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GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and

frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed

repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding

partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first

identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyo-

trophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72 + ), but not from those patients without a repeat expansion

of C9orf72 (C9orf72�) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated

with the clinical phenotype (t-test P5 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified

foci in fibroblasts from an asymptomatic C9orf72 + carrier. We next performed pulldown assays, with GGGGCC5, in conjunction

with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing

RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched.

Immunohistochemistry in central nervous system tissue from C9orf72 + patients with amyotrophic lateral sclerosis demonstrated

co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP

H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins

to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small

proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry

demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (�2 P = 0.75) or

poly-GA dipeptide repeat protein inclusions (�2 P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i)

functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of ex-

panded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor

protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat

protein.
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Introduction
Expanded GGGGCC repeats in intron 1 of the C9orf72 gene rep-

resent the most common cause of familial amyotrophic lateral

sclerosis (ALS) and familial frontotemporal degeneration

(DeJesus-Hernandez et al., 2011; Renton et al., 2011), though

how this genetic change results in neuronal injury is not yet under-

stood. Three potential mechanisms have been proposed: (i) hap-

loinsufficiency through disrupted expression of the expanded

allele (DeJesus-Hernandez et al., 2011); (ii) RNA mediated gain-

of-function toxicity by the transcribed expanded intronic

sequence; and (iii) protein mediated gain-of-function toxicity by

dipeptide repeat protein aberrantly translated from the repeat se-

quence by repeat associated non-ATG translation (Ash et al.,

2013; Mori et al., 2013b). Evidence for haploinsufficiency is

mixed; several groups have reported reduced expression of the

C9orf72 messenger RNA, but this finding is not consistent

(Sareen et al., 2013). Furthermore no additional loss of function

mutations have been found in the C9orf72 gene (Harms et al.,

2013) and we and others have shown that smaller repeat lengths,

which are considered pathogenic (Byrne et al., 2013; Gomez-

Tortosa et al., 2013), do not reduce transcription (Cooper-Knock

et al., 2013; Xi et al., 2013). More evidence is being gathered for

a gain-of-function toxicity mediated either by RNA foci formed

from the expanded intron or through repeat associated non-ATG

translation.

Recently, a number of studies reported that molecular pheno-

types correlated with the presence of RNA foci (Donnelly et al.,

2013; Lagier-Tourenne et al., 2013; Lee et al., 2013; Mizielinska

et al., 2013; Sareen et al., 2013). Two of these studies corrected

the observed phenotype by targeted degradation of the foci using

antisense oligonucleotides (Donnelly et al., 2013; Sareen et al.,

2013). One study suggested that foci burden in the frontal

cortex positively correlated with disease severity in eight patients

with C9orf72 frontotemporal degeneration (Mizielinska et al.,

2013). Two of these reports identified co-localization of RNA

foci with various proteins (Donnelly et al., 2013; Sareen et al.,

2013) and suggested that pathogenic sequestration might be

occurring. A similar process has been observed in myotonic dys-

trophy type 1, another neuromuscular disease caused by an in-

tronic expansion (Jiang et al., 2004). Previously two groups

generated candidate binding partners of the GGGGCC repeat

expansion, but did not include co-localization studies with RNA

foci (Mori et al., 2013a; Xu et al., 2013). Further work to

characterize protein binding partners of the RNA foci is required,

particularly because many of the studies thus far are in disagree-

ment as to the most important interactions.

Observations regarding toxicity of repeat associated non-ATG

translation are still at an early stage: the produced dipeptide

repeat protein appears to be toxic in a cell model (Zu et al.,

2013), but levels of the aberrantly translated protein observed

do not correlate with neurodegeneration in autopsy material

(Mackenzie et al., 2013). An important question remains over

the mechanism by which the transcribed repeat sequence is

exported to the cytoplasm to allow repeat associated non-ATG

translation. Clearly, normal control of messenger RNA nuclear

export would be expected to inhibit this movement. However,

several studies report cytoplasmic RNA foci in CNS tissue

(Donnelly et al., 2013, Mizielinska et al., 2013).

