more
pessimistic for the porous medium equation (PME), which can be explained by
the implementation. For the PME we made more use of storing values to be re-
used in the calculation of the Jacobian matrix than for the 4-Laplacian problem.
Hence the calculation of the Jacobian matrix does not take the expected factor
four times longer to be calculated. This effect becomes more pronounced if larger
savings can be made from the re-use of calculations. More complex operators
require more floating point operations to be performed per residual calculation
and so it is more likely that more effective use can be made of reusing previous
calculations. Therefore the more complicated the nonlinear operator the more
pessimistic the approximation will be.
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# of Smooths
Cost

4-Laplacian PME
CFAS (5.4a) (5.4b) (5.4c) CFAS (5.7)

1 52.5 48.43 47.48 46.78 55.30 52.41
2 92.5 82.18 84.24 81.43 97.43 90.94
3 132.5 120.21 120.63 118.50 139.57 135.40
4 172.5 154.23 151.07 150.05 181.70 172.23

Table 2: Predicted and actual running times (s) for the execution of 100 FAS V-cycles
with varying numbers of smooths applied to the model problems from section 5

The results in table 2 show that the theoretical bound is not as accurate for
the FAS iteration for the 4-Laplacian as it is for Newton-MG, but the estimate is
better for the PME. The estimates for the 4-Laplacian are pessimistic because
the cost of calculating the Jacobian diagonals is less than double the cost of
calculating the residual for the 4-Laplacian, whereas it is much closer to double
for the PME.

In the calculation of the linearisation we note that we perform more calcu-
lations per element in Newton-MG than in FAS and so reuse calculated values
more often. Therefore there is a greater opportunity for computational savings
naturally available for inexact Newton iterations which is not the case for FAS.
The theoretical bound is therefore likely to be approximated more sharply in
the case of FAS the more complicated an operator becomes. This highlights
that the Newton-MG is likely to become faster (per iteration) compared to FAS
for more complex nonlinear operators.

In section 3 the prediction was made that the ratio between the per V-cycle
execution time for FAS compared to Newton-MG, when performing three linear
V-cycles per Newton iteration and three pre- and post-smoothing steps per FAS

V-cycle, would be approximately 5.4. Let C
(4L)
NMG (C

(PME)
NMG ) represent the actual

cost for the 4-Laplacian problem (5.4a) (PME) per linear V-cycle using three

linear iterations per Newton step, and C
(4L)
FAS (C

(PME)
FAS ) the actual cost for the 4-

Laplacian problem (5.4a) (PME) using three pre- and post-smoothing iterations
in the FAS iteration. Then

C
(4L)
FAS

C
(4L)
NMG

≈ 5.09 and
C

(PME)
FAS

C
(PME)
NMG

≈ 5.85.

The running times of a single iteration of each of the algorithms does not tell
us about the convergence behaviour of the algorithms. In the next subsections
we present results for the FAS and Newton-MG iterations that demonstrate the
stability and efficiency of the algorithms.

6.2. 4-Laplacian

We consider the solution of the 4-Laplacian problems (5.4a), (5.4b) and
(5.4c) on the domain Ω ≡ (0, 1)2. The coefficient function α is piecewise con-
stant, and the distribution of the coefficient on the domain is shown in figure 1.
The right-hand side is chosen such that the exact solution is u∗ = sin(πx) sin(πy)
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when α(x) ≡ 1.0. The results in this section are presented where the initial ap-
proximation u(0) = 0.7u∗. A note is made at the end what effect using a nested
iteration (cf. [12, 48]) to obtain an initial approximation on the finest grid has
on the convergence of the two methods. The coarsest uniform grid on which the
discontinuities in the coefficient function are fully captured (i.e. all discontinu-
ities coincide with element edges) is a 64 × 64 grid. In the bulk of the domain
the function α takes some constant value C, and in the shaded regions we fix
α = 1.0. From the theory in [44] we know that convergence of a linear multigrid
iteration will not be independent of the size of the jump in the coefficient when a
local quasi-monotonicity property [44] fails to hold on coarse grid levels. In the
example given this occurs for the case where C < 1. In the case where C > 1
the convergence of a linear multigrid iteration will be independent of the jumps
in the coefficient. We should therefore find that convergence of the Newton-MG
iteration deteriorates for decreasing C < 1, and may find that the convergence
is independent of the size of the jumps in the coefficient for the case C > 1.
There exists no theory to suggest how FAS should perform.

