
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.11.86.143

This content was downloaded on 05/01/2015 at 10:34

Please note that terms and conditions apply.

Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia

View the table of contents for this issue, or go to the journal homepage for more

2014 Environ. Res. Lett. 9 094006

(http://iopscience.iop.org/1748-9326/9/9/094006)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/9/9
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Contribution of vegetation and peat fires to
particulate air pollution in Southeast Asia

C L Reddington1, M Yoshioka1, R Balasubramanian2, D Ridley3, Y Y Toh4,
S R Arnold1 and D V Spracklen1

1 Institute for Climate and Atmospheric Science, School of Earth and Environment, University of
Leeds, UK
2Department of Civil and Environmental Engineering, National University of Singapore, Singapore
3Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
4Environmental Studies Division, Malaysian Meteorological Department, Malaysia

E-mail: c.l.s.reddington@leeds.ac.uk

Received 24 April 2014, revised 29 July 2014
Accepted for publication 26 August 2014
Published 26 September 2014

Abstract
Smoke haze, caused by vegetation and peat fires in Southeast Asia, is of major concern because
of its adverse impact on regional air quality. We apply two different methods (a chemical
transport model and a Lagrangian atmospheric transport model) to identify the locations of fires
contributing to the increased mass concentration of particulate matter with diameters less than
2.5 μm (PM2.5) in Singapore over the period 2004–09. We find that fires in southern Sumatra
account for the greatest percentage of the total fire enhancement to PM2.5 concentrations in
Singapore (42–62%), with fires in central Sumatra and Kalimantan contributing 21–35% and
14–15%, respectively. Furthermore, we find that fires in these regions also increase PM2.5

concentrations in other major cities across Southeast Asia. Our results suggest that acting to
reduce fires in southern and central Sumatra (specifically in the eastern parts of the provinces of
Jambi, South Sumatra, Lampung and Riau) and southwest Kalimantan (the southern extent of the
provinces of West, Central and South Kalimantan) would have the greatest benefit to particulate
air quality in Singapore and more widely across Southeast Asia.

S Online supplementary data available from stacks.iop.org/ERL/9/094006/mmedia
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1. Introduction

Vegetation and peat fires occur across Southeast Asia due to a
combination of El Niño-induced droughts and anthropogenic
land-use change (van der Werf et al 2008). These fires result
in deforestation and forest degradation (Langner et al 2007,
Carlson et al 2012), and release large quantities of CO2 (Page
et al 2002) and other atmospheric pollutants, degrading
regional air quality and negatively impacting human health
(Emmanuel 2000, Kunii et al 2002, Johnston et al 2012).

The mass concentration of particulate matter (PM) with
diameters less than 2.5 μm (PM2.5) is associated with adverse
health effects and increased mortality (e.g., Ostro et al 1999).
Most previous attention has been on health impacts of PM2.5

from fossil fuel combustion (e.g., Lim et al 2012), but par-
ticulates from vegetation and peat fires are also thought to be
harmful to human health (Frankenberg et al 2005, Emma-
nuel 2000, Johnston et al 2012, Pavagadhi et al 2013). During
large fire years, particulate emissions from fires across
Southeast Asia have been estimated to cause 10 800 pre-
mature deaths in the region each year (Marlier et al 2012).

Particulate emissions from vegetation and peat fires result
in substantial concentrations of PM2.5 across large regions of
Southeast Asia, including the Indochina peninsula (See
et al 2006, Gautam et al 2013, Huang et al 2013) and
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southern China (Fu et al 2012). This study focuses on Sin-
gapore, which regularly experiences substantial PM2.5 con-
centrations resulting from a combination of local emissions
from industry and transportation sectors as well as long-range
transport of smoke from fires (Balasubramanian et al 2003,
See et al 2006). Observed 24 hr average PM2.5 concentrations
in Singapore vary from ∼10 μg m−3 on clean days to between
∼40 and ∼300 μg m−3 on polluted days (Balasubramanian
et al 2003, See et al 2006, Atwood et al 2013, Salinas
et al 2013, Betha et al 2014). Atmospheric back trajectory
methods have been used to show that both increased PM2.5

concentrations (Balasubramanian et al 2003, Betha
et al 2014) and poor visibility (See et al 2006) in Singapore
occur when air masses pass over regions with fires. Elevated
PM2.5 concentrations in Singapore are coincident with ele-
vated concentrations of levoglucosan, a tracer for biomass
burning (Atwood et al 2013, Engling et al 2014), providing
further evidence of a large contribution from fires.