We have used fluorescence in situ hybridization (FISH) to exam-

ine the abundance and location of RNA foci in cerebellum, where

p62-positive protein inclusion pathology is characteristic of

C9orf72 + disease (Cooper-Knock et al., 2012), and in motor

neurons of the ventral horn. We also examined the relationship

between RNA foci and characteristic neuropathology of C9orf72 +

ALS: first, the loss of nuclear TDP-43 in motor neurons, which is

the pathological hallmark of ALS (Neumann et al., 2006) and has

been shown to correlate with neuronal loss (Brettschneider et al.,

2013); and second, the presence of cytoplasmic aggregates

containing dipeptide repeat protein, which are a hallmark of

C9orf72 + disease (Ash et al., 2013; Mackenzie et al., 2013;

Mori et al., 2013b). We have then identified protein binding part-

ners of the RNA repeat expansion, initially in an in vitro RNA

pulldown assay using both cerebellum and neuronal cell-line

extracts, and then subsequently in CNS tissue from C9orf72 +

patients with ALS by immunohistochemistry. Protein–RNA UV-

crosslinking confirmed in vitro direct interactions with the repeat

sequence. We add novel insights to this growing field and in par-

ticular, our focus on motor neurons from the ventral horn of the

spinal cord has allowed us to characterize RNA foci and their

interactions in the neuronal population most vulnerable to neuro-

degeneration in ALS.

It should be noted that other groups have observed RNA foci

transcribed from the repeat sequence in an antisense direction

consisting of a GGCCCC repeat (Gendron et al., 2013; Lagier-

Tourenne et al., 2013; Mizielinska et al., 2013); antisense foci

were not examined in this study.

Materials and methods

Human samples
The study was approved by the South Sheffield Research Ethics

Committee and informed consent was obtained for all samples. Brain

and spinal cord tissues were donated to the Sheffield Brain Tissue

Bank for research with the consent of the next of kin.

Immunohistochemistry and RNA FISH were performed on formalin

fixed paraffin-embedded tissues from up to five C9orf72 + ALS

cases, three C9orf72� ALS cases and three neurologically normal con-

trols. Lymphoblastoid cells and fibroblasts from three C9orf72 + ALS

cases, one C9orf72 + asymptomatic carrier, three C9orf72� ALS cases

and three controls were used for RNA FISH. Lymphoblastoid cell lines

were obtained from the Wellcome Trust/Motor Neurone Disease
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Association ALS/MND UK DNA and Lymphoblastoid cell line Bank.

Fibroblasts were obtained from the Sheffield MND Biosamples Bank.

RNA fluorescence in situ hybridization
A 5’ TYE-563-labelled LNA (16-mer fluorescent)-incorporated DNA

probe was used against the sense RNA hexanucleotide repeat

(Exiqon, Inc., batch number 607323). Slides with tissue, lymphoblas-

toid cells or fibroblasts were fixed in 4% paraformaldehyde for 10 min.

Before use, formalin fixed paraffin-embedded tissue sections were

deparaffinized. Slides were blocked with hybridization solution [50%

formamide, 2� saline sodium citrate (SSC), 100 mg/ml dextran sul-

phate, 50 mM sodium phosphate pH 7.0] for 3 h at 66�C and then

incubated with 400 ng/ml of denatured probe in hybridization solution

overnight at 66�C. After hybridization, slides were washed once in

2�SSC/0.1% Tween-20 at room temperature and three times in

0.1� SSC at 65�C. Slides were mounted with mounting medium

containing DAPI (Vector Labs, Inc.). All solutions were made with

DEPC-treated water.

Visualization of RNA foci
Primary visualization of foci was performed using a Leica SP5 confocal

microscope system with a �63/1.4 oil immersion objective lens. The

presence of foci was assessed within a high resolution (1433 mm2 per

image, 511 � 511 pixels) z-stack made up of images at 0.13-mm inter-

vals through the entire nuclear volume of the cell under consideration.

Biotinylated RNA pulldown assays
Total extracts were prepared by homogenizing and lysing cells/tissue

in RNA-pulldown (RPD) lysis buffer [25 mM Tris pH 7.4, 100 mM

NaCl, 1 mM DTT, 10% (v/v) glycerol, 0.5% (v/v) TritonTM X-100].

