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Social web-groups where people with common interests and goals communicate, share resources, and 

construct knowledge, are becoming a major part of today’s organisational practice. Research has 

shown that appropriate support for effective knowledge sharing tailored to the needs of the 

community is paramount. This brings a new challenge to user modelling and adaptation, which 

requires new techniques for gaining sufficient understanding of a virtual community and identifying 

areas where the community may need support. The research presented here addresses this challenge 

presenting a novel computational approach for community-tailored support underpinned by 

organisational psychology and aimed at facilitating the functioning of the community as a whole (i.e. 

as an entity). A framework describing how key community processes - transactive memory, shared 

mental models, and cognitive centrality - can be utilised to derive knowledge sharing patterns from 

community log data is described. The framework includes two parts: (i) extraction of a community 

model that represents the community based on the key processes identified and (ii) identification of 

knowledge sharing behaviour patterns that are used to generate adaptive notifications. Although the 

notifications target individual members, they aim to influence individuals’ behaviour in a way that can 

benefit the functioning of the community as a whole. A validation study has been performed to 

examine the effect of community-adapted notifications on individual members and on the community 

as a whole using a close-knit community of researchers sharing references. The study shows that 

notification messages can improve members’ awareness and perception of how they relate to other 

members in the community. Interesting observations have been made about the linking between the 

physical and the virtual community, and how this may influence members’ awareness and knowledge 

sharing behaviour. Broader implications for using log data to derive community models based on key 

community processes and generating community-adapted notifications are discussed. 

Keywords: Community modelling, Adaptive support for knowledge sharing, Virtual communities. 
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1 Introduction 

Social environments foster interpersonal ties between people and are becoming the primary 

medium where humans share knowledge (Wellman, 2001). With the advancement of the internet, 

social environments are being built online and constitute an important part of peoples’ lives and 

organisational practices (Preece et al., 2003). Virtual communities (VCs) (spanning from large, 

loosely structured
2
 to small, close-knit

3
) are one of the most effective environments for sharing 

knowledge (Wenger, 2000). We focus here on close-knit virtual communities that may exist either in 

organisational or educational context and possess the following characteristics: common purpose, 

identified by the participants or a facilitator; commitment to the sharing of information and 

generation of new knowledge; shared resources; interaction and collaboration; equal membership 

inside the community. Close-knit VCs are becoming very popular because they offer opportunities for 

                                                      
1
 The work reported here is based on the PhD studies of the author conducted at the University of Leeds, UK 

2
 Examples include Delicious communities: http://www.delicious.com/ 

3
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knowledge sharing and collaboration, and are considered to be one of the most inexpensive and 

successful ways of managing knowledge in an organisation (Nonaka et al., 2000). In academic 

settings, researchers across the globe are coming together to collaborate on large or small projects, 

organise academic conferences or just share resources and develop collective knowledge 

(Puntambekar, 2006; Paletz and Schunn, 2010).  

Studies show that for VCs to be successful, more than just people and technology is needed – 

intelligent support for the effective functioning of the community is paramount (Fischer and Ostwald, 

2001). This requires a good understanding of VCs focusing on processes that have to be supported to 

enable effective knowledge sharing and add value for all members (McDermott, 2000). Researchers in 

Computer Supported Cooperative Work have argued that organisation and psychology theories should 

be followed as a solid foundation for enabling effective knowledge sharing and working together in 

communities (Barley et al., 2004). The implication of this argument for personalisation and adaptation 

technologies for teams and close-knit communities drives the research presented in this paper. We 

explore how to utilise organisation psychology to develop a holistic community adaptation approach 

that gains an understanding of a close-knit virtual community and provides support tailored to the 

needs of the community as a whole.  

Following (Mohammed and Dumville, 2001; Ilgen et al., 2005), processes that can have an impact 

on the collective knowledge sharing and are important for the effective functioning of teams and 

close-knit communities have been identified:  

• Transactive Memory (TM): Members are aware how their knowledge relates to the 

knowledge of others; 

• Shared Mental Models (SMM): Members develop a shared understanding of the key 

processes and the relationships that occur between them; 

• Cognitive Centrality (CCen): Members who hold strong relevant expertise can be influential; 

members of effective communities gradually move from being peripheral to becoming more 

central and engaged in the community.  

Based on TM, SMM and CCen, this research aims to support members of a close-knit community 

to answer questions like: “Who knows about subject S?”, “What are others doing in this 

community?”, “Who shares the most valuable resources in this community?”, “Whose knowledge is 

important to me?”, “Do others in this community know what I know?”, “To whom is my knowledge 

important?”. Studies stress that the outcome of a member’s actions in the community can influence 

others’ actions (Schmidt, 2002). Monitoring what others are doing and how members are related in 

the community is vital for knowledge sharing, collaboration and community sustainability. Explicitly 

making people aware of their similarities, in addition to activity awareness, can influence their 

actions, and thus help them engage in the community. Discovering patterns that promote the 

development of a TM system, the establishment of SMM, and exploit CCen, can facilitate knowledge 

sharing in the virtual community (VC) (Ilgen et al., 2005). 

