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Abstract

This paper presents an investigation into the development of performance evaluation metrics
for sequential and parallel architectures. Speedup and efficiency are defined using the
concept of virtual processor. These are utilised to obtain the best task allocation to
processors in parallel architectures achieving maximum efficiency and speedup. The
performance metrics developed are general and applicable to both heterogeneous and
homogeneous architectures and ensure that capabilities of the processors are exploited by
maximising the efficiency of the architecture. The proposed concepts are validated
experimentally using several algorithms and architectures including digital signal processing

and message-passing systems.

Keywords: Efficiency, heterogeneous architectures, homogeneous architectures, parallel

processing, speedup, task allocation.
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1 Introduction

The performance demands of modemn signal processing and control applications require the
employment of complex algorithms with varying computational requirements. Various types
of processing elements (PEs) are designed to fulfil different computational requirements.
Digital signal processing (DSP) devices are designed in hardware to perform concurrent add
and multiply instructions and execute irregular algorithms efficiently, typically finite-impulse
response (FIR) and infinite-impulse response (IIR) filter algorithms. The Intel i860 vector
processor, for instance, has been designed for high performance floating point computation
and is able to efficiently process regular algorithms involving matrix manipulations. Purpose
built PEs are not enough to bridge the ever-increasing software/hardware gap. Alternative
strategies where multi-processor based systems are employed, utilising high performance
reduced instruction set computer (RISC) processors, DSP devices, transputers and parallel
processing (PP) techniques, could provide suitable methodologies.

For PP with widely different architectures and different PEs, performance
measurements such as million instructions per second (MIPS), million operations per second
(MOPS) and million floating point operations per second (MFLOPS) of the PEs are
meaningless. Of more importance is to rate the performance of each architecture with its
PEs on the type of program likely to be encountered in a typical application. While the
different architectures and their different clock rates, memory cycle times of the PEs, inter-
processor communication speed, optimisation facility and compiler performance are
influential factors, they confuse the issue of attempting to rate an architecture. This is an
inherent difficulty in selecting a parallel architecture, for better performance, for algorithms
in signal processing and control system development applications. The ideal performance of
a parallel architecture demands a perfect match between the capability of the architecture
and the program behaviour (Tokhi and Hossain, 1995a,b). Capability of the architecture can
be enhanced with better hardware technology, innovative architectural features and efficient
resources management. In contrast, program behaviour is difficult to predict due to its
heavy dependence on application and run-time conditions. Moreover, there are many other

factors that influence program behaviour. These include algorithm design, partitioning and
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mapping of the algorithm, inter-processor communication, data structures, language
efficiency, programmer skill, and compiler technology (Tokhi et al., 1997b).

A commonly used measure of performance of a processor in an application is speedup.
This is defined as the ratio of execution time of the processor in implementing the
application algorithm relative to a reference time or execution time of a reference processor
(Tokhi et al., 1997a). The speedup thus defined provides a relative performance measure of
a processor for fixed load (task size) and thus can be referred to as fixed-load speedup. This
can also be used to obtain a comparative performance measure of a processor in an
application with fixed task sizes under different processing conditions, for example, with
and without code optimisation.

Speedup is also one of the most commonly used metrics for parallel processing. In this
context, there are three known speedup performance models: fixed-size (fixed-load)
speedup, fixed-time speedup and memory-bounded speedup (Sun and Ni, 1993; Sun and
Rover, 1994). Fixed-size speedup fixes the problem size (load) and emphasises how fast a
problem can be solved. Fixed-time speedup argues that parallel computers are designed for
otherwise intractably large problems. It fixes the execution time and emphasises how much
more work can be done with parallel processing within the same time. Memory-bounded
speedup assumes that the memory capacity, as a physical limitation of the machine, is the
primary constraint on large problem sizes. It allows memory capacity to increase linearly
with the number of processors. Both fixed-time and memory-bounded speedups ar.e forms
of scaled speedups. The term scaled-speedup has been used for memory-bounded speedup
by many authors (Gustafson, 1988; Nussbaum and Agrawal, 1991).

