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Abstract. The characteristics of the particle distribution, evolution and movement in a sonic jet release of carbon dioxide 

(CO2) from a high pressure reservoir are investigated. The motivation is to numerically model the sonic jet with 

particles,using the hitherto unknown initial particle distribution measured herein,and hence understand and numerically 

reproduce the experimentally observedparticle behaviour downstream of the Mach shock, including turbulence 

characteristics and level of agglomeration. We employ a Reynolds-averaged Navier-Stokes scheme with adaptive mesh 

refinement (AMR), combined with a Lagrangian particle tracker and particle distribution function. The model is seeded 

at the nozzle with the experimentally measured particle distribution and exploited to reproduce the observed 

characteristics of the jet. These releases are designed to be representative of a sonic CO2release into the atmosphere and 

so provide data to help interpret how accidental or operational releases from the transport aspect of a carbon capture and 

storage chain might behave. 

Keywords: CCS, CO2, multi-phase flow, experimental measurement, mathematical modelling, pipeline depressurization 

PACS: 02.60.-x, 47.11.-j,47.11.Df, 47.40.Ki, 47.40.-x, 47.55.-t 47.85.Dh 

INTRODUCTION 

Predicting the correct fluid phase and solid particle behaviour during the discharge process in the near-field of 

sonic carbon dioxide (CO2) jets is of particular importance in assessing the behaviour associated with the transport 

aspects of carbon capture and storage (CCS) schemes, given the very different physical hazardprofiles of CO2 in the 

gaseous and solid states. Recent work [1] has shown high pressure releases of supercritical CO2result in an initial 

condensation-formed particle diameter distribution centred around 0.1 micrometers. Agglomeration also occurs 

along the sonic jet. Recent work by our group has investigated high pressure liquid phase releases of CO2, 

measuring liquid-breakup particle size distributions along the jet, in order to quantify particle evolution. In the work 

presented here, we take the measured initial particle size distribution and numerically model the particle behaviour 

with appropriate evolutionary models in order to reproduce the observed behaviour. 

NUMERICAL TECHNIQUE 

The numerical technique fully described in [2] was used to predict the flow.Predictions were based on the 

solutions of the density-weighted time-averaged (Favre) forms of the transport equations for mass, momentum and 

total energy, with closure of this equation set achieved using a compressibility-corrected k-� turbulence model. 

Solutions were obtained of the time-dependent, axisymmetric forms of the descriptive equations and the integration 

of the equations performed by a shock-capturing conservative, upwind second-order accurate Godunov numerical 

scheme. The fully-explicit, time-accurate, cell-centered finite-volume Godunov method was a predictor-corrector 

procedure, where the predictor stage is spatially first-order, and used to provide an intermediate solution at the half 

time-step. This solution is then subsequently used at the corrector stage for the calculation of second-order accurate 

fluxes that lead to a second-order accurate cell-centered solution. A Harten, Lax, van Leer Riemann solver was 

employed to calculate fluxes at cell boundaries. The numerical scheme employs an unstructured AMR 

techniquewhich automatically allows for fine resolution in the regions of strong gradients and lower resolution 

elsewhere, as shown in Figure 1. The grid is also defragmented in hardware memory on every timestep, increasing 

efficiency further.In order to fully model the range of temperatures and pressures in releases of pressurised CO2, the 

scheme employs a new composite numerical three-phase equation of state method. This efficient method employs 
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the two-phase Peng-Robinson[3] equation of state in the gas phase, look-up tables from the two-phase Span & 

Wagner[4] equation of state in the liquid phase, and Design Institute for Physical Properties(DIPPR®) 801 

database[5] to correctly model the latent heat of fusion and the solid phase.This novel development is necessary as 

temperatures drop below the triple point, which other methods [3,4] do not account for. The scheme was employed 

in combination with a particle distribution function with logarithmic mass bins and Lagrangian particle tracker. A 

turbulent shear agglomeration modeldependent on the square root of �[6] has been employed to model 

agglomeration along the jet. 

 
FIGURE 1. The adaptive grid. The automatic mesh refinement around gradients at a Mach shock from a nozzle at z=0, r<0.5. 

EXPERIMENTAL MEASUREMENTS 

The experimental work was conducted in a laboratory setting in a large container with a separate vent system 

fitted to ensure safe handling of the CO2. A 20millilitre (ml)capacity canister of liquid CO2 was pressurised to 

68.9bar and allowed to equilibrate to ambient temperature for one hour. The canister was then clamped into a frame 

with the nozzle protruding into a custom-made Perspex box (dimensions 50 mm �50 mm � 500 mm), flush with the 

internal surface of the box. Two custom-made nozzles were used with diameters of 0.5mm and 1.0mm - the largest 

usable for the experimental rig. The instrument used for measurement was a Dantec fiberflow laser Doppler 

anemometer (LDA), with a Dantec classic phase Doppler anemometer (PDA) module. The data were processed 

using a Dantec burst spectrum analyser and Dantec BSA flow software. The illumination was provided by a Spectra-

Physics Stabilite 2017 multi-spectral argon-ion continuous wave laser. The LDA was initiated and the measurement 

volume was located on the centerline of the jet, at a range of distances from the nozzle. Data collection was 

commenced and 10 seconds later a 1/4 turn gas valve was opened to release the CO2 from the canister into the 

Perspex box. Each experiment was released into the atmosphere in the container, mimicking a discharge from 

saturated conditions into a regular atmosphere, although the Perspex box is rapidly filled with CO2.  Measurements 

were obtained at 3 (1.0 mm only), 5 (0.5 mm only), 6 (1.0mm only), 10, 20, 30, 50, 100 and 150 nozzle diameters 

(D) downstream. 