Lysates were cleared by centrifugation and supernatants taken for

experiments. Nuclear extracts from SH-SY5Y cells were prepared

using the Dignam method (Dignam et al., 1983). We chose to use

two methods of lysis because cell lysis has been shown to influence

the composition of ribonucleoprotein complexes (Mili and Steitz,

2004).

AAAAUU5 and GGGGCC5 RNA molecules with 3’ biotin modifica-

tions were used to identify protein binding partners in pulldown

assays. 60 ml aliquots of streptavidin sepharose (GE Healthcare) were

blocked overnight on a spinning wheel at 4�C with RPD lysis buffer

containing 2% bovine serum albumin. Total extracts were lysed in

RPD lysis buffer whereas cerebellum homogenates and SH-SY5Y

whole cell or nuclear extracts were mixed 1:1 with RPD lysis buffer

(2�) supplemented with protease and RNase inhibitors. 1-2 mg of the

appropriate total cellular or nuclear lysate was mixed with 15 mg

biotin-labelled RNA, incubated at room temperature for 30 min and

then on ice for 30 min. Mixtures were then transferred to a 6-cm petri

dish and UV irradiated on ice at 0.3 J/cm2 in a UV crosslinker (Fisher).

Mixtures were then applied to blocked streptavidin sepharose and

incubated at 4�C for 2 h with agitation. Following binding, beads

were washed three times with RPD lysis buffer and then twice with

RPD wash buffer (25 mM Tris pH 7.4, 100 mM NaCl, 1 mM DTT).

Complexes were eluted by addition of RPD elution buffer (25 mM

Tris pH 7.4, 25 mM NaCl, 1 mM EDTA) and 10 mg RNase A followed

by agitation at room temperature for 30 min. Eluates were analysed by

SDS-PAGE and proteins identified by mass spectrometry or western

immunoblotting.

Mass spectrometry
In solution tryptic digestions were performed on the eluted fractions

by the addition of 100 mM final concentration ammonium bicarbonate

and 0.1% ProteaseMAXTM surfactant. Trypsin was added to a mass

ratio of (1:50) and incubated at 37�C overnight. Digestions were

stopped with the addition of 1–2 ml glacial acetic acid and subse-

quently dried under vacuum. Tryptic digests were resuspended in

0.1% final concentration of trifluoroacetic acid. Five microlitres was

used for liquid chromatography–mass spectrometry/mass spectrometry

(LC–MS/MS) analysis. Peptides were separated using an UltiMateTM

3000 RSLC nano liquid chromatography system (Dionex), using a

150 mm � 75mm I.D. PepMapTM reversed phase column (Dionex).

Linear gradient elution was performed from 95% buffer A (0.1%

formic acid) to 50 % buffer B (0.1% formic acid, 95 % acetonitrile)

at a flow rate of 300 nl/min in 60 mins. MS/MS analysis was per-

formed using a maXis UHR TOF mass spectrometer (Bruker

Daltonics) using an automated acquisition approach. MS and MS/

MS scans (m/z 50–2000) were acquired in positive ion mode. Lock

mass calibration was performed using HP 1221.990364. Line spectra

data were then processed into peak list by data analysis using the

following settings. The sum peak finder algorithm was used for peak

detection using a signal to noise ratio of 10, a relative to base peak

intensity of 0.1% and an absolute intensity threshold of 100. Spectra

were deconvoluted and the peak lists exported as Mascot Generic Files

(MGF) and searched using Mascot 2.2 server (Matrix Science). The

Swiss-Prot database (Swiss-Prot Release 10.5m5, 20 April 2010,

516604 sequences) was searched using the following parameters (ana-

lysis peptide tolerance = �0.01 Da, MS/MS tolerance = �0.01 Da and

peptide charge 2 + and 3 + ). Search parameters were as follows:

enzyme; trypsin; fixed modifications: carbamidomethyl (C); variable

modifications: deamidation (NQ), oxidation (M); maximum missed

cleavages: 1. Deamidation (NQ) were chosen as variable modifica-

tions. Additionally, we also used a peptide MOWSE score of 525 as

a cut-off as calculated by Mascot. The false discovery rate was esti-

mated to be 1% for peptide IDs after searching reverse databases.