The paper presents a novel holistic personalisation approach for supporting close-knit VCs and 

addresses three research questions:  

• How to extract a computational model to represent the functioning of a community as a whole 

by using semantically enhanced system log data? 

• How can user modelling, adaptation and personalisation techniques be utilised to support 

processes which are important for the functioning of close-knit virtual communities? 

• Can adaptive support, driven by community processes, affect the functioning of the community?  

 

To address the above questions, we have developed a computational framework for community-

based adaptive support for knowledge sharing. This involves the extraction of a community model, 

and its use for identifying community knowledge sharing behaviour patterns. These patterns are then 

used as input to algorithms for generating adaptive notifications that target individual members but 

aim at improving the functioning of the community as a whole. An evaluation study is conducted to 

validate the framework and examine what effect the generated notifications have on individual 

members and on the functioning of the community as a whole.  
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The research presented here contributes to an emerging trend in adaptation and personalisation 

developing intelligent techniques to provide adaptive support for team collaboration (Paramythis et 

al., 2011). ‘Traditional’ approaches of personalisation in social systems use the social context in order 

to enhance adaptation mechanisms aimed at benefiting individual members. In contrast, we propose 

an adaptation approach aimed at benefitting a close-knit community as a whole (which in turn will 

benefit the individual members). Such holistic personalisation approach allows for social processes to 

be taken into account, and the personalised support (in terms of notifications) to target individual 

community members, but aim at improving the knowledge sharing and functioning of the whole 

community as an entity. 

The paper makes the following contribution to research in personalisation in social environments, 

focusing on adaptive support for knowledge sharing in close-knit communities: 

• a novel semantic-enriched mechanism for extracting a community model based on log data 

analysis and underpinned by three key community processes (TM, SMM and CCen); 

• an original mechanism for discovering community knowledge sharing patterns by mapping 

the three community processes (TM, SMM, and CCen) to properties in graphs representing 

community relationships; and applying this mechanism for generating community-adapted 

notifications; 

• an experimental evaluation study which examines benefits and drawbacks of community-

adapted notifications and derives implications for future work in socio-personalisation. 

The next section will compare our approach with related work, pointing at key differences and 

justifying the major contribution of the research presented in this paper. Section 3 provides an 

overview of the proposed computational framework for community adapted support. Section 4 

presents the community model extraction mechanism. A graph-based mechanism for extracting 

community knowledge sharing behaviour patterns is described in Section 5, and the use of these 

patterns for adaptive notification generation is presented in Section 6. Section 7 presents an evaluation 

study describing the experimental design and the main findings, followed by a discussion on the 

lessons learnt and revisiting the research questions to conclude the paper. 

2 Related Work 

Our approach relates to existing work in three research areas. Firstly, we will compare to similar user 

modelling approaches. Then, a comparison will be provided to social network techniques that use 

graph based algorithms for identifying connections based on people’s interactions in social settings. 

Finally, we will discuss relevant approaches for intelligent support in social environments. 

2.1 User Modelling Approaches  

Modelling virtual communities has recently become popular in different research areas. For the 

purpose of this research, approaches from both user modelling and social network areas are 

considered as important and discussed in this section. In user modelling, modelling a group provides 

the grounds for generating group recommendations (Masthoff, 2004); in social networks, community 

modelling aids the discovery of relationships between people or communities (Lin et al., 2008).  

Discovering Connections: A fairly simple and elegant community model is presented in (Cheng 

and Vassileva, 2006). It is based on a list of topics based on the resources VC members are sharing. A 

reward factor is calculated to measure the relevance of each contributed resource to the current topic 

the VC is working on. Each member has an individual user model consisting of the reputation 

measure of that member in the VC (Cheng and Vassileva, 2006). An earlier work in the same group 

presented a more elaborate relationship model (Bretzke and Vassileva, 2003), which is the closest to 

ours. Users’ interests are modelled in (Bretzke and Vassileva, 2003) considering how frequently and 

how recently users have searched within a specific area from the ACM taxonomy, and user 

relationships are derived based on any successful download or service that took place between two 

users. In contrast, our approach employs the metadata of the resources shared in the community along 

with an ontology representing the community context, and derives a semantically relevant list of 

interests for every user.  
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Modelling Interests: A different approach is followed by Tian et.al. (2001) where the community 

model represents the interaction activities that happened in the VC. All interactions are associated 

with a core lexicon which represents the interests of people in the VC. User interests are modelled 

according to the interactions each user is performing in the VC and associated to the core lexicon of 

the VC. Shared interests or relationships are also modelled based on social interaction activities of 

users, and are linked to the VC lexicon. The approach presented in this paper also models user 

interests based on resources members are uploading or downloading. However, we exploit semantic 

enrichment of the uploading/downloading activities by using, in addition to the resource key words, 

concepts extracted from an ontology. For example, we use semantically-enriched data to extract 

interest similarity between community members.  