α = C

14
64

7
64

α = 1.0

α = 1.0

Figure 1: Sample distribution of α on the domain Ω ≡ (0, 1)2

Figures 2a and 2b show the number of V-cycles required to reduce the initial
residual in the approximation by a factor of 10−7. Absence of any point from
the graphs indicates non-convergence. In figure 2a convergence is not obtained
for problems (5.4a) and (5.4c) for values of C < 10−2. As predicted by the linear
theory the Newton-MG algorithm breaks down for decreasing C < 1. For values
of C > 1 we find that the convergence of the nonlinear iteration is independent
of the size of the jump in the coefficient. We see similar behaviour for the FAS
multigrid algorithm, except that the algorithm is significantly less stable for
small values of C. For larger values of C the number of V-cycles required for
convergence is comparable in the two cases.

A representative set of running times on different grids for problem (5.4b),
using the distribution of α given in figure 1 with C = 105, is shown in figure
3a. The algorithms are optimal in terms of running time, scaling linearly with
respect to the number of unknowns in the system. From the graphs in figure 2a
and 2b we see that for this problem we require 28 FAS iterations and 36 linear
multigrid iterations for convergence. Using the approximate running times of
the iterations we predict a 4.2 times speed-up using the Newton-MG over the
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Figure 2: Convergence of Newton-MG and FAS multigrid cycles for 4-Laplacian type
problems on a 512× 512 grid

FAS. In practice we find that (due to the fact that the implementation requires
time to set up various approximations; (de-)allocate memory; perform I/O; and
other operations) the actual speed up for the Newton-MG iteration is 3.12. For
problems in which more Newton / FAS iterations need to be performed we find
that the execution time of the nonlinear iterations will begin to dominate the
overall running time and we will see a move towards the predicted improvement
in running times.
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Figure 3: Comparison of execution times for model problems

We note that, using the theory from [44], we can define situations in which
Newton-MG methods will not converge. Using different configurations of the
piecewise constant function α on the domain, including situations in which the
geometry is more complex, the results remain qualitatively the same as presented
here, so long as the initial approximation to the problem is close enough to the
exact solution and a local quasi-monotonicity property holds on all grids. The
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convergence behaviour of the FAS multigrid iteration seems to be very similar
to that of the Newton-MG iteration in the case of using pointwise (non)linear
smoothers.

We make a note on how the two methods are applied in a nested iteration
(cf. [12, 48]), as this is often useful in practice to obtain an initial approxi-
mation on a fine grid. In the nested iteration, approximations are interpolated
from coarse grids to finer grids, where a number of iterations of some iterative
solution method are performed on each grid in order to obtain a ‘good’ initial
approximation to the solution on the next finest grid. It is well known that in
practice the convergence of a Newton iteration may not be monotonic, unless
an approximation is in a ball of guaranteed convergence. On the other hand
the authors have not observed a situation in which the FAS iteration does not
converge monotonically (assuming it converges). FAS can be used effectively
within a nested iteration, with often only a single FAS iteration required to give
a ‘good’ approximation on the next finest grid. However, it may be the case
that several Newton iterations are required to obtain the same reduction in the
residual gained by the first FAS iteration. Hence the relative cost of perform-
ing a nested iteration with the FAS algorithm may be less than performing a
nested iteration with Newton’s method. However, it is still expected that the
running time of a Newton iteration is superior to an FAS iteration if a nested
approximation is used.

The problem of finding a ‘good’ initial approximation may be of some concern
for the case of an elliptic type problem, such as the p-Laplacian, but is not
important in the time dependent setting, where a good initial approximation
may be gained using information from the solution at the previous time-step.
Results are presented in the next section demonstrating the superiority of a
Newton-MG iteration over the FAS iteration for a time dependent problem.