Protein identifications were based on a minimum of two unique

peptides.

RNA-binding ultraviolet crosslinking
assays
RNA-binding assays were carried out as described previously

(Hautbergue et al., 2008, 2009). GGGGCC5 RNA was 5’ end labelled

with �32P-ATP using T4 polynucleotide kinase (Fermentas). Reaction

mixes were made up in RNA binding buffer [15 mM HEPES pH 7.5,

150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol, 0.05% (v/v) Tween-

20] with 50 ng radiolabelled RNA and 5 mg purified recombinant pro-

tein. Mixes were incubated for 20 min at room temperature and

20 min on ice before being UV-irradiated on ice at full power.

Complexes were analysed by SDS-PAGE and stained with Coomassie

blue before being vacuum-dried and exposed on a phosphoimage

screen.

Immunohistochemistry
The following antibodies were used for immunohistochemistry: anti-

TDP-43 (Proteintech 10782-2-AP) anti-FUS (Novus NB100-2599),

anti-hnRNP H1/F (Abcam ab10689), anti-hnRNP A1 (Abcam

ab5832, 9H10 clone), anti-hnRNP D (Proteintech 12770-1-AP), anti-

SRSF1 (phosphor, Abcam ab11826), anti-SRSF2 (Abcam ab30817),
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anti-ALYREF (Sigma, clone 11G5) and anti-hnRNP C1/C2 (Abcam

ab10294). Poly-(Gly-Ala) dipeptide repeat protein was detected

using anti-GA antibodies (mouse, clone 5F2) as previously described

(Mackenzie et al., 2013). Antigen retrieval was performed by 10–

30-min microwave in EDTA at pH 8.0 for all antibodies except anti-

SRSF1, anti-ALYREF and anti-TDP-43 where antigen retrieval involved

microwave 10–20 min in trisodium citrate at pH 6.5, and for anti-

hnRNP H/F where no specific antigen retrieval was performed. After

incubation with the primary antibodies, slides were washed in PBS and

incubated in species specific Alexa Fluor� 488-conjugated secondary

antibodies.

Results

RNA fluorescence in situ hybridization
The presence of RNA foci clearly distinguished fibroblasts, lympho-

blastoid cells and CNS tissue from C9orf72 + patients with ALS

compared to C9orf72� patients with ALS and neurologically

normal control subjects (Fig. 1A–D). To validate our RNA FISH

methodology, discrete nuclear foci-like staining was quantified in

a blinded study of 50 cerebellar granule neurons from each of

nine cases: three C9orf72 + patients with ALS, three C9orf72�

patients with ALS and three control subjects. In C9orf72 + tissue

the average proportion of neurons containing nuclear RNA foci

was 39% (range 21–63%); in three C9orf72� cases with ALS

the average proportion of neurons containing foci-like staining

was 1.6% (range 1.1–2.5%); in normal controls the average pro-

portion of neurons containing foci-like staining was 1.4% (range

1.3–1.6%). Only seven foci-like objects were observed in 300

neurons from the six non-C9orf72 + cases and never was more

than one focus-like object was observed in a single cell; in contrast

the average rate in C9orf72 + tissue was two foci per cell. RNase

treatment in fibroblasts ablated foci, illustrating that the labelled

product is RNA and in agreement with previous studies (Fig. 1A).

It is noteworthy that RNA foci were identified in fibroblasts

derived from an asymptomatic C9orf72 + carrier (Fig. 1C). In

four C9orf72 + cases the proportion of foci + cerebellar granule

neurons was quantified and compared to the proportion of foci +

motor neurons in the ventral horn (Fig. 1E). More than 35 cells of

each neuron-type were examined in each case. Three of the cases

presented initially with ALS (Supplementary Fig. 1); in these pa-

tients the average proportion of foci + neurons was significantly

higher in the ventral horn (61% versus 27%, t-test P5 0.05). In

the fourth case, who presented with frontotemporal degeneration

and later developed ALS, the pattern was reversed (40% versus

63%). Foci were primarily nuclear, however, some cytoplasmic

foci were also observed in fibroblasts, cerebellar granule cells

and in motor neurons (Fig. 1C).