Vegetation and peat fires in Southeast Asia rarely
occurred before human influence (Goldammer 2006, Schultz
et al 2008) and the majority of present day fires in the region
are intentionally lit. Fires are used to clear forests to make
way for agriculture (Langner et al 2007, Carlson et al 2012)
as well as an agricultural management tool. Extensive drai-
nage has also made peatlands susceptible to fires (van der
Werf et al 2008). In Sumatra, large fires have occurred since
at least 1960 whereas the first large fires in Kalimantan
occurred in the 1980s, reflecting the different historical pat-
tern of land-use change across the two regions (Field
et al 2009). Future patterns of land-use change will play an
important role in determining the extent of future fires across
the region (Carlson et al 2012).

Regional scale air pollution and the transport of smoke
from vegetation fires across national boundaries have resulted
in substantial regulatory interest and attempts to manage and
control these fires. For example, the Association of Southeast
Asian Nations Agreement on Transboundary Haze Pollution
commits the member countries to tackle transboundary haze
pollution caused by vegetation and peat fires. Understanding
the varying contribution of fires across different regions to
particulate pollution is critical to future efforts to monitor and
reduce fire.

In this study, we explore the contribution of vegetation
and peat fires in different regions across Southeast Asia to
PM2.5 concentrations in Singapore over a six-year period
(2004–09). Our aim is to provide quantitative information on
the locations of fires that contribute most to PM2.5 con-
centrations in Singapore and other large cities in Southeast
Asia. This is the first study to quantify the regional con-
tribution of fires to PM2.5 in Southeast Asia over a multi-year
period. Whilst the location of fires is well known, the impact
of fires on air quality depends both on fire location combined
with subsequent atmospheric transport of the smoke. Identi-
fying the locations of fires causing the greatest air quality
degradation will help prioritize action to combat fires and
formulate sustainable land-use policy.

2. Methods

We applied two different methods to identify the regions that
make the largest contribution to PM2.5 concentrations in
Singapore.

Firstly, we applied a 3D global aerosol model, GLOMAP
(Mann et al 2010) (described in section S1 of the supple-
mentary material), which simulates black carbon (BC), par-
ticulate organic matter, sulfate, sea spray and dust with a
horizontal resolution of 2.8° by 2.8°. GLOMAP is driven by
analyses from the European Centre for Medium-Range
Weather Forecasts, meaning our simulations are consistent
with the large-scale atmospheric flow from the assimilated
observations. The model includes detailed aerosol processes,
simulating the evolution of aerosol particles from emission/
production to removal from the atmosphere. Our previous
work has demonstrated the ability of GLOMAP to capture
observed aerosol concentrations in diverse atmospheric
environments (e.g. Spracklen et al 2007, 2010, 2011a, 2011b,
Mann et al 2010, 2012). For the analysis, we performed a
series of simulations over the period January 2004–December
2009 in which we switched off emissions from fires occurring
in specific regions (defined in figure 1). To evaluate the model
against observations (section 3.1), we performed two simu-
lations over the period January 2000–December 2011 (one
control simulation including all global fire emissions and one
simulation where no fire emissions were included).

Secondly, we applied a Lagrangian atmospheric transport
model, ROTRAJ (Methven et al 2003) (described in section
S2), to calculate the history of air masses arriving in Singa-
pore (figure S3). We calculated the cumulative exposure of air
masses to fire emissions of carbon monoxide (CO) over five
days of atmospheric transport to Singapore. These five-day
atmospheric back trajectories were calculated every six hours
(0, 6, 12, 18 h UTC) for the period of January
2004–December 2007. The results from the back-trajectory
analysis were aggregated for monthly or annual means and
averaged over the eight regions shown in figure 1. The
resolution of the ROTRAJ model is determined by the reso-
lution of wind fields (1.0125°) used to drive the transport of
the air masses (section S2) and the emission database
(0.5° × 0.5°), both of which have a higher spatial resolution
than GLOMAP. Thus, results from the ROTRAJ model will
complement those from GLOMAP, which contains more
detailed aerosol processes but coarser spatial resolution.