User interests have been extensively studied also in (Davies et al, 2003) - an approach where user 

interests are extracted as keywords from the user profiles and other web content shared by a user in 

the community is presented. An ontology is then accessed, where associations are derived with 

ontology concepts and further recommendations are made to users. Interests are also used in finding 

relationships between users or connections in social graphs. Li et al (2008) are extracting interests 

based on tags users ascribe to items posted online. Relationships/associations between users are 

derived based on their tags. This is similar to the interest relationship model used in our work - both 

approaches consider that members can be connected by interest similarity even when they have not 

read any resources uploaded by each other. 

Modelling Expertise: Interests of users are usually associated with expertise, especially in social 

network research (Song et al., 2005; Fu et al., 2007; Lin et al., 2007; Zhang et al., 2007). Zhang et al. 

(2007) extract shared interests in a discussion based on posting/replying threads. Based on the 

discussion topics a member of the community is contributing to, his/her interests and expertise are 

extracted; subsequently, user interest relationships are obtained. Fu et al. (2007) are following a 

similar method but are mining email communication networks. Relationships are inferred according to 

the expertise/interests of members, which are extracted from communication recorded in their email 

conversations. Modelling expertise relations plotted as graphs is also explored by Song et al.(2005). A 

relational network is extracted according to people’s publications. The expertise/interests of a person 

are obtained by his/her previous publications; and two people are considered related if they have 

publications in the same research area. The work presented here adds to the above approaches. Our 

approach does not identify only expertise, but also derives a person’s influence in the VC based on the 

relationships he/she has developed with others, which can benefit the VC as a whole.  

Community Graph Models: Existing research employed graph theory to model communities and 

relationships between members (Hubscher and Puntambekar, 2004; Kay et al., 2006) or members’ 

interactions in general (Falkowski et al., 2007; Falkowski and Spiliopoulou, 2007). In (Hubscher and 

Puntambekar, 2004), the individual user model represents the conceptual understanding of a user, 

based on which a graph network is constructed. Similarities are then extracted according to a user’s 

conceptual understanding, and group models are derived based on the distance between members in a 

graph. Kay et al. (2006) uses the notion of an interaction network to represent relationships between 

users in a learning community. Two members are related if they have modified the same resource; 

hence, they appear connected in the interaction graph. Falkowski et al. (2007) consider the exchange 

of messages as an interaction between two users, represented in a graph. A relationship between two 

users exists if they have engaged in some message exchange (Falkowski and Spiliopoulou, 2007). Our 

work also follows a graph-based approach to model a community. The key contribution of the 

approach presented here to graph community modelling is the consideration of semantic relationships 

in addition to the interactions between users, i.e. an edge connecting two members represents their 

semantic similarity to each other, and the relevance of this link to the community’s domain.  

2.2 Graph-based Approaches for Social Network Analysis 

Graph mining has been used in social network analysis primarily for monitoring information flow 

and improving communication in organisations (Chakrabarti and Faloutsos, 2006). In social networks, 

graphs represent individuals as nodes, and edges are their interconnections, which can represent 

business relationships, email conversations or, as in this research, semantic relationships based on 

knowledge sharing. Structural patterns in social networks refer to mathematical attributes of graphs 
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that can be recognised in a network (e.g. cliques, degree centrality, structural equivalence, and 

structural holes). These are quantitative approaches that do not consider any semantics and thus have 

yet to be applied to the investigation of social “roles” (e.g. newcomers, oldtimers) or social “power” 

(e.g. central or peripheral members). A review of different methods used for extracting communities 

(sub-networks of people structurally connected together in a graph) from large networks over the web 

is given in (Chakrabarti and Faloutsos, 2006). These approaches focus on structural attributes of 

graphs which are linked to patterns that can be identified in peoples’ interactions (Khan and Shaikh, 

2006; Lo and Lin, 2006; De Choudhury et al., 2007; Viermetz and Skubacz, 2007; Kunegis et al., 

2009). We review them below discussing common features with our approach. 

Measuring Centrality: Viermetz and Skubacz (2007) apply text mining techniques to email 

conversations to extract patterns/networks of people and their relationships. Keywords are extracted 

from email communications to form vectors, each vector represents a single message. From this, a 

network of email messages is built. Clusters of similar messages are found using DBScan (Ester et al., 

1996). Network segmentation combines the messages for each topic cluster into a sub-graph of the 

messages extracted by the actors involved. The centrality of each actor is measured according to how 

central the topics of the messages exchanged by this actor are. Compared to our work, it can be noted 

that the text analysis does not consider the relevance of each email message to the overall community. 

Thus, the extracted centrality measure considers only the keywords associated with a user and does 

not take into account the importance of these keywords to the community as a whole. In addition, our 

approach measures centrality considering also the relevance of a resource or a relationship between 

two members to the rest of the community by using an ontology representing the community domain.  

Extracting Patterns of Behaviour: A publication network is used in (Khan and Shaikh, 2006) to 

extract predefined algebraic functions that represent social relationships in a network. The patterns 

developed have been applied to an existing publication network to extract reviewers for a specific 

paper. The algebraic functions deal with structural functions of graphs and have no added semantics. 