6.3. Porous Medium Equation (PME)

In this section we present results for Newton-MG, FAS and a Newton method
where the linear system is approximated by a multigrid preconditioned GMRES
iteration (Newton-GMRES) applied to the PME for the case where the solution
is a self-similar solution of Barenblatt [3]

u(x, t) =
1

µ2

[

max

{

1 −

(

r

r0µ

)2

, 0

}]
1
m

,

r =
√

x2
1 + x2

2, µ =

(

t

t0

)
1

2(1+m)

, t0 =
r2
0m

4(1 + m)
,

(6.1)

setting m = 2. We solve this on the domain Ω ≡ (−1, 1)2, and impose homo-
geneous Dirichlet boundary conditions. The solution given is non-negative and
has an infinite gradient at the boundary of the support of the function, which
means that the gradient of the discrete approximations will tend to infinity with
decreasing grid spacing. We cannot expect the convergence of a nonlinear multi-
grid iteration to be independent of the grid spacing in this case, but in [16, 45]
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it is shown that, for a Lipschitz continuous solution u to the porous medium
equation, the convergence rate deteriorates proportional to the grid spacing. To
prevent the error in the time derivative from dominating the time step should
be taken proportional to the grid spacing, and hence the nonlinear multigrid
methods remain of optimal order. We note that (6.1) is not Lipschitz continu-
ous, but we still observe the same optimal behaviour (cf. table 3 and figure 3b).
The restriction on the time-step also holds in the case of FAS, and the maximum
allowable time-step (i.e. the largest time-step for which each nonlinear method
gives a convergent iteration) for the FAS is bounded by the maximum allowable
time-step for a corresponding Newton iteration. This supports the conjecture
put forward in section 4.3 that convergence of the FAS iteration is dependent
on the convergence of a Newton iteration.

Grid Size
Backward Euler Crank-Nicolson

MG FAS GMRES MG FAS GMRES

32× 32 0.255 0.101 >10 0.348 0.111 >10
64× 64 0.0930 0.0389 >10 0.0828 0.0560 6.74

128× 128 0.0189 0.0147 4.01 0.0215 0.0158 0.544
256× 256 0.00732 0.00599 0.242 0.00968 0.00702 0.138
512× 512 0.00340 0.00282 0.0353 0.00452 0.00311 0.0423

1024× 1024 0.00140 0.00120 0.0114 0.00193 0.00134 0.0145
2048× 2048 0.000669 0.000627 0.00417 0.000924 0.000702 0.00568

Table 3: Maximum allowable time-step (s) for FAS and inexact Newton iterations for
the PME with exact solution given by (6.1) with r0 = 0.3

Results are also presented for a multigrid preconditioned Newton-GMRES
iteration. The preconditioner is a single V-cycle applied to the symmetric part
of the Jacobian. From table 3 we see that the GMRES iteration gives a more
stable algorithm. From figure 3b we see that there is very little extra cost in
performing the GMRES iteration for a large increase in the stability of the
method. The results for the multigrid-preconditioned GMRES iteration are
included to demonstrate that it is relatively simple to increase the stability of
an inexact Newton method by utilising a more suitable linear inner iteration.
This flexibility is not present for the FAS multigrid. Even changing the smoother
from the pointwise Jacobi to a pointwise Gauss-Seidel gives a large increase in
the execution time of the algorithm.

In order to model materials with different diffusivities on the domain we may
introduce a piecewise constant coefficient function, similar to that used in the
4-Laplacian (cf. (5.4a)). The problem to solve is then given by

ut = ∇ · (αum∇u) .

For increasing α the linearisation becomes dominated by the non-symmetric
part, and convergence of the inner iteration, and hence the outer iteration, is
no longer independent of the size of α. The convergence is independent of the
size of the jumps in α, though, and we can always obtain a convergent iteration
by using a small enough time-step to ensure that the symmetric time derivative
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term dominates. The distribution of the coefficient α on the domain again has
the same effect as described for the 4-Laplacian (results not shown), and as
predicted in [44].