Identification of binding partners of the
C9orf72 repeat expansion
We generated 3’ biotinylated RNAs with the following sequences:

5’-[AAAAUU]5-Bio-3’ and 5’-[GGGGCC]5-Bio-3’. It has been

demonstrated that the GGGGCC repeat expansion can form

RNA G-quadruplexes in vitro, with the smallest repeating unit

consisting of four repeats (Fratta et al., 2012; Reddy et al.,

2013). To identify proteins interacting with the biotinylated

RNAs, RNAs were preincubated with protein extracts and resulting

complexes fixed by UV-irradiation. The RNA bait and bound pro-

teins were captured using streptavidin sepharose and eluted after

RNase A digestion. We used whole cell lysates of the human

neuronal cell line SH-SY5Y, SH-SY5Y nuclear extract and dissected

human cerebellum whole extract (Fig. 2A–C). Controls without

RNA bait were processed in parallel (Fig. 2D). Eluted proteins

were identified by mass spectrometry. In total, 103 unique pro-

teins were identified that bind GGGGCC5, the majority of which

did not bind to AAAAUU5 (Fig. 2E and Supplementary material).

Gene ontology (GO) enrichment analysis of each GGGGCC5-

derived list of bound proteins was carried out using the

Database for Annotation, Visualization and Integrated Discovery

(DAVID) (Huang da et al., 2009a, b). This yielded functional cate-

gories associated with aspects of messenger RNA metabolism

including splicing and stabilization, and an RNA recognition

motif-containing class (Supplementary Fig. 2). This was particularly

striking in the list of GGGGCC RNA-binders isolated from nuclear

extracts of the SH-SY5Y human neuronal cell line (Fig. 2F).

Another strongly represented group was messenger RNA export

adaptors, which promote nuclear export via remodelling of the

NXF1/TAP export receptor (Hautbergue et al., 2008), including

ALYREF and the shuttling splicing factors SRSF1 (SF2/ASF),

SFRS3 (SRp20) and SFRS7 (9G8) (Walsh et al., 2010).

Cellular distribution of RNA foci and
RNA recognition motif-containing
proteins
We used confocal microscopy to validate in vivo some of the hits

identified by mass spectrometry. For this purpose, eight well-

described RNA recognition motif-containing proteins including

splicing factors and messenger RNA nuclear export adaptors

were prioritized and selected depending on available and effica-

cious commercial antibodies. The distribution of each protein rela-

tive to RNA foci was examined in approximately 200 cerebellar

granule neurons and 50 motor neurons from a minimum of three

C9orf72 + cases with ALS. Simultaneous co-staining was carried

out in parallel in C9orf72� cases with ALS and neurologically

normal control subjects. For all tested candidates, overall cellular

protein distribution was not grossly different between C9orf72 +

cases, C9orf72� cases and controls except for areas where co-

localization was demonstrated. In cerebellar granule cells we

demonstrated co-localization of hnRNP A1, hnRNP H1/F,

ALYREF and SRSF2 with 27%, 30%, 26% and 33% of RNA

foci, respectively (Fig. 3A–D). In motor neurons, the cell type

most vulnerable to the neurodegenerative process in ALS, we

demonstrated co-localization of hnRNP H1/F, ALYREF and

SRSF2 with 19%, 29% and 30% RNA foci, respectively (Fig.

3E–G). In contrast, we were unable to detect any evidence of

co-localization of other identified GGGGCC-binding partners

SRSF1, FUS, hnRNP C or hnRNP D with sense foci in either the

cerebellar granule layer or the ventral horn (Supplementary Fig. 3).
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Figure 1 RNA FISH shows GGGGCC expanded RNA foci are found in peripheral cells and CNS tissue from C9orf72 + patients but not

from C9orf72� ALS cases or controls. RNA foci (arrowheads) are present in fibroblasts (A), lymphoblastoid cells (B) and CNS tissue

(D) from C9orf72 + patients with ALS, and in fibroblasts from a C9orf72 + asymptomatic carrier (C). RNA foci are ablated by RNase

treatment (A). RNA foci are predominantly nuclear but cytoplasmic foci are observed in peripheral cells and CNS tissue (A and D, arrows).