For example, in the extracted network a binary 1 represents that an edge exists between two nodes and 

a 0 denotes no edge between the two nodes. This does not represent any semantic connection between 

the two nodes in the network. A different application discussed by Khan and Shaikh (2006) is to 

identify who will be infected from the nearest network of a person if that person is infected with some 

kind of virus. In order to discover who will need immunisation, algebraic functions are applied to the 

network of that person using structural characteristics of the social network graph (matrices and sets 

operations). In contrast, our approach not only takes into account structural characteristics of the 

graphs, but also links these characteristics to patterns related to social processes in close-knit VCs. 

A recommendation tool developed in (Lo and Lin, 2006) suggests friends to community members 

based on exchange of messages. Sending messages to each other is the connection that exists between 

two community members in their network. No semantic information representing the message content 

is considered. In our work, semantics is taken from the keywords of the resources shared by members. 

In addition, we also consider different connection types between two members (e.g. if two members 

read, upload similar resources, or have resources shared with each other). 

All the above approaches have developed some pattern algorithms and employed them to analyse 

people networks. Generally, we follow the same approach. However, our approach focuses on 

modelling semantic relationships via graphs, i.e. an edge connecting two members represents their 

semantic similarity to each other, and the relevance of this link to the community’s domain. This, 

combined with the theoretical underpinning, forms our contribution to social network analysis, i.e. a 

graph-based approach for qualitative analysis to automatically detect relevant interaction patterns.  

2.3 Relevant Techniques for Virtual Communities 

There is a growing interest in providing intelligent support for teams, groups and communities.  

Visualization Techniques: Visualization techniques are among the most popular methods that can 

be employed to present group and community models in a graphical way, to help groups function 

more effectively (Kay et al., 2006; Upton and Kay, 2009; Ardissono et al., 2011), to motivate 

community participation (Cheng and Vassileva, 2006), and to make members aware of reciprocal 

relationships (Sankaranarayanan and Vassileva, 2009). The key limitation of visualization techniques 

is their passive influence on the functioning of the community, e.g. while examining graphical 
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representations members may not be able to see how their contribution could be beneficial for the 

community as a whole and what activities they can engage in. In contrast, we analyse a community 

model to automatically detect problematic cases which can be used to decide when and how to 

intervene, offering support to improve the knowledge sharing processes in the community.  

Identifying Interest Clusters: User browsing behaviour has been used as a source for identifying 

clusters of users with similar interests (Pierrakos and Paliouras, 2010). Such clusters play the role of 

community models, and can be used for personalisation by narrowing down the search space and 

choosing the category most related to the user’s interests. The community web directory modelling 

approach is applicable to a large, loosely structured community, and this enables the use of clustering 

and probabilistic modelling techniques. In contrast, we consider close-knit communities, where the 

interests are more compact (i.e. there exists a common community context, which we represent as an 

ontology) and relationships between users develop based on uploading and downloading of resources 

related to the community context. Hence, instead of machine learning techniques, we consider 

semantic augmentation and similarity, which allows us to model relationships at a finer granularity. 

Identifying Expertise: Different tools and algorithms have been developed to support people in 

locating expertise on a specific subject inside groups or VCs (Shami et al., 2007; Zhang et al., 2007; 

Pal et al., 2011). Our work contributes to this research stream. In addition to identifying the interests 

and expertise of community members, we detect possible connections between members which have 

not been exploited in the community. This is used in notification messages to encourage cognitively 

central and peripheral members to engage in interactions beneficial for the VC.  

Intelligent Group Interventions: The closest to our approach is research on intelligent 

interventions to support groups or communities, which are usually used to augment existing 

collaboration environments. For example, (Baghaei and Mitrovic, 2007) extend a constraint-based 

tutoring system with intelligent feedback, based on analysis of students’ activities and comparing 

them to an ideal model of collaboration, which is intended at making the collaboration process more 

effective. Collective bookmarking systems have been extended with algorithms for detecting and 

promoting cognitively central menbers (Bretzke and Vassileva, 2003; Farzan et al., 2009). Most 

recently, (Ardissono and Bosio, 2012) propose extending collaboration environments to improve user 

awareness by providing context-aware notifications delivered on the basis of the user's current 

activities and taking into account collaboration context. Our work is positioned in this research stream 

and makes a unique contribution by examining how social processes (transactive memory, shared 

mental models, and cognitive centrality) seen as important for the functioning of a close-knit VC can 

inform the generation of notification messages. The key novelty of our work is that we consider 

semantics between relationships and suggest community interventions aimed at improving the 

functioning of the VC as an entity taking into account TM, SMM, and CCen. 

In the next section we will present the computational framework developed in this research and 

discussed its main components. 