In both methods we used fire emissions from the Global
Fire Emissions Database (GFED3; van der Werf et al 2010)
(described in section S3). For use in the global model, the
emissions are split by region (figure 1) on a 0.5° by 0.5° grid
(the resolution of the GFED3 emissions) and then degraded to
the resolution of the global model (2.8° by 2.8°). Figure 2(a)
shows the GFED3 fire emissions flux of BC over Southeast
Asia. The largest BC emission fluxes over this region are
from fires located in central and southern Sumatra and
southwest Kalimantan. Figure 2(b) shows the dominant fire
type in each grid cell, indicating that these large emission
fluxes mainly arise from deforestation and peat fires, which
dominate emissions from fires over Southeast Asia (van der
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Werf et al 2010). Strong emission fluxes of BC also arise
from deforestation fires in western Malaysian Borneo,
deforestation and agricultural fires in Cambodia, Laos and
Myanmar, and savannah-type fires in northern Australia.

3. Results

3.1. Evaluation of modelled aerosol over Southeast Asia

Figure 3 shows a Taylor Diagram (Taylor 2001) summarizing
the evaluation of monthly-mean PM and aerosol optical depth
(AOD) simulated by GLOMAP against observations. The
locations of in-situ observations of PM2.5 (Singapore) and
PM10 (Petaling Jaya, Danum Valley and Bukit Kototabang)
and the 13 AERONET stations are shown in figure 1. The
length of observation period varies by site (for PM,
mean = 3 years; AOD, mean = 4.6 years) and is detailed in
table S1. In a Taylor diagram, the agreement between model
and observations is quantified in terms of their correlation (R),
their centred root mean square error (RMSE) and the ratio of
their standard deviations, called the normalized standard
deviation (NSD). The observations are represented by a point
on the horizontal axis at unit distance from the origin; points
closer to this represent better agreement between modelled
and observed values.

Figure 3 demonstrates the importance of fires in con-
trolling variability in PM concentrations across the region: the
simulated variability in monthly-mean PM when the model
includes GFED3 fire emissions (R= 0.75–0.89; NSD=

0.23–0.58) is improved compared to a model simulation
without fire emissions (R=−0.18–0.77; NSD= 0.12–0.30)
(figure 3(a)). Similarly, the model with GFED3 fire emissions
better captures variability in observed AOD (440 nm)
(R = 0.29–0.85; NSD= 0.44–1.15) compared to the simulation
without fires (R= 0.09–0.68; NSD= 0.33–0.90) (figure 3(b)).
The positive correlation between the model (with fires) and
observations shows that the model framework is able to
capture the seasonal and inter-annual variability in AOD and
PM that is driven by variability in fire emissions combined
with the vertical and horizontal transport of emissions from
their source and the microphysical processing of the aerosol
particles.

Particulate emissions from fires are uncertain, so we
compared simulated aerosol with GFED3 emissions against a
simulation using emissions from the National Centre for
Atmospheric Research Fire Inventory (FINNv1; Wiedinmyer
et al 2011) (described in section S3). At the eight AERONET
stations in northern Thailand and Vietnam, where agricultural
fires dominate emissions (figure 2(b)), the model with
FINNv1 emissions better captures AOD (R = 0.80–0.92,
NSD= 0.62–0.98) compared to GFED3 (R = 0.29–0.85,
NSD= 0.44–0.74). Improved agreement with FINNv1 emis-
sions at these sites is likely because emissions from small
fires, which dominate emissions in agriculture fire regions, are
not well represented in GFED3 (Randerson et al 2012). At the
five other AERONET stations, located in regions mainly
influenced by deforestation and peat fire emissions
(figure 2(b)), model performance with GFED3
(R = 0.33–0.59, NSD= 0.54–1.15) is more comparable to that

Figure 1. Map of the eight regions where fire emissions are ‘switched off’ in the global model simulations. The regions are: ‘Indochina’
(Thailand, Cambodia, Vietnam, Laos, and Myanmar); ‘IndBorneo’ (Indonesian Borneo/Kalimantan); ‘MalBorneo’ (Malaysian Borneo/East
Malaysia); ‘PenMalaysia’ (Peninsula Malaysia); ‘N.Sumatra’ (northern Sumatra; above 2.5°N); ‘Cen.Sumatra’ (central Sumatra; between
2.5°S and 1°S); ‘S.Sumatra’ (southern Sumatra; below 1°S); ‘IndPhilpPNG’ (Indonesia (excluding Sumatra and Kalimantan), Philippines and
Papua New Guinea). The red dots and cyan triangles show the locations of 4 PM measurement stations and 13 AERONET stations,
respectively (see table S1). The black dots show 15 major cities (with populations greater than 1 million) selected for analysis in section 3.4.
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with FINNv1 (R= 0.45–0.59, NSD= 0.51–1.28). Addition-
ally, when evaluated against PM observations located in
regions dominated by deforestation and peat fire emissions,
the model with GFED3 emissions (R= 0.77–0.89, NSD=
0.23–0.58) is comparable to the model with FINNv1 emis-
sions (R= 0.71–0.89; NSD= 0.39–0.57). We use GFED3 fire
emissions for the rest of this analysis as this dataset is
available for 2000–11 (FINNv1 is only available for
2002–12) and we have shown that the two datasets are