When speed is the goal, the power to solve problems of some magnitude in a reasonably
short period of time is sought. Speed is a quantity that ideally would increase linearly with
system size. Based on this reasoning, the isospeed approach, described by the average unit
speed as the achieved speed of a given computing system divided by the number of
processors N, has previously been proposed (Sun and Rover, 1994). This provides a
quantitative measure of describing the behaviour of a parallel algorithm-machine

combination as sizes are varied.
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Another useful measure in evaluating the performance of a parallel system of N
processors is efficiency. Efficiency can be interpreted as providing an indication of the
average utilisation of the 'N' processors, expressed as a percentage. Furthermore, this
measure allows a uniform comparison of the various speedups obtained from systems
containing different number of processors. It has also been illustrated that the value of
efficiency is directly related to the granularity of the system.

Although, speedup and efficiency and their variants have widely been discussed in
relation to homogeneous parallel architcctugres. Not much has been reported on such
performance measures for heterogeneous parallel architectures.

Due to substantial variation in computing capabilities of the PEs, the traditional parallel
performance metrics of homogeneous architectures are not suitable for heterogeneous
architectures in their current form. Note, for example, that speed up and efficiency provide
measure of performance of parallel computation relative sequential computation on a single
processor node. In this manner, the processing node is used as reference node. In a
heterogeneous architecture, such a reference node, representing the characteristics of all the
PEs, is not readily apparent. In this investigation such a reference node is identified by
proposing the concept of virtual processor. Moreover, it is argued in this context that a
homogeneous architecture can be considered as a sub-class of heterogeneous architectures.
In this manner, the performance metrics developed for heterogeneous architectures should
be general enough to cover both classes of architectures. The metrics developed are shown
to satisfy this requirement.

Attempts have previously been made at proposing speedup of a heterogeneous
architecture as the ratio of minimum sequential execution time among the PEs over parallel
execution time of the architecture (Yan et al., 1996; Zhang and Yan, 1995). In this manner,
the best PE in the architecture is utilised as the reference node and efficiency of the
architecture is defined accordingly. Although, it has been shown that the definitions under a
specific situation transform to those of a homogeneous architecture, such transformation
does not in general hold. Moreover, the concept does not fully exploit the capabilities of all

the PEs in the architecture for purposes of task to processor mapping and scheduling.
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Instead, it relies on the performance of the best PE. The concept proposed in this paper
ensures that the capabilities of the PEs are exploited by maximising the efficiency of the
architecture. The organisation of the paper is as follows.

Section 2 describes the algorithms implemented to model and measure the performance
metrics and the hardware used for implementation. The proposed sequential and parallel
performance metrics are introduced in Section 3. Section 4 describes the task allocation
strategy for parallel architectures. Section 5 presents implementations and results and

finally, the paper is concluded in Section 6.

2  Algorithms and architectures

To evaluate the performance of parallel architectures in signal processing and control
applications, two algorithms are considered in this investigation. The first algorithm is a
cantilever beam simulation algorithm. This is of regular nature and is based on matrix
multiplication and addition. The second algorithm is a basic linear algebraic operation
referred as DOT algorithm. These algorithms are implemented on a number of architectures
incorporating the Intel i860 RISC processor (i860), the Texas Instruments TMS320C40
(C40) DSP devices and INMOS T805 (T8) transputers. These are briefly described below.

2.1 The beam simulation algorithm
Consider a cantilever beam system with a force U(x,r) applied at a distance x from its
fixed end at time ¢. This produces a deflection y(x,t) of the beam from its stationary

position at the point where the force has been applied. The dynamic equation describing the

system is (Tokhi and Hossain, 1994)

9*y(x,1) 9%y(x,t) 1
2 ’ -
Tl " + R U(x,t) (D

where L is a beam constant, m is the mass of the beam.

Using a finite difference discretisation of the dynamic equation of the beam in time and

distance yields (Tokhi and Hossain, 1994)
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(A1)
m

AT A’SY, +

U(x,t) (2)

where S is a pentadiagonal matrix, entries of which depend on the physical properties and

boundary conditions of the beam, ¥, (i = k+1,k,k - 1) represents the deflection at sections
(grid-points) 1,...,n of the beam at time step i, At and Ax are increments along time and
distance coordinates respectively, and A = (A1) (Ax) .

