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We discuss some norm estimations for integrated representations. We use
the covariant transform to extend Howe’s method from the Heisenberg
group to general nilpotent Lie groups.

1. Introduction. Let G be a locally compact group, a left-invariant
(Haar) measure on G is denoted by dg. Let ρ be a bounded representation
of the group G in a vector space V . The representation can be extended
to a function k ∈ L1(G, dg) though integration:

ρ(k) =

∫

G

k(g) ρ(g) dg. (1)

It is a homomorphism of the convolution algebra L1(G, dg) to an algebra
of bounded operators on V .

There are many important classes of operators described by (1), notably
pseudodifferential operators (PDO) and Toeplitz operators [3, 5, 6, 7].
Thus, it is important to have various norm estimations of ρ(k). We already
mentioned a straightforward inequality ‖ρ(k)‖ ≤ C ‖k‖1 for k ∈ L1(G, dg),
however, other classes are of interest as well.

If G is the Heisenberg group and ρ is its Schrödinger representation,
then ρ(â) is a PDO a(X,D) with the symbol a [3, 2, 7]. Here, â is the
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Fourier transform of a, as usual. The Calderón–Vaillancourt theorem [8,
Ch. XIII] estimates ‖a(X,D)‖ by L

∞
-norm of a finite number of partial

derivatives of a.
In this paper we revise the method used in [3, § 3.1] to prove the

Calderón–Vaillancourt estimations. It was described as “rather magical”
in [2, § 2.5]. We hope, that a usage of the covariant transform dispel the
mystery without undermining the power of the method.

2. Preliminaries. Through the paper G denotes an exponential Lie
group. For a square integrable irreducible representation ρ of G in a
Hilbert space V and a fixed admissible mother wavelet φ ∈ V , the wavelet
transform Wφ : V → Cb(G) is [1, 6, 7]:

[Wφv](g) :=
〈

ρ(g−1)v, φ
〉

= 〈v, ρ(g)φ〉 , g ∈ G, v ∈ V. (2)

For an unimodular G, the left Λ(g) : f(g′) 7→ f(g−1g′) and the right
R : f(g′) 7→ f(g′g) regular representations of G are unitary operators on
L2(G, dg). The covariant transforms intertwines the left and right regular
representations of G with the following actions of ρ:

Λ(g)Wφ = Wφρ(g) and R(g)Wφ = Wρ(g)φ for all g ∈ G. (3)

For a fixed admissible vector ψ ∈ V , the integrated representation (1)
produces the contravariant transform Mψ : L1(G) → V , cf. [6, 7]:

M
ρ

ψ(k) = ρ(k)ψ, where k ∈ L1(G). (4)

The contravariant transform M
ρ

ψ intertwines the left regular representa-
tion Λ on L2(G) and ρ:

M
ρ

ψ Λ(g) = ρ(g)M
ρ

ψ. (5)

Combining with (3), we see that the composition M
ρ

ψ◦W
ρ

φ of the covariant
and contravariant transform intertwines ρ with itself. For an irreducible
square integrable ρ and suitably normalised admissible φ and ψ, we use
the Schur’s lemma [1, Lem. 4.3.1], [4, Thm. 8.2.1] to conclude that:

M
ρ

ψ ◦W
ρ

φ = 〈ψ, φ〉 I. (6)

LetH be a subgroup ofG andX = G/H be the respective homogeneous
space (the space of left cosets) with a (quasi-)invariant measure dx [4,
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§ 9.1]. There is the natural projection p : G → X . We usually fix a
continuous section s : X → G [4, § 13.2], which is a right inverse to p. We
also define an operator of relative convolution on V [5, 7], cf. (1):

ρ(k) =

∫

X

k(x) ρ(s(x)) dx, (7)

with a kernel k defined on X = G/H .

3. Norm Estimations. We start from the following lemma, which has
a transparent proof in terms of covariant transform, cf. [3, § 3.1] and [2,
(2.75)]. For the rest of the paper we assume that ρ is an irreducible square
integrable representation of an exponential Lie group G in V and mother
wavelet φ, ψ ∈ V are admissible.