comparable in regions dominated by deforestation and peat
fires which are of most interest to this study.

GLOMAP (with GFED3 emissions) underpredicts
observed annual mean PM concentrations in both urban
(Singapore, normalized mean bias (NMB) =−64%; Petaling
Jaya, NMB=−77%) and rural locations (mean NMB=
−56%). GLOMAP is also negatively biased against observed
AOD (mean NMB=−29%). In urban locations, under-
prediction of PM and AOD with a coarse resolution
(∼300 km) global model is expected because urban scale

Figure 2. (a) Map of the 2004–09 mean biomass burning emissions flux of BC (in g(C) m−2 yr−1) over Southeast Asia from GFED3. (b) Map
of the dominant fire type for biomass burning emissions of BC over Southeast Asia; derived by calculating the maximum GFED3 BC
emissions flux for each fire type in each 0.5° × 0.5° grid cell over the period 2004–09. Information on specific source category is from van der
Werf et al (2010).
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pollution is not resolved. Underprediction in rural areas is
consistent with previous studies that have found a persistent
underestimation of AOD in biomass burning influenced
regions, requiring a scaling factor of ∼2–5 to be applied to fire
emissions (e.g. Kaiser et al 2012, Tosca et al 2013, Marlier
et al 2012). We do not scale fire emissions in this analysis
since there is considerable uncertainty associated with this
scaling factor, which is likely to have large spatial variability.
Since we underpredict PM concentrations, particularly in
urban locations, we do not focus on the fractional contribution
of fires to total PM2.5. Instead, the focus of our study is to

compare the relative contributions of fires from different
regions to PM2.5 concentrations and explore how these con-
tributions change over the seasonal cycle and between dif-
ferent years.

3.2. Regional contribution of fires to PM2.5 over Singapore

Figure 4(a) shows the simulated contribution of fire emissions
to monthly-mean surface PM2.5 in Singapore over the period
2004–09. The average simulated contribution to 2004–09
monthly-mean PM2.5 varies from 0.3 to 10.7 μg m−3, with the

Figure 3. Taylor diagrams comparing monthly-mean modelled (GLOMAP) and observed (a) PM2.5 and PM10 at four aerosol measurement
stations in Singapore, Malaysia and Indonesia; and (b) AOD (440 nm) at 13 AERONET stations located across Southeast Asia (locations
shown in figure 1 and time periods in table S1). The modelled and observed monthly-mean AOD was calculated using daily means, with days
corresponding to missing AERONET data removed prior to calculating the monthly-mean value. The observations are represented by a point
on the x-axis at unit distance from the y-axis. Results are shown for three model simulations: (i) without fire emissions (‘No fires’); (ii) with
GFED3 fire emissions (‘GFED’); (iii) with FINNv1 fire emissions (‘FINN’) (this simulation cannot be compared with PM2.5 observations in
Singapore because FINN emissions are not available for the year 2000). The model standard deviation and RMSE are normalized by dividing
by the corresponding observed standard deviation. The normalized standard deviation and RMSE values are marked by the green-solid and
grey-dashed lines respectively.
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largest contribution in October. There are also substantial
contributions from fires in August (mean 5.1 μg m−3) and
September (mean 9.5 μg m−3). During these months, the
Southwest Monsoon predominates over Southeast Asia, with
much of the southern part of the region experiencing dry
season conditions conducive to fires. Fires contribute little to
PM2.5 during November–January when the Northeast Mon-
soon brings heavy rain to the region, reducing the suscept-
ibility of vegetation to burning. Towards the end of the
Northeast Monsoon season and during the onset of the
Southwest Monsoon season, fires contribute moderately to
monthly-mean PM2.5 over Singapore, particularly in February
(mean 3.6 μg m−3), March (mean 2.8 μg m−3) and June (mean
3.3 μg m−3).