Equation (2) comprises the beam simulation algorithm which can easily be implemented

on a digital processor.

2.2 The DOT algorithm

The DOT algorithm is a basic linear algebraic operation, which incorporates floating-point

add and multiply operations (Sun and Gustafson, 1991). This is given as

(i) =a + b(i)xcli) (3)

where a, b and ¢ represent real numbers.

2.3 The hardware architectures

The topology of the heterogeneous architecture used to carry out the experimental
investigations in this work is shown in Figure 1. This comprises a Transtech TMBO03
motherboard with 10 TRAMs possessing two T8s. The root T8 incorporates 2 Mbytes local
memory and is connected to the Host computer (SUN SPARC), via its link 3 and to the
Transtech TMB16 motherboard that contains the 1860 TRAM. The i860 TRAM has 16
Mbytes shared memory and a T805 with 4 Mbytes of local memory. The second transputer
on the TMBO8 motherboard is connected to the root transputer via its link 1 and to a sub-
network of three C40s each with 3 Mbytes DRAM and 1 Mbyte SRAM.

The T805 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit
and graphics support. It is a general-purpose medium-grained parallel processor with 25
MHz clock speed, yielding up to 20 MIPS performance and is capable of 4.3 MFLOPS.

This has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface
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and four standard INMOS communications links. The links operate at speeds of 20
Mbits/sec, achieving data rates of up to 1.7 Mbytes/sec uni-directionally or 2.3 Mbytes bi-
directionally. The T805 can directly access a linear address space of 4 Gbytes and a
configurable memory controller provides all timing, control and DRAM refresh signals for a
wide variety of mixed memory systems (Inmos, 1989).

The C40 is a 32-bit DSP processor with 40 MHz clock speed, 8 Kbytes on-chip RAM,
and 512 bytes on-chip instruction cache. It is capable of 275 MOPS and 40 MFLOPS. This
processor has six communication ports for high speed inter-processor communication (20
Mbytes/sec asynchronous transfer rate at each port for maximum data throughput), six-
channel DMA coprocessor for concurrent /O and CPU operation, two identical external
data and address buses supporting shared memory systems and high data rate (single-cycle
transfers), on-chip program cache and dual-access/single-cycle RAM for increased memory
access performance and separate internal program data (Texas Instruments, 1991).

The i860 is a 64-bit RISC processor with 40 MHz clock speed, a peak integer
performance of 40 MIPS, 8 Kbytes data cache and 4 Kbytes instruction cache. It is capable
of 80 MFLOPS. This processor has separate integer, floating-point, graphics, adder,
multiplier and memory-management units. Furthermore, both the integer unit and the
floating-point control unit can execute concurrently. In this case, the 1860 is also a
superscalar RISC processor capable of executing two instructions, one integer and one
floating-point standard, operating with single-precision (32-bit) and double-precision (64-
bit) operands. The graphics unit supports three-dimensional drawing in a graphics frame

buffer, with colour intensity, shading, and hidden surface elimination (Hwang, 1993).

3  Performance metrics

In this section general measures of speedup for sequential and parallel architectures are
proposed and used with a proposed task allocation strategy among parallel PEs to achieve

maximum efficiency.
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3.1 Sequential processing

It has previously been reported that the performance of a processor, as execution time, in
implementing an application algorithm generally evolves linearly with the task size (T okhi et
al., 1996; Tokhi et al., 1997a). With some processors, however, anomalies in the form of
change of gradient (slope) of execution time (o task size are observed. These are mainly due
to run-time memory management conditions of the processor where, up to a certain task
size the processor may find the available cache sufficient, but beyond this it may require to
access lower level memory. Despite this the variation in the slope is relatively small and the
execution time to task size relationship can be considered as linear. This means that a
quantitative measure of performance of a processor in an application can adequately be
given by the average ratio of task size to execution time or the average speed. Alternatively,
the performance of the processor can be measured as the average ratio of execution time
per unit task size, or the average (execution time) gradient. In this manner, a generalised

performance measure of a processor relative to another in an application can be proposed.