Lemma 1. Let φ ∈ V be such that, for Φ = Wφφ, the reciprocal Φ−1 is
bounded on G or X = G/H. Then, for the integrated representation (1)
or relative convolution (7), we have the inequality:

‖ρ(f)‖ ≤
∥

∥Λ⊗R(fΦ−1)
∥

∥ , (8)

where (Λ⊗R)(g) : k(g′) 7→ k(g−1g′g) acts on the image of Wφ.

Proof. We know from (6) that Mφ ◦Wρ(g)φ = 〈φ, ρ(g)φ〉 I on V , thus:

Mφ ◦Wρ(g)φ ◦ ρ(g) = 〈φ, ρ(g)φ〉 ρ(g) = Φ(g)ρ(g).

On the other hand, the intertwining properties (3) of the wavelet transform
imply:

Mφ ◦Wρ(g)φ ◦ ρ(g) = Mφ ◦ (Λ ⊗R)(g) ◦Wφ.

Integrating the identity Φ(g)ρ(g) = Mφ◦(Λ⊗R)(g)◦Wφ with the function
fΦ−1 and use the partial isometries Wφ and Mφ we get the inequality.

The Lemma is most efficient if Λ ⊗ R act in a simple way. Thus, we
give he following

Definition 2. We say that the subgroup H has the complemented com-
mutator property, if there exists a continuous section s : X → G such
that:

p(s(x)−1gs(x)) = p(g), for all x ∈ X = G/H, g ∈ G. (9)
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For a Lie group G with the Lie algebra g define the Lie algebra h =
[g, g]. The subgroup H = exp(h) (as well as any larger subgroup) has
the complemented commutator property (9). Of course, X = G/H is
non-trivial if H 6= G and this happens, for example, for a nilpotent G.
In particular, for the Heisenberg group, its centre has the complemented
commutator property.

Note, that the complemented commutator property (9) implies:

Λ⊗R(s(x)) : g 7→ gh, for the unique h = g−1
s(x)−1gs(x) ∈ H. (10)

For a character χ of the subgroup H , we introduce an integral transfor-
mation u : L1(X) → C(G):

uk(g) =

∫

X

k(x)χ(g−1
s(x)−1gs(x)) dx, (11)

where h(x, g) = g−1
s(x)−1gs(x) is in H due to the relations (9). This

transformation generalises the isotropic symbol defined for the Heisenberg
group in [3, § 2.1].

Proposition 3. Let a subgroup H of G has the complemented commutator
property (9) and ρχ be an irreducible representation of G induced from a
character χ of H, then

∥

∥ρχ(f)
∥

∥ ≤
∥

∥
ŔfΦ−1

∥

∥

∞
, (12)

with the sup-norm of the function ŔfΦ−1 on the right.

Proof. For an induced representation ρχ [4, § 13.2], the covariant transform
Wφ maps V to a space Lχ2 (G) of functions having the property F (gh) =
χ(h)F (g) [7, § 3.1]. From (10), the restriction of Λ⊗R to the space Lχ2 (G)
is, see:

Λ⊗R(s(x)) : ψ(g) 7→ ψ(gh) = χ(h(x, g))ψ(g).

In other words, Λ ⊗ R acts by multiplication on Lχ2 (G). Then, integrat-
ing the representation Λ ⊗ R over X with a function k we get an op-
erator (L ⊗ R)(k), which reduces on the irreducible component to mul-
tiplication by the function uk(g). Put k = fΦ−1 for Φ = Wφφ. Then,
from the inequality (8), the norm of operator ρχ(f) can be estimated by
∥

∥Λ ⊗R(fΦ−1)
∥

∥ =
∥

∥
ŔfΦ−1

∥

∥

∞
.
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For a nilpotent step 2 Lie group, the transformation (11) is almost
the Fourier transform, cf. the case of the Heisenberg group in [3, § 2.1].
This allows to estimate

∥

∥
ŔfΦ−1

∥

∥

∞
through

∥

∥ uf
∥

∥

∞
, where uf is in the

essence the symbol of the respective PDO. For other groups, the expression
g−1

s(x)−1gs(x) in (11) contains non-linear terms and its analysis is more
difficult. In some circumstance the integral Fourier operators [8, Ch. VIII]
may be useful for this purpose.
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