3 Computational framework for community adapted support 

The main hypothesis of this research is that providing adaptation tailored to the community as a 

whole by promoting the building of TM, development of SMM, and identifying CCen inside the 

community can improve the functioning of a close-knit VC. Based on this, and following the general 

architecture of user-adaptive systems presented in (Jameson, 2003), a framework for providing 

intelligent support to virtual communities has been defined (see Figure 1). It includes: (i) acquisition 

of a community model that represents the whole community and focuses on aspects related to 

Transactive Memory (TM), Shared Mental Models (SMM), and Cognitive Centrality (CCen); (ii) 

application of the community model to extract patterns of knowledge sharing behaviour that are 

influenced by TM, SMM and CCen and (iii) using the detected patterns to offer adaptive notifications 

and improve the functioning of the community.  



7 

 
Figure 1 Computational framework to provide holistic support to close-knit VC. A Community Model is 

extracted from formalised system tracking (log) data. Knowledge sharing patterns are defined based on TM, 

SMM, and CCen. Using the extracted patterns, adaptive notifications are generated. 

Community Model Extraction: Extracting a community model involves identifying the input 

data, formalising the input data and defining the community model components. The main input for 

our framework is tracking data from a knowledge management system the VC uses. We consider 

generic tracking data common in most knowledge management system. This includes information 

about: members, reading/uploading resources, folder creation/deletion, and resource rating. In 

addition to the tracking data, we consider metadata which can be extracted from the resources people 

are sharing. Metadata is an important addition to the input data since they provide the semantic 

information about a resource that is missing from the tracking data. Dublin Core is selected over the 

IEEE Metadata element set since it is much simpler in structure. To further semantically empower the 

community model acquisition algorithms, an ontology representing the main topics of the community 

is employed. The ontology represents the vocabulary relevant to the main area of interest of the 

community under study. Furthermore, WordNet is used to measure the semantic importance of a 

resource to the VC and the semantic similarity between members and resources. A description of the 

community model extraction mechanism is provided in Section 4. 

Knowledge Sharing Patterns Extraction: In order to provide intelligent support to VC members, 

relevant situations/patterns have to be discovered. The extracted community model is used as an input 

for the mechanism for automatic detection of knowledge sharing patterns related to TM, SMM, and 

CCen. The community model includes several relationships represented as graphs. Graph based 

algorithms have been defined to automatically detect pre-defined patterns from the community 

relationship graphs. Detected patterns relate to lack of awareness regarding similarity or 

complementarity between members, as well as interesting behaviour of cognitively central or 

peripheral members. The detected patterns serve as an input to algorithms which generate intelligent 

community-tailored support. The mechanism for extracting community knowledge sharing patterns is 

presented in Section 5. 

Adaptive Notifications Generation: The purpose of detecting knowledge sharing behaviour 

patterns is to assist with providing personalised support where and when needed. Support in this work 

is designed as personalised notification messages that target individuals or groups of members who 

are detected in a specific pattern and will benefit from a specific message. The personalisation aspect 

lays in the content of the notification messages, containing information tailored to the detected 

behaviour of each member and target four important community participation and awareness aspects, 

such as participation of central and peripheral members, improving the community TM, and 
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developing SMM. The mechanism for automatic generation of community-tailored notifications is 

presented in Section 6. 

4 Community Model Extraction 

This section will provide detail of the stages followed for extracting a community model. Firstly we 

will formalise the input data used for extracting the community model. Then the use of an ontology 

and the WordNet similarity mechanism will be described. At the end, algorithms for extracting a 

community model will be presented and discussed in detail.  

4.1 Input Formalisation  

Input formalisation is the first step towards the implementation of the community model. A 

conventional structure of log data stored by knowledge sharing applications is considered. A 

community environment contains elements related to the functioning of a knowledge sharing 

community, and includes a list of members M , set of resources R  and set of folders F  organised in a 

hierarchical structure. The community environment E  is defined as E: M,R,F  . E  is changing over 

time as a result of actions performed by community members, including a member registering to the 

community, a member leaving the community, creating a new folder, uploading a new resource to the 

environment, downloading a resource from the environment, adding a new description to a resource. 

These actions can cause the environment to evolve, e.g. topics to change or members to move into the 

periphery or the centre of the community. The actions are recorded in log data which can be analysed 

periodically to extract a community model and detect changes in E . A description of the tracking data 

is presented in Table 1. The log data also includes information about members, resources, and folders.  

When a member m ( )Mm∈  joins the community, information about their name, email address and 

date of joining is recorded. Thus, members are represented as mDateJoin mEmail, mName,:m . The 

community knowledge sharing space includes resources uploaded and downloaded by community 

members. A resource r  ( )Rr ∈  will be represented as tuple r: rCreatedData, rMetadata , where 

 tarCreatedDa is information created by the member who uploads the resource, while rMetadata is 

metadata associated with this resource. The metadata provides the first semantic layer used for 

community modelling. Resource keywords are used for semantically comparing resources. 