Let the average speeds with two processors p, and p, in an application, over a range

of task sizes, be denoted by V, and V, respectively. The generalised sequential (execution

time) speedup S, of p, relative to p, in implementing the application algorithm can thus

be defined as

(4)

ta
i
= et

Alternatively, if the corresponding average gradients with p, and p, for the application,

over a range of task sizes, are given by G, and G, respectively, S, can be expressed as

G
S, =— 5)
2 Gl
The concept of generalised sequential speedup described above can also be utilised to

obtain a comparative performance evaluation of a processor for an application under

various processing conditions, for example with and without code optimisation.



Tokhi MO and Ramos-Hernandez DN

The concept of speed, assumed to be constant for a processor in an application, has
previously been utilised to derive an expression for the generalised speedup of a parallel
(homogeneous) architecture as the ratio of parallel speed (of the parallel architecture) over
sequential speed (of a single processor) (Sun and Gustafson, 1991; Sun and Rover, 1994).
The generalised speedup introduced above, however, reflects on the relative performance of
two uni-processor architectures in an application and of the same processor under two

different processing conditions.

3.2 Parallel processing

Consider a heterogeneous parallel architecture of N processors. To define speedup and
efficiency of the architecture, assume a virtual processor is constructed that would achieve a
performance, in terms of average speed, equivalent to the average performance of the N

processors. Let the performance characteristics of processor i(i=1,...,N) over task
increments of AW be given by

AW = VAT, (6)

where AT, and V, represent the execution time increment and average speed of the

processor. Thus, the speed V, and execution time increment AT, of the virtual processor
executing the task increment AW are given as

N N
v 1 zvi g AW AW 1 )
Nl N i=1 AT:' N i=1 AT;

and

AT, = N(Z AIT) 6)

i=1

Thus, the fixed-load increment parallel speedup S, and generalised parallel speedup S, of

the parallel architecture, over a task increment of AW , can be defined as
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A
@:n

AT,

V ©)
8= —

v,

where AT, and V, represent the execution time increment and average speed of the parallel

system. In this manner, the (fixed-load) efficiency E, and generalised efficiency of the

parallel architecture can be defined as

5}

q:ﬁmm%

S (10)
E, = £ x100%

N

Note in the above that the concepts of parallel speedup and efficiency defined for
heterogeneous architectures are consistent with the corresponding definitions for
homogeneous architectures. Thus, these can be referred to as the general definitions of

speedup and efficiency of parallel architectures.

4 Task to processor allocation in parallel architectures

The concept of generalised sequential speedup can be utilised as a guide to allocation of
tasks to processors in parallel architectures so as to achieve maximum efficiency and

maximum (parallel) speedup. Let the generalised sequential speedup of processor i (in a

parallel architecture) to the virtual processor be b

V.
S, =—L: i=1..,N %]
v i (11)

Using the processor characterisations of equations (6) and (7) for processor i and the
virtual processor, equation (11) can alternatively be expressed in terms of fixed-load

execution time increments as

S, =—x: i=1..,N (12)
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Thus, to allow 100% utilisaticn of the processors in the architecture the task increments

AW, allocated to processors i =1,...,N should be so that the execution time increment of

the parallel architecture in implementing the task increment AW is given by

AW, AT, 1 AW
AT =AT = L = Yo :
A A (13)
i=1...,N
or, using equation (11),
Am=£ﬂ=si,vﬂ; i=1,...,N (14)
. A N ,

It follows from equation (13) that, with the distribution of load among the processors

according to equation (14) the parallel architecture is characterised by

AW = (NV,)AT, = V,AT, (15)
having an average speed of
V, = NV, (16)

Thus, with the distribution of load among the processors according to equation (14), the
speedup and efficiency achieved with N processors are N and 100% respectively. These
are the ideal speedup and efficiency. In practice, however, due to communication overheads
and run-time conditions the speedup and efficiency of the parallel architecture will be Iess
than these values.

Note in the above that, in developing the performance metrics for a heterogeneous
parallel architecture of N processors, the architecture is conceptually transformed into an
equivalent homogeneous architecture incorporating N identical virtual processors. This is
achieved by the task allocation among the processors according to their computing
capabilities to achieve maximum efficiency. For a homogeneous parallel architecture the

virtual processor is equivalent to a single PE in the architecture.