There is considerable inter-annual variability in the
contribution of fires to simulated monthly-mean PM2.5 in
Singapore: in October fires contribute as little as 0.3 μg m−3to
as much as 55.6 μg m−3depending on the year (figures 4(a)
and S1). Although anthropogenic land-use change is the
underlying cause of the majority of vegetation and peat fires
occurring over Southeast Asia (Langner et al 2007, Carlson
et al 2012), the frequency and magnitude of these fires are
linked to inter-annual variability in sea surface temperature
and atmospheric conditions, namely El Niño Southern
Oscillation (ENSO) (van der Werf et al 2004, Field and
Shen 2008, Logan et al 2008, Shi et al 2014). During El Niño
years, rainfall over Southeast Asia decreases, which can lead
to drought conditions increasing the susceptibility of

Figure 4. (a) The long-term (January 2004–December 2009) mean (open circles), median (horizontal line), 25th and 75th percentiles (lower
and upper box edges), and minimum and maximum (whiskers) contributions of all fire emissions to simulated monthly-mean PM2.5

concentrations over Singapore. (b) The long-term mean contributions of fire emissions to PM2.5 from different regions in Southeast Asia
(defined in figure 1).
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vegetation to burning (e.g. Siegert et al 2001, Wooster
et al 2012). Fire emissions in Southeast Asia have been
observed to be up to a factor of 50 greater in El Niño years
compared to La Niña (van der Werf et al 2010). Satellite
observations show that ENSO has a substantial effect on the
number of fire plumes and the aerial extent of smoke clouds
observed over Borneo (Tosca et al 2011). The westward
transport of smoke from Sumatra is also thought to be greater
during El Niño years, particularly during October–November,
due to the combination of higher smoke-plume injection
heights and anomalous easterlies over tropical Southeast Asia
(Xian et al 2013). The plume injection heights are fixed in our
model, but a strong increase in PM2.5 over Singapore is
simulated in October 2006 due to the combination of an
increase in GFED3 fire emissions and the prevailing wind
direction (specified by analysed meteorological fields).

Figure S1 shows that contributions from fires to simu-
lated PM2.5 in Singapore are substantially higher in dry sea-
son months with a positive Oceanic Niño Index (ONI;
indicating El Niño conditions) relative to those with negative
ONI values (indicating La Niña conditions). In the weak to
moderate El Niño years of 2004, 2006 and 2009, the mean
simulated contribution of fires emissions to PM2.5 in Singa-
pore (5.0 μg m−3) is a factor of ∼7 larger than in the La Niña
years of 2007 and 2008 (0.7 μg m−3). Note that 2005 is not
included here as this year experienced mixed conditions with
a positive ONI in the first half of the year and a relatively
strong negative ONI for the remainder of the year.

Another important contributing factor to drought condi-
tions, and subsequently the frequency and magnitude of fires
in Southeast Asia (particularly in Indonesia) is the Indian
Ocean Dipole (IOD; Saji et al 1999, Field and Shen 2008,
Field et al 2009, Nassar et al 2009). When a positive phase of
the IOD coincides with El Niño, severe drought conditions
can occur in Sumatra and Kalimantan leading to extremely
high fire emissions, for example during 1997 (Saji et al 1999)
and 2006 (Field and Shen 2008). The combined effects of
positive IOD conditions and El Niño are evident in figure S1,
where the simulated total contribution from fires in October
2006 is a factor of ∼20 higher than in October 2009, despite
the weaker El Niño (ONI of 0.8° in 2006 compared with 1.1°
in 2009).

Figure 4(b) shows the contribution from fires occurring
in different regions (defined in figure 1) to simulated PM2.5

concentrations in Singapore. Fires in southern Sumatra make
the largest contribution to monthly-mean PM2.5 in Singapore
with long-term mean contributions of 7.2 μg m−3 (max.
20.7 μg m−3) in September and 7.0 μg m−3 (max. 37.7 μg m−3)
in October. As a fractional contribution, fires in southern
Sumatra account for 76% of total enhancement to PM2.5 from
fires in September and 66% in October. In these months, fires
occurring in Indonesian Borneo make the second largest
contribution to PM2.5 (mean 3.0 μg m−3, max. 17.3 μg m−3 in
October), accounting for 12% of the total fire enhancement in
September and 28% in October. From February to August,
fires in central Sumatra make the largest contribution to
PM2.5, peaking in February (mean 3.1 μg m−3). During this
period, the fractional contributions from fires in central

Sumatra range from 87% in February to 47% in August.
There is a small contribution to PM2.5 from fires in Indochina
in January, February and March (max. 0.9 μg m−3), during
which the Indochina region experiences relatively dry con-
ditions. Fires occurring outside the regions discussed above
have minor impacts on air quality in Singapore.