When a member uploads a resource r , he/she creates some metadata about this resource. We denote 

this data with rCreatedData: rFolder, rName, rDescription, rRating, rCreator, rDate, rAssessors, rReaders , 

where rFolder is the folder storing the resource; rName  is the name of the resource (as given by the 

creator, and may be different from the original title of the resource), rDescription denotes a set of 

resource descriptions provided by different members { }nn2211 m,rd,,m,rd,m,rd :onrDescripti … ; 

rRating is a number which is the average rating given to that resource by community members, 

{ }n nrAssessors ra m ra m ra m1 1 2 2: , , , , , ,…  represents the ratings given by members to this resource; 

rCreator  is a member ( )∈rCreator M  who is the creator of the specific resource (usually the member 

who uploads the resource in the community knowledge sharing space); rDate  is the date the resource 

was uploaded; rReaders indicates which members have read (downloaded) this resource. 

In addition to the meta-data provided by the resource creator, there is existing metadata included in 

the resource itself. This is indicated wirh rMetadata  and represent the reseource metadata following 

the Dublin Core
4
 schema (the basic and most conventional standard for online resources). The 

following elements have been selected from the Dublin Core metadata schema 

rMetadata rTitle, rAuthor, rSource, rKeywords, rDatePublish: . rMetadata  can be either extracted 

from the uploaded resources or provided by the rCreator  when he/she uploads the resource.  

Table 1 Summary of tracking data and resource metadata formalisation 

                                                      
4
 The Dublin Core Metadata Initiative (http://dublincore.org/), is an open organization engaged in the 

development of interoperable metadata standards for sharing resources on the web.  
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Description Formalisation 

Data about a member m  mDateJoin mEmail, mName,:m  

The creator of a resource r  rCreator M∈  

Data about a resource r  created by the member who 

uploaded the resource ( rCreator )  

rCreatedData: <rFolder, rName, rDescription, rRating,

rCreator, rDate, rAssessors, rReaders>

 

Dublin Core based metadata for a resource r  rMetadata rTitle, rAuthor, rSource, 

rKeywords, rDatePublish>

:<
 

Keywords of a resource r  n21 k ,,k ,k:rKeywords …  

Descriptions for r  provided by members 1 nm m...  { }nn2211 m,rd,,m,rd,m,rd :onrDescripti …  

Assessments (ratings) for r provided by members 

1 nm m... . 
{ }n nrAssessors ra m ra m ra m1 1 2 2: , , , , , ,…  

Members who have read (downloaded) resources r  rReaders: { 1 nm m... } 

The most important metadata for our community modelling mechanism is 

n21 k ,,k ,k:rKeywords … , which is used as a source for comparing resources and users. To compare a 

set of key words, we link them to an ontology which represents the community context. This enables 

positioning a resource within the community context, and allows enriching the keywords list with 

relevant concepts, as well as measuring how important a resource is for the community. The next 

section will provide detail about the use of the ontology for community model extraction. 

4.2 Use of an Ontology 

The domain in which the knowledge sharing community operates is represented as an ontology. 

The vocabulary composes the classes of the ontology and represents the domain topics of interest to 

the VC. The ontology �  is selected according to the subject of focus of the community. The ontology 

is used as a source to semantically empower the algorithms for extracting the community model. For 

example in the case of the VC which is used in the experimental study in Section 7, an ontology that 

represents the Personalisation and Knowledge Management domain has been employed. The ontology 

has been built using concepts extracted from the folder hierarchy of the community space. The 

hierarchy is modified to represent logical relations (subClassOf), between concepts; the ontology 

consists of 159 classes. All concepts of the ontology were transformed into nouns so they can be used 

as a direct input in the WordNet similarity measure algorithm (described in Section 4.3).  

The relevance of an uploaded or downloaded resource to the community is checked against the 

domain of the particular VC by using� . This is used to determine the value a resource has for the 

community, to identify similarity between resources, and to detect semantic similarities between 

members. �  is used to determine the value a resource uploaded by a member and read by another 

member has to the VC. Consequently, the value of a resource ir  for the VC is defined as 

( ,�)
ir iV Sim rKeywords=  where ( ,�)iSim rKeywords  is the similarity of the list of keywords irKeywords  of 

a resource ir  to the ontology � . The similarity is obtained using WordNet (see Section 4.3).  

The second way the ontology is used is to define the similarity between community members based 

on the resources they are reading, uploading, and their interests. For each member m ( )Mm ∈ , a list of 

key words for that member ( mKeywords ) is composed by aggregating the key words for all resources 

m  has created (uploaded). Using the ontology � , the list of keywords for each member m  

( mKeywords ) is semantically enriched. This enables us to define member similarity based on the 

community context, where similarities and relations between members which are relevant to the 

community are rewarded and the less relevant relations are still counted but do not have strong 

influence on the strength of the relationship between members.  

To semantically augment the keywords for a member m ( )Mm ∈  ( mKeywords ) using the ontology � , 

we do the following. For each keyword mKeywordsk ∈  
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1. Check that k is a label for a concept in the ontology.  

2. If k �∈ , pull from �  all direct super classes, and all direct sub classes: Super k Sub k( ,�) ( ,�)∪  

and use them to expand the key word list mKeywords . 