Abundance of foci in cerebellar granule cells and motor neurons has been quantified (E), in those cases where the initial clinical pres-

entation was ALS the proportion of foci + motor neurons is significantly higher (*P50.05). Scale bar = 3mm. FTD = frontotemporal

degeneration.
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For six of the proteins identified in the mass spectrometry ana-

lysis, including those proteins observed to co-localize with RNA

foci in vivo, specificity of interaction with the (GGGGCC)5 RNA

was assessed using RNA pull down assays from whole neuronal

SH-SY5Y cell extract and western immunoblotting (Fig. 4A). Direct

binding of some of these proteins to (GGGGCC)5 RNA repeat was

also confirmed in a UV-cross linking assay using radiolabelled RNA

and recombinant proteins which were expressed and purified from

E. coli (Fig. 4B).

We also examined the co-incidence of RNA foci with depletion

of TDP-43 from the nuclei of motor neurons of C9orf72 + patients

with ALS. Mislocalization of TDP-43 is the pathophysiological hall-

mark of ALS (Neumann et al., 2006). All surviving motor neurons

were examined in formalin fixed paraffin-embedded sections from

three C9orf72 + ALS cases. The majority of cells with nuclear de-

pletion of TDP-43 contained nuclear RNA foci, but this was not

significantly different to the proportion of cells with nuclear TDP-

43 expression that contained RNA foci (66% versus 60%, �2

P = 0.75) (Supplementary Fig. 4).

In view of our prediction that the repeat sequence might seques-

ter several proteins important for messenger RNA export, we

wanted to explore the relationship between repeat associated

non-ATG translated protein and RNA foci in specific neuronal popu-

lations. As expression of dipeptide repeat proteins is reported to be

rare in the ventral horn of C9orf72 + patients with ALS (Mackenzie

et al., 2013), we chose to focus on cerebellar granule cells. Fifty per

Figure 2 5’-[AAAAUU]5- and 5’-[GGGGCC]5 RNAs sequester distinct sets of proteins from human neuronal cell line fractions and

dissected human cerebellar tissue. Pulldown assays using biotinylated RNAs (no RNA, 5’-[AAAAUU]5- or 5’-[GGGGCC]5) and extracts

from total or nuclear fractions of SH-SY5Y cells, or human cerebellar tissue; I = input (1%); FT = flow through (1%); E = eluted (25%)

(A–D). Mass spectrometry (MS) analysis of proteins co-purified with biotinylated RNAs (E). Gene ontology (GO) enrichment of SH-SY5Y

nuclear hits (F).

Figure 1 Continued.
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Figure 3 Combined RNA FISH and immunohistochemistry demonstrate co-localization of nuclear speckle components with RNA foci in

CNS tissue. hnRNP A1 (A), hnRNP H1/F (B), SRSF2 (C) and ALYREF (D) are observed to co-localize with RNA foci (arrowheads) in

cerebellar granule cells from C9orf72 + patients with ALS. hnRNP H1/F (E), SRSF2 (F) and ALYREF (G) are observed to co-localize with

RNA foci (arrowheads) in nuclei of motor neurons from C9orf72 + patients with ALS. Co-localization events are enlarged and unmerged

protein and RNA foci are shown for comparison. The normal staining pattern of the two proteins in C9orf72� cases with ALS and control

subjects is included for comparison. Scale bar = 3mm.
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Figure 3 Continued.
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cent of the neurons which stained for poly-GA, the most abundant

dipeptide repeat protein, contained nuclear RNA foci; this was not

significantly different to the proportion of neurons with nuclear

RNA foci which did not stain for poly-GA (50% versus 40%, �2

P = 0.46) (Supplementary Fig. 5).