Over the whole study period (2004–09), fires in southern
Sumatra account for the largest fraction of the total fire
enhancement to PM2.5 in Singapore (42%), with fires in
central Sumatra and Indonesian Borneo contributing 35% and
14%, respectively. During El Niño years (2004, 2006, 2009)
there are greater fractional contributions from fires in southern
Sumatra (54%) and Indonesian Borneo (17%) relative to the
La Niña years (29% and 9%, respectively). The fractional
contribution from fires in central Sumatra remains similar
between the El Niño (22%) and La Niña (26%) years, but is
particularly large during 2005 (84%) due to the persistence of
El Niño conditions throughout the 2004/2005 winter wet
season, leading to drought conditions in this region (Yulianti
et al 2013). Fires occurring in Peninsular Malaysia and
Indochina account for a relatively small fraction (∼2–3%) of
the total fire enhancement to PM2.5 between 2004 and 2009,
with slightly larger fractional contributions in La Niña years
(4 and 12%, respectively).

3.3. Atmospheric back trajectory results

We used atmospheric back trajectories to further explore the
relative contributions from fires in different regions to smoke
transported to Singapore. Figure 5 shows the relative con-
tributions from each region to fire-emitted CO transported to
Singapore for the period January 2004 and December 2007.
The largest amount of fire emission transported to Singapore
occurs in September and October with the greatest contribu-
tion from fires in southern Sumatra and a secondary con-
tribution from fires in Indonesian Borneo. Fires in central
Sumatra result in transport of fire emissions to Singapore
during March–October, with the greatest contributions in
March, June and August. This analysis demonstrates sub-
stantial seasonal (figure S3) and inter-annual variability in the
transport of fire emissions to Singapore with maximum con-
tributions simulated in September and October 2006, match-
ing the variability simulated by the global model (figure S1).

Over the whole study period (2004–07), fires in southern
Sumatra make the largest relative contribution to the total fire-
emitted CO transported to Singapore (62%). This is consistent
with previous work that demonstrated that more than 90% of
hazy days in Singapore (visibility < 8000 m) occurred when
back trajectories passed over southern Sumatra on days with
fire hot spots (See et al 2006). Fires in central Sumatra and
Indonesian Borneo contribute 21% and 15%, respectively of
the total fire emissions transported to Singapore. We note that
whilst this analysis accounts for locations of fires and the
atmospheric transport of emissions, it does not account for
variations in atmospheric residence time driven by changes in
deposition of particulates. Assuming an infinite residence
time of the fire-emitted CO, this method predicts a larger
relative contribution from fires in southern Sumatra (thus a
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smaller relative contribution from fires in central Sumatra)
compared to the global model where changes in residence
times are explicitly simulated.

Figure 6 shows the spatial distribution of fire emissions
transported to Singapore during 2004–07. Fires in southern
Sumatra, central Sumatra and southwest Kalimantan are the
largest contributors of fire-emitted CO transported to Singa-
pore, matching the results from the global model. However,
the higher spatial resolution of this analysis compared to the

global model simulations allows finer scale features to be
resolved. The fires in southern Sumatra are located in the
eastern part of the province of South Sumatra and the south-
eastern parts of the provinces of Jambi and Lampung. The
fires in central Sumatra are located in the eastern part of the
province of Riau, and the fires in southern Borneo are located
in the southern extent of the provinces of West, Central and
South Kalimantan.

Figure 5. Regional relative contributions to fire-emitted CO transported to Singapore between January 2004 and December 2007. Relative
contributions are calculated as the total CO from each emission region emitted into air parcels arriving at Singapore as a fraction of the total
CO emitted into all air parcels over the entire period and domain. Regions are displayed in figure 1.