3. If k �∉ , perform a similarity check Sim(k, )Ω  by using a WordNet similarity algorithm (e.g. 

in the implementation we used the algorithm presented in Section 4.3), in order to get the 

most similar concept SimC  to k  from the ontology. Once a similar concept SimC  is selected, go 

to step 2 and perform the corresponding enrichment.  

This is illustrated with the following example. Consider a member a  and assume that the list of 

keywords for this member is { }aKeywords semantic web, knowledge sharing, context, collaboration= . Take 

k collaboration= , which is linked to a label of a concept in the ontology, i.,e. �k ∈ . Then, we use the 

algorithm ( ,�) ( ,�)Super collaboration Sub collaboration∪  to extract the direct super and sub classes of 

collaboration  from the ontology. In this example - for Collaboration based on the ontology used the 

classes Knowledge Management (as a super class) and Information Sharing  (as a sub class) will be 

returned. Knowledge Management  and Information Sharing  will then be added into the list aKeywords  to 

semantically enhance the list of keywords of member a . If k net=  and k �∉ , then we perform a 

similarity check Sim(net, )Ω  by using the WordNet similarity algorithm and the most similar concept 

SimC web=  will be returned. Then, the super and sub classes of web  will be added to aKeywords . 

The use of the ontology in this work is inspired by approaches followed in linked data where an 

existing, stable ontology is used to semantically augment and link content. In our case, this also 

allowed to measure similarity between resources and community members based on the concepts in 

the ontology. Instead of using a pre-defined ontology, the emerging community ontology could be 

integrated. Although the existing framework could be applied in this case (by simply taking a 

snapshot of the ontology at the time when the community model is being obtained as opposed to using 

the same ontology throughout), further research is needed to examine what similarity metrics would 

be appropriate when the community context changes dynamically. For instance, when the ontology 

changes, the importance of a resource would change, as it would be linked to a different sent of 

concepts at any different time. This will also affect the strength of relationships between members.  

 

4.3 Measuring Semantic Similarity based on WordNet 

Semantic similarity relates to measuring the similarity between concepts which are not 

lexicographically similar but have similar meaning (Varelas et al., 2005). In Natural Language 

Processing it is commonly argued that language semantics are mostly captured by nouns so it is 

common to built retrieval methods based on noun representations extracted from documents and 

queries (Varelas et al., 2005). WordNet is the most popular method for implementing semantic 

similarity (Liu et al., 2004; Seco et al., 2004; Tagalakis and Keane, 2005; Varelas et al., 2005). 

The community modelling algorithms (presented in Section 4.4) utilise a mechanism for 

measuring the similarity between two lists of terms. If L1 and L2 are two lists of terms, we define a 

similarity function Sim L L1 2( , )  which returns a number that indicates how close semantically the terms in 

both lists are. For this, we adapt the algorithm presented in (Seco et al., 2004), which calculates the 

semantic similarity between two words based on the WordNet taxonomic structure. The algorithm by 

Seco, Veale and Hayes (2004) accepts nouns as input and returns a decimal number (0, no similarity – 

1, the same meaning) as an output, which represents the semantic similarity between two words. 

Following the work of Tagalakis and Keane (2005), the original formula has been modified as 

follows. Having two compounds cc1  and cc2  composed of { }ic c1

1 1,...,  and { }jc c1

2 2,...,  terms respectively, 

for each term of cc1  we perform a similarity check with every term of cc2  and store the highest value 

returned for each term ic 1  of cc1  in an array. The same is done for every term of cc2 , ic 2  with all the 

terms of cc1  and the highest value returned for each term ic 2  is stored. All highest values for the terms 

of cc1  and cc2  are added up and divided by the sum of the total number of terms appearing in cc1  and 

cc2 , i j+  (see Formula 1). 
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( ) ( )

( ) ( )

j i j

i j i

sim c c c c sim c c c c
sim cc cc

i j

sim c c c c sim c c c c

i j

1 1 2 1 2

1 2 2 2 1 2 2 2

1 2

1 1 2 1 2

2 1 1 1 2 1 1 1

max ( ,{ , ,..., }) ... max ( , { , ,..., })
'( , )

max ( ,{ , ,..., }) ... max ( , { , ,..., })

+ + +
=

+

+ + +

+

    (1) 

Formula 1 is used in the algorithms presented in the next section to extract the VC model. 

4.4 Community Model Extraction Mechanism 

The community model represents the whole community, including individual members, relationships 

between members, topics of interest and the cognitively central members. Hence, it consists of 

individual user models, a relationships model, the community domain (ontology), lists of popular and 

peripheral topics, and a list of cognitively central members. The main components of the community 

model are illustrated in Figure 2. 