Discussion
There is an urgent need to understand the mechanisms of neur-

onal injury in C9orf72 + disease. This genetic variant is the most

common identified cause of ALS and frontotemporal degeneration.

We and others (DeJesus-Hernandez et al., 2011; Donnelly et al.,

2013; Lagier-Tourenne et al., 2013; Lee et al., 2013; Mizielinska

et al., 2013; Sareen et al., 2013) have identified RNA foci formed

from the intronic GGGGCC repeat sequence in peripheral cells and

CNS tissue from C9orf72 + patients. We have particularly focused

on characterizing RNA foci within spinal motor neurons, which are

the primary target of pathology in ALS. Indeed we have shown

that RNA foci are present in a higher proportion of motor neurons

of the ventral horn compared to cerebellar granule cells in patients

where the initial clinical presentation was ALS; in a single patient

where the initial clinical presentation was with extra-motor disease

the opposite was true. This is consistent with toxicity initiated by

RNA foci. However, this finding will require validation in a larger

number of cases.

We have identified a number of putative binding partners of the

RNA repeat expansion which are consistent with previous obser-

vations (Lee et al., 2013; Mori et al., 2013a; Sareen et al., 2013;

Xu et al., 2013). Of the RNA recognition motif-containing proteins

we found to be co-localized with RNA foci in C9orf72 + tissue,

hnRNP A1 (Sareen et al., 2013), hnRNP H1/F and SRSF2 (Lee

et al., 2013) have been similarly observed by others.

Interestingly, our study provides the first evidence for co-localiza-

tion of RNA foci with the general messenger RNA nuclear export

adaptor ALYREF (Stutz et al., 2000). Observed co-localization with

RNA recognition motif-containing proteins was present in a rela-

tively low percentage of RNA foci. We suggest that this is con-

sistent with a process of dynamic sequestration. Indeed,

irreversible binding of these candidates, many of which are key

regulators of essential processes such as pre-messenger RNA spli-

cing, is unlikely to be consistent with the relatively late age of

disease onset seen in C9orf72 + patients. The key pathogenic

step may be downstream from protein sequestration by the

Figure 3 Continued.
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expansion, such as export of the repeat expansion to enable

repeat associated non-ATG translation or an accumulation of ab-

errant splicing events. Importantly we have confirmed a direct

interaction in vitro between our protein candidates and the

GGGGCC repeat RNA by UV-crosslinking.

SRSF2 is a well-known marker for nuclear speckles, nuclear do-

mains implicated in the storage and supply of splicing factors to

active transcription sites (Spector and Lamond , 2011). All of the

proteins we have shown to co-localize with RNA foci, many of the

binding partners identified in our RNA pulldown, and a number of

the proteins implicated in genetic variants of ALS including

TARDBP, EWSR1, FUS, HNRNPA1 and HNRNPA2B1, have been

localized to nuclear speckles (Zhou et al., 2000; Saitoh et al.,

2004; Casafont et al., 2009). Other neuromuscular diseases

have been associated with depletion of normal components of

nuclear speckles including myotonic dystrophy type 1 (Smith

et al., 2007; Bengoechea et al., 2012). It is possible that disruption

of the normal function of nuclear speckles, either by a direct mu-

tation of one of the key protein components, or via RNA foci-

mediated dynamic depletion of essential protein constituents, is a

key pathogenic mechanism in ALS. Analysis of the transcriptome

of pathologically affected neurons will be key to elucidating

whether the interactions we have identified have a toxic effect

through disruption of messenger RNA splicing.

We provide evidence for cytoplasmic RNA foci, not only in per-

ipheral cells and in the cerebellar granule layer, but also in motor

neurons from the ventral horn of the spinal cord. Cytoplasmic

localization of RNA foci formed from an intronic repeat sequence

in peripheral cells might be consistent with extrusion during mi-

tosis. However, in non-dividing neurons of the cerebellum and

ventral horn this is not a possibility. The alternative scenario relates

to nuclear export of the transcribed GGGGCC repeat expansion.