Figure 6. Gridded relative contributions to fire-emitted CO transported to Singapore between January 2004 and December 2007. Relative
contributions are calculated as the total CO from each emission grid cell emitted into air parcels arriving at Singapore as a fraction of the total
CO emitted into all air parcels over the entire period and domain. Emission from grid cells into each air mass trajectory is calculated as the
emission flux at the grid cell over which the trajectory passes multiplied by the residence time of the trajectory over the grid cell.
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3.4. Contribution of fires to PM2.5 in other major cities in
Southeast Asia

To explore the impact of fire emissions over the wider region
of Southeast Asia, we used the GLOMAP model to simulate
the contribution of fire emissions to PM2.5 concentrations in
15 cities across the region with a population greater than one
million (locations shown in figure 1). Figure 7 shows the
simulated long-term (2004–09) mean contribution of fires to
monthly-mean PM2.5 concentrations in six of these cities. It is

important to highlight that the simulated enhancement to
PM2.5 concentrations from fires is greater in four of these
cities (Palembang, Pekanbaru, Phnom Penh and Mandalay)
than in Singapore; due to their closer proximity to biomass
burning regions.

Cities in southern Sumatra (Palembang) and western Java
(Jakarta) are affected by fires in a similar way to Singapore,
with peak contributions from fires to PM2.5 in September
(mean Palembang: 11.8 μg m−3; Jakarta: 5.4 μg m−3) and
October (Palembang: 14.7 μg m−3; Jakarta: 6.2 μg m−3).

Figure 7. The long-term (January 2004–December 2009) mean contribution of fire emissions from different regions in Southeast Asia
(defined in figure 1) to simulated monthly-mean PM2.5 concentrations over Jakarta, Palembang and Pekanbaru in Indonesia; Kuala Lumpur,
Malaysia; Phnom Penh, Vietnam; and Mandalay, Myanmar.
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PM2.5 concentrations are dominated by emissions from
southern Sumatra, except in February–March where emis-
sions from central Sumatra dominate. Between 2004 and
2009, fires in southern Sumatra account for 60–74% of the
total fire enhancement to PM2.5 in Jakarta and Palembang,
with 5–7% from fires in central Sumatra. Fires in regions
located outside those defined in figure 1 (e.g. northern Aus-
tralia) account for 8–27% of the total fire enhancement
to PM2.5.

In Kuala Lumpur (Peninsula Malaysia) and Pekanbaru
(Riau, central Sumatra) there is a considerable contribution
from fires to PM2.5 throughout the year with the largest
contribution from fires in central Sumatra (69–74% of the
total fire enhancement). Both cities are also impacted by fire
emissions from southern Sumatra during August–October
(17–20% of the total fire enhancement).

The contribution of fires to PM2.5 in Batam, Riau Islands
(not shown in figure 7) is similar to Singapore, with the lar-
gest contribution from fires in southern Sumatra (51% of the
total fire enhancement to PM2.5) and secondary contributions
from fires in central Sumatra (23%) and Indonesian Borneo
(15%). The cities of Singapore and Batam are close together
and are affected by similar wind patterns and transport
pathways of smoke emissions. Simulated long-term mean
contributions of fires to PM2.5 over the other analysed cities in
Indonesia (Surabaya, Medan and Makassar) and Manila in the
Philippines are relatively small (mean⩽ 2 μg m−3).

Simulated PM2.5 concentrations over cities in Indochina
(Hanoi, Ho Chi Minh, Yangon, Mandalay, Phnom Penh, and
Bangkok) are affected by local fire emissions from January to
April, with little contribution from fires during May–No-
vember. The two cities with the largest contributions from
fires, Phnom Penh and Mandalay, are shown in figure 7.
Contributions to PM2.5 concentrations from fires in this region
(dominated by deforestation and agricultural fires) show less
inter-annual variability than the contributions from fires in
Sumatra and Borneo (dominated by peat and deforesta-
tion fires).

4. Conclusions and implications

We have used two complementary methods to explore the
contribution of smoke from vegetation and peat fires across
Southeast Asia to PM2.5 concentrations in Singapore. Firstly,
we used a global aerosol model to simulate PM2.5 con-
centrations and investigate the contributions from different
defined regions by switching off fire emissions from one
region at a time. Secondly, we used a Lagrangian atmospheric
transport model to simulate the transport of fire emissions to
Singapore. Both methods used fire emissions derived from
satellite remote sensing. Our global model simulations are
restricted to a coarse spatial resolution meaning that the model
is unable to resolve urban scale pollution and absolute PM2.5

concentrations in Singapore are underpredicted. We are
therefore not able to quantify the fractional contribution of
fires to total PM2.5 concentrations in Singapore. Despite the
coarse spatial resolution of our model, it is able to capture

observed seasonal and inter-annual variability in observed
PM and AOD. Future work should repeat our analysis with
regional atmospheric models with higher spatial resolution.
Nevertheless, our two methods produced consistent results
providing additional confidence in our conclusions.