The execution time of the algorithms is optimal with regard to the grid
spacing (cf. figure 3b) with the execution time of the Newton-MG being quicker
than that of the FAS iteration. On a 512 × 512 grid and 1024 × 1024 grid the
execution time for the Newton-MG iteration has stabilised to be a little more
than twice as fast as the FAS iteration.

7. Conclusions

The results presented here suggest that a Newton-MG method should be
preferred over an FAS iteration for reasons of:

i Efficiency: The Newton-MG iteration may be much more efficient than an
FAS iteration. In particular the theory in section 3 shows that as a nonlin-
ear operator becomes more complicated, the cheaper the Newton iteration
becomes with respect to a work unit Wl on a grid Ωl. This does not hold
true for the FAS iteration. We also observe a faster execution time for
Newton-MG in practice.

ii Stability: The stability of the Newton method appears slightly better than
that of an FAS iteration and numerical experiment supports a conjecture
made in section 4 that the convergence of an FAS iteration requires the
convergence of a Newton iteration.

iii Flexibility: There is far greater flexibility to choose components in the al-
gorithm for an inexact Newton method. In particular, FAS is a solver for
elliptic and parabolic problems. On the other hand Newton’s method may
be used in conjunction with a suitable linear iteration that is preconditioned
by multigrid. This may increase robustness and can provide a basis for
solving a wider range of PDEs.

In any multigrid algorithm the operator that is most important for conver-
gence of the algorithm is the smoothing operator. Changing the smoother
in the linear case does not require frequent updates of the linear operator or
residual, and hence one incurs less heavy cost penalties when choosing more
sophisticated smoothers. In the nonlinear setting, even choosing a nonlin-
ear pointwise Gauss-Seidel iteration as a smoother requires a considerable
amount of work to update the nonlinear residual after each pointwise up-
date. Hence, for the FAS, a faster execution time, relative to a work unit,
is observed for simple problems in which a pointwise Jacobi smoother is
appropriate.

iv Theoretical Grounding: For the FAS iteration there is very little theory avail-
able to inform the choice of components in forming a ‘good’ iteration for a
specific problem. Conversely, there exists a wealth of literature for Newton
iterations and linear multigrid iterations separately. As demonstrated, this
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theory can be used to infer how a Newton-MG iteration will perform for
a nonlinear problem. Sophisticated algorithms may be developed by tak-
ing advantage of the knowledge of these two methods individually, such as
the truncated non-smooth Newton multigrid [20]. In addition, there are
no spectral variants of the FAS such as algebraic multigrid (cf. [48]), and
no methods such as monotone and truncated multigrid methods [30, 31]
which can be used to take advantage of certain properties of the underlying
operator, or to overcome difficulties presented by the underlying operator.

There are some situations, however, in which the FAS iteration may be
of more use than a Newton iteration. The memory requirements are less for
the FAS iteration than for a Newton iteration, as the (large) sparse Jacobian
matrices do not need to be stored in memory [33, 34, 47]. In situations in
which memory requirements are an issue Jacobian-free Newton-Krylov (JFNK)
methods [29] provide a less memory-intensive way of implementing an approx-
imate Newton-Krylov method. Implementations include multigrid precondi-
tioned GMRES variants, e.g. [19, 39]. However, JFNK methods do not remove
the need to store at least a preconditioning matrix (if preconditioning is to
be performed). For very large problem sizes it could be the case that there
is not enough memory available to perform an approximate Newton iteration,
but there is for an FAS iteration. In this situation an FAS iteration would be
preferred.

The conclusions drawn here have been shown to hold in the case of simple
systems of equations (cf. [33–35]), but should hold for more complex systems of
equations as well. The estimates for the relative execution times can be used for
adaptively refined grids and hierarchies in which the grids are non-overlapping,
so long as the number of points on each grid is estimated accurately enough.

This paper gives a framework for assessing the performance of nonlinear
multigrid methods in the case of a scalar nonlinear equation implemented se-
quentially. It would be interesting to observe in more detail how the algorithms
perform in the case of systems of equations and implementations in parallel,
which can be the basis for future investigations.
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