Our RNA pulldown screen for binding of the repeat expansion

identified multiple messenger RNA export adapters including

ALYREF (Stutz et al., 2000), SRSF1, SFRS3 and SFRS7 (Huang

et al., 2003; Hargous et al., 2006; Tintaru et al., 2007). In the

case of ALYREF we have also demonstrated co-localization with

RNA foci by immunohistochemistry, and a direct interaction with

the expansion by protein-RNA UV-crosslinking. An interesting

possibility is that local enrichment of messenger RNA export adap-

tors onto C9orf72 GGGGCC repeat pre-messenger RNA molecules

overrides the normal nuclear retention of pre-messenger RNA, for

example through an inappropriate interaction of ALYREF with the

TAP/NXF1 nuclear export receptor. It seems unlikely that the RNA

foci are exported intact, particularly because of their size and ac-

tivity of DEAD box RNA helicases such as Dbp5/DDX19, on the

cytoplasmic side of the nuclear pore which would be expected to

unwind G-quadruplex structures (Linder, 2008). However, it is

conceivable that aberrantly expanded C9orf72 pre-messenger

RNA molecules are exported from the nucleus and reform into

foci within the cytoplasm.

Nuclear export of GGGGCC repeat RNA is likely to be a key

step leading to repeat associated non-ATG translation in the cyto-

plasm. If dipeptide repeat proteins formed in this manner are

Figure 4 Identified RNA-binding candidates interact specifically and directly with GGGGCC5 RNA. (A) Neuronal SH-SY5Y whole cell

extract was incubated with either no RNA, AU-rich or GC-rich biotinylated RNA coated onto streptavidin beads before UV-cross linking.

Bound proteins were eluted using RNase A and further identified using SDS-PAGE and western immunoblotting with the indicated

antibodies. It is noted that the weak signal for SRSF2 is due to difficulty finding an antibody that is efficacious in western immunoblotting.

The anti-hnRNP H1/F antibody recognizes both proteins, which are similar (Garneau et al., 2005). (B) Hexa-histidine-tagged recombinant

SRSF1 11-196, GB1-tagged SRSF2 9-101 and ALYREF full length were expressed in E. coli and purified using metal ion affinity chro-

matography in 1 M NaCl containing buffers to remove potentially bound RNA from E. coli (bottom). GGGGCC5 RNA was separately end-

labelled with poly nucleotide kinase using [�-32P]-ATP, before incubation with purified proteins. RNA was covalently bound ( + ) or not

(� ) after UV irradiation. Absence of radioactive signal (top; PhosphoImage) in absence of UV irradiation demonstrates specificity of direct

binding observed after UV treatment. All gels shown in the different panels were exposed simultaneously for the same amount of time

(5 h).
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eventually identified as the key mediator of pathogenicity in

C9orf72 + disease then blocking this export represents an attract-

ive therapeutic target. One report has suggested that the produc-

tion of repeat associated non-ATG translated protein is mutually

exclusive to the presence of RNA foci (Donnelly et al., 2013).

In contrast, we found an equal proportion of poly-GA staining

in neurons that did or did not contain RNA foci.

We did not observe a significant correlation between nuclear

loss of TDP-43 and the presence of RNA foci. This does not

mean that RNA foci are not instrumental in the disease pathogen-

esis, but may reflect the fact that they occur significantly upstream

of TDP-43 mislocalization. In this regard it is important to note

that we and others (Lagier-Tourenne et al., 2013) have identified

RNA foci in fibroblasts derived from asymptomatic C9orf72 +

carriers.

We await confirmation of our findings by other groups. We

have suggested two ways in which the interactions identified

may be pathogenic: (i) through disruption of the normal function

of factors involved in nuclear speckles and thus messenger RNA

splicing; and (ii) through inappropriate licensing of the transcribed

C9orf72 expansion for nuclear export thereby facilitating repeat

associated non-ATG translation. Either or both may be important,

but it should be noted that if inappropriate licensing of RNA

foci for export is a key pathogenic step, then overexpression

of the sequestered protein will not be of therapeutic benefit

and may even have an adverse effect. On the contrary if loss

of the normal function of these proteins is most important,

then increasing the nuclear expression of proteins seques-

tered by the expansion may be of value as a neuroprotective

strategy.
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