Over the studied period (2004–09), we found that Sin-
gapore is impacted by smoke from vegetation and peat fires
predominantly in June–October and February–March, with
the largest contribution from fires occurring in September and
October. We found that fires in southern Sumatra account for
the largest percentage of the total fire enhancement to PM2.5

in Singapore (42–62%), with fires in central Sumatra and
Indonesian Borneo (Kalimantan) contributing 21–35% and
14–15%, respectively. Therefore, fires in central Sumatra that
are closest to Singapore were not the dominant source of fire-
induced PM2.5 pollution in Singapore between 2004 and
2009. Instead, fires in South Sumatra (located ∼550 km from
Singapore) contributed more to PM2.5 pollution in Singapore.
Establishing this source-receptor relationship in a quantitative
manner provides useful information for policy makers in the
region to develop appropriate air quality management strate-
gies to protect public health. Our work suggests that pre-
venting fires occurring in southern Sumatra (in the eastern
part of the provinces of Jambi, South Sumatra and Lampung),
central Sumatra (in the eastern part of the province of Riau)
and southwest Kalimantan (in the southern extent of the
provinces of West, Central and South Kalimantan) would
result in the largest benefit to particulate air quality over
Singapore.

We also explored the impact of vegetation and peat fires
on PM2.5 concentrations across other major cities in the
region. We found the fires that contributed most to PM2.5

concentrations in Singapore also contributed substantially to
PM2.5 concentrations across the rest of the region. Jakarta,
Palembang and Batam are mostly impacted by fires in
southern Sumatra (accounting for 51–74% of the total fire
enhancement to PM2.5), whereas Kuala Lumpur and Pekan-
baru are impacted most by fires in central Sumatra
(accounting for 69–74% of the total fire enhancement to
PM2.5). Therefore, targeting fire reduction efforts to improve
air quality in Singapore will also improve air quality in other
major cities in Indonesia and Malaysia.

The large fire emissions from central and southern
Sumatra and Kalimantan that are causing air quality issues in
Singapore are coincident with ongoing deforestation and
expansion of oil palm plantations (Koh et al 2011, Miettinen
et al 2011, Ramdani and Hino 2013). Forest cover in
Southeast Asia declined by 1.45 million hectares per year
over the period 2000–10 (Stibig et al 2014), with natural
forest largely being replaced by oil palm plantations (Koh
et al 2011). The extent of future fires in the Southeast Asia
region will be linked to patterns of land-use change (Carlson
et al 2012), potentially exacerbated by changing climate
conditions (Field et al 2009). In particular, the expansion of
large-scale oil palm plantations, which have been linked to
the use of fire for land clearing activities (Varkkey 2013), is
likely to be a key driver of future fires. Future land use
change, under business as usual scenarios, includes continued
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expansion of oil palm plantation in regions that we have
identified to be crucial for air quality in Singapore: southern
Kalimantan (Carlson et al 2012) and central to southern
Sumatra (e.g. Wicke et al 2011, Miettinen et al 2012). In
Kalimantan, 79% of allocated oil palm leases remain unde-
veloped (Carlson et al 2013), creating the potential for large
future expansion of this land use type. In this region, rates of
deforestation are significantly greater in oil palm concessions
compared to natural forest timber concessions or protected
areas (Gaveau et al 2013), suggesting that maintenance and
expansion of protected areas and natural forest timber con-
cessions would help reduce deforestation and prevent future
fires. Strict enforcement of regulations prohibiting the use of
fire to prepare lands for plantation agriculture may mitigate
smoke emissions and improve regional air quality. However,
plantation agriculture on peatlands requires extensive drai-
nage (Carlson et al 2012) creating conditions conducive to the
spread of accidental fire during El Niño droughts (Field
et al 2009). Furthermore, oil palm plantations have been
linked to enhanced regional ozone concentrations due to
altered emissions of biogenic volatile organic compounds
from vegetation and emissions of oxides of nitrogen from
agro-industrial activity (Hewitt et al 2009, Warwick
et al 2013). To ensure improved air quality in Singapore and
surrounding regions, fire management needs to be combined
with sustainable agricultural expansion that does not lead to
deforestation, forest degradation or peatland drainage (Smit
et al 2013).
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