RESULTS AND DISCUSSION 

The experiments have directly measured the initial particle distribution post Mach shock and shown it to be 

nozzle size independent and centred on a diameter of 1 to 2 micrometres (Figure 2), in agreement with Weber 

number predictions. Whilst 80% of the particles have a diameter of 10 micrometres or less, there is an extended 

population of particles at larger diameters, indicating a large-diameter-skewed log-normal distribution in the initial 

expansion from the nozzle. This scale-independence would indicate the distribution can be directly applied in safety 

studies at all scales, for example in simulations of accidental dense phase CO2full-bore releases from high pressure 

pipelines. 
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FIGURE 2. Experimental results. The post Mach shock particle distribution at 10D along the jet from the release point for the 

0.5 mm and 1.0mm diameter nozzles. 

 

The experiments have shown no change in particle distribution along the jet in the 0.5mm diameter nozzle case 

(Figure 3a). In the 1mm diameter nozzle case (Figure 3b), the shift rightwards of the cumulative distribution is 

evidence for net agglomeration between 10D and 50D.Between 100D and 150D, the distribution moves left, 

indicating net evaporation.As part of the technique, the velocity of each particle was measured in terms of stream-

aligned and transverse components. In Figure 4a, we show the average magnitude of velocity for both cases, along 

with the numerical prediction of centerline fluid velocity. The experimentally measured velocities are reasonably 

similar, but are not in total agreement with the prediction until 50D from the nozzle. We also show the angle of the 

velocity vector to the centerline (Figure 4b). The angles derived from the experimental measurements are similar 

initially (up to 30D) but then the average angles are greater, with a wider distribution in the 1.0mm diameter nozzle 

case. This also corresponds to slightly lower average velocities. 

If you impose the measured initial particle distribution at the nozzle in the numerical model, ashear 

agglomeration model [6] is able to reproduce the observed agglomeration along the jet in the 1.0mm diameter nozzle 

case (Figure 5). To understand the results in the 0.5mm diameter nozzle case, and the particle velocity 

measurements, other influences need to be considered in order to estimate how the flow affects the particles. From 

the DIPPR database, the dynamic viscosity of CO2 is given by μ = a1 + a2T + a3T2, where a1 = 1.12�10-6, a2 = 

4.98�10-8 and a3 = -1.09�10-11. From this and [4],at 280K, μ = 1.43�10-5 kg m-1 s-1 and �particle = 0.883�103 

kg m-3. At 200K, �particle = 0.883�103 kg m-3and �particle = 1.546�103 kg m-3.For particles with radius r = 10-6 

m and a relative velocity of 1 m s-1, this gives a Reynolds number Re < 0.1, which means that we can use the low 

Reynolds number limit for the viscous drag. It can be shown that the particle relaxation time is 3�10-5 seconds (s) at 

200 K and 1.4�10-5 s at 280 K. At the nozzle exit T~280K and the velocity is approximately 100 m s-1, so the 

stopping distance due to viscous drag is 1.4mm. This is not a negligible distance as the shock is at 3mm for the 

0.5mm case and 6mm for the 1.0mm case. The flow accelerates from 100 m s-1 at the nozzle to around 450 m s-1 at 

the Mach shock (~6D), hence considerably extending the stopping distance (i.e. the distance at which the particles 

reach dynamic equilibrium with the fluid. For the size of nozzles under consideration here, it is clear that we cannot 

assume that the particle inertia is negligible. This is in agreement with the experimental particle velocities that do 

not follow the fluid velocity (see Figure 4a). 
 

  
FIGURE 3. Experimental results. The particle distribution at various distances downstream for both cases. 

100 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

86.16.76.46 On: Wed, 23 Oct 2013 09:25:35



 

 
 

FIGURE 4. Experimental results and numerical predictions. Measurements of velocity (circles and squares) and the predicted 

velocity along the centerline. Error bars indicate 1� of theparticular nozzle distribution at the specific distance downstream. 

 

Thermal relaxations times can be estimated in a similar way, using [7]. It can be shown that the thermal relaxation 

distance is 6.0 mm at 280K at the nozzle for a velocity of 100 m s-1, and 100 times longer at 200K. For small 

nozzles, such as those considered here, the particles do not reach thermal equilibrium with the flow. 

 
 

FIGURE 5.Numerical predictions. (a) Predicted turbulent shear agglomeration according to Saffman [8] used to model (b) the 

experimental results for the 1.0 mm diameter nozzle case reproduced with linear mass bins and (c) axisymmetric temperature 

predictions of the near-field Mach shock structure with stream lines and particles positions (squares). 

CONCLUDING REMARKS 

CO2particles from a high pressure liquid release through the small nozzle diameters considered here (0.5mm and 

1.0mm) are neither in dynamical equilibrium nor thermal equilibrium with the sonic flow. As such then, the particles 

obtain their velocity through the force of the release. By 50mm or so along the jet, the experiments indicate they are 

in equilibrium with the fluid. In the 1.0mm diameter nozzle case, the particles are more likely to see turbulent 

structures and we are able to numerically model the net agglomeration observed along the jet through a turbulent 

shear agglomeration model [6]. The experimental velocity variation reflects the turbulence in the jet which we 

intend to fully model in future simulations. These equilibrium issues have less of a bearing for CCS schemes where 

the release diameter could be up to the pipeline diameter (~1m) in the case of a full bore rupture, much larger than 

the relaxation distances discussed above. 
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