10
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5 Implementations and results

In implementing the beam simulation algorithm a cantilever beam of length L = 0.635m
and mass m =0.037 kg was considered. The algorithm granularity was achieved by
increasing the number of beam segments from 5 to 40, in increments of 5. The execution
times of the processors were obtained over 20000 iterations in each case.

In the case of the DOT algorithm the number of data points was varied from 1000 to
10000, in increments of 1000. For simplicity purposes, the vectors b(i) and c(i) were fixed
to 4.0 and 6.5 respectively. |

Figure 2 shows the execution times of the C40, T8 and the integrated C40&T8
architectures in implementing the beam simulation algorithm. The characteristics of the
virtual processor and the corresponding theoretical C40&T8 heterogeneous architecture are
also shown in Figure 2. It is noted that among the uni-processors, the C40 is considerably
faster that the T8. The combination, thus, results in a virtual processor with characteristics
closer to that of the C40. This implies that, for the C40&T8 to achieve maximum efficiency,
a large proportion of the task is to be allocated to the C40. It is noted that the actual
C40&T8 has performed slower than the corresponding theoretical (100% efficient) model.
This is due to the communication overhead between the processors.

In implementing the DOT algorithm, the heterogencous architecture of T8 and C40 was
utilised. Figure 3 shows the execution times achieved with the architectures in implementing
the algorithm. It is noted that the performance of the actual C40&T8 is close to its
corresponding theoretical model. The generalised speedup and efficiency achieved with the
C40&TS in this case are 2 and 100% respectively.

Another heterogeneous configuration was used to implement the beam simulation
algorithm. This consisted of one T8 and one i860. Figure 4 shows the execution times
corresponding to this implementation. It is noted that the 1860 is extremely faster than the
T8. For this reason, all the task was allocated to the i860, with the exception of the last two
values (35 and 40 segments) where one segment was allocated to the T8. The performance

of the actual T8&i860 is similar to the uni-processor implementation with the i860.

11
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However, for the last two values inter-process)r communication has increased the
execution time for the actual implementation.

Figure 5 shows the execution times of the C40, i860 and the actual, and theoretical
execution times of the C40&i860 heterogeneous architecture in implementing the beam
simulation algorithm. It is noted that the actual implementation is faster than the virtual
processor and faster than the i860. It is also noted that the actual implementation is very
close to the virtual parallel machine.

Comparing the three implementations of the beam simulation algorithm, it is noted that
with the T8&C40, the execution times of the actual implementation stay very close to the
virtual processor. Task allocation was computed according to the theoretical model.
However, communication overheads are evident with the T8&i860 implementation where
no task is allocated to the T8 except for the case of 35 and 40 segments. This resulted in the
same execution times as the i860 processor, except for the 35 and 40 segment steps where
the execution time has increased. The results of these two implementations show that due to
the disparity in capabilities of the processors, communication overhead becomes a dominant
factor in the implementation. The i860&C40 implementation shows that a better task
allocation is obtained between both processors and communication overheads are minimum.
In this manner the best performance for this algorithm, among the architectures, is obtained

with the combination of the C40&i860.

6 Conclusion

An investigation into the performance evaluation of sequential and parallel computing has
been carried out. Performance metrics, on the basis of maximum efficiency, have been
proposed for parallel architectures. These apply to both homogeneous and heterogeneous
architectures and are consistent with those of traditional architectures. These have been
verified through implementation of two typical algorithms on uni- and multi-processor

architectures.

12
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Based on the proposed concept of speed up a task allocation strategy for heterogeneous
architectures has been developed. It has been demonstrated that with such a strategy,
maximum efficiency with a heterogeneous architecture can be achieved. Further

investigations will consider inclusion of communication overheads and run-time conditions.
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Figure 1: Topology of the heterogeneous architecture.
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Beam simulation algorithm (T8&C40)
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Figure 2: Execution times of the C40-T8 architectures in implementing the beam
simulation algorithm.
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Figure 3: Execution times of the C40-T8 architectures in implementing the DOT algorithm.
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Beam simulatin algorithm (T8&i860)
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Figure 4: Execution times of the i860-T8 architectures in implementing the beam
simulation algorithm.
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Figure 5: Execution times of the i860-C40 architectures in implementing the beam

simulation algorithm.
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