 
Figure 2 The components of the community model  

The benefits of having this community model are to: (i) extract and store information about 

individual community members, in order to design and generate personalised messages; (ii) develop a 

relationships model of interactions and identify semantic links between community members that can 

be used in personalising the notification messages; (iii) represent the community domain, as an 

ontology, to semantically enhance the algorithms and measure how relevant the extracted 

relationships are to the rest of the community; and (iv) maintain a list of the most cognitively central 

members based on the semantic relevance their activities have to the community, and use this list to 

provide more personalised support to specific members. The rest of this section will provide a detailed 

description for each component of the community model, together with corresponding algorithms 

used for its extraction. 

4.4.1 Relationship Model 

We consider four types of semantic relationships between community members: ReadRes relationship 

indicates links based on reading resources uploaded by others, ReadSim and UploadSim  relationships 

are based on similarity of read or uploaded resources, respectively, and InterestSim  indicates 

relationship based on similarity of members’ interests. The above relationships exist between 

community members and indicate semantic connections that can be represented in a graph (more 

detail of graph definitions used is given in Section 5). In this work, we assume that a downloaded 

resource has been read by the member who downloaded it. Thus downloading and reading is used 

interchangeably in the following sections. 

ReadRes Relationship 

ReadRes  can be used to identify complementarity between community members, which can help to 

improve the community’s transactive memory. 
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ReadRes a b( , )  relationship indicates that resources uploaded by member b  are read by member a ; 

the relationship strength corresponds to the number of resources and their relevance to the community 

domain. In other words, the closeness of the members depends not only on the quantity of the 

resources uploaded by one member and read by the other member, but also, and more importantly, on 

the relevance of these resources to the VC context. In this way, quality interactions in the community 

are rewarded. On the other hand, even if a relation is not very related to the community’s topic, it will 

still be detected but the value of this relation will be lower. 

Consider a resource ir  uploaded by member b and read by member a . We will denote the 

keywords for resource ir  with irKeywords . Considering the community domain which is represented 

by the ontology� , we define the value of ir for the community as ( ,�)
ir iV Sim rKeywords= , where the 

similarity is calculated based on the modified WordNet algorithm (Section 4.3). Let us denote Ζa b
r

← to 

be the number of resources uploaded by b and read by a . The value of ReadRes a b( , )  is the sum of all 

values of the resources uploaded by b  and read by a , based on their relevance to the community 

domain, i.e.: 
a b
r

ir

i

ReadRes a b V

Ζ

1

( , )

←

=

= ∑     (2) 

ReadSim and UploadSim Relationships 

ReadSim  and UploadSim  relationships can also be important for discovering similarities between 

members. Making people aware of who else is holding knowledge similar to theirs can improve the 

community’s transactive memory system. This can also improve the understanding of what is 

happening in the community which can be related to the development of shared mental models.  

ReadSim a b( , )  indicates that members a  and b  have read semantically similar resources, while 

UploadSim a b( , )  indicates that a  and b  have uploaded similar resources. Here the value of a resource 

with respect to the ontology is not directly measured as in ReadRes, since what we are interested in 

the similarity of the resources that two members have uploaded or downloaded. The relevance of their 

relationship to the community will be reflected in the corresponding similarity calculation since the 

list of keywords they uploaded or downloaded is expanded based on the domain ontology. 

To calculate ReadSim a b( , ) , we derive an extended list of keywords for each member by combining 

the keywords of every resource read by this member and enriching with additional keywords 

extracted from� , as described in Section 4.2. Having the additional keywords extracted from the 

ontology, we then construct the extended list of keywords for each member. Let us denote these 

extended keyword lists as aKeywords  and bKeywords . 

These lists are compared to find the similarity between the two members by using the extended 

WordNet similarity algorithm presented in section 4.3. Consequently, ReadSim a b( , ) , is calculated as: 

ReadSim a b Sim aKeywords bKeywords( , ) ( , )=    (3) 

UploadSim a b( , ) is calculated in the same way by using the resources uploaded by a  and b . 

UploadSim a b Sim aKeywords bKeywords( , ) ( , )=    (4) 

InterestSim Relationship 

InterestSim  relationship can identify interest similarities and complementarities. Making members 

aware how their interests relate to the others can motivate participation. Finding people with similar 

interests and making them aware of this similarity can indicate possibilities for collaboration. 

Awareness of other people’s interests can improve the shared understanding the members have about 

the community and help the development of shared mental models. 

InterestSim a b( , )  relationship represents the similarity of interests between members a and b .  

To derive interests of a member, we considered the resources he/she has uploaded and 

downloaded. Using the keywords rKeywords  for each resource uploaded or downloaded by member a  

and extending those with the concepts extracted from the ontology, a ’s personal list of interests 
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ext(a)I is extracted. The extended lists of personal interests of member a  ( ext(a)I ) and member b  ( ext(b)I ) 

are compared using the extended WordNet similarity algorithm (Section 4.3) to calculate the interest 

similarity between a and b : 

ext(a) ext(b)InterestSim(a,b) Sim( , )= Ι Ι    (5) 

The use of the ontology allows us to identify broader similar and complementary topics among 

community members. Although the interests of a member aI  are extended with terms from the 

ontology �  to calculate similarity between members based on their interests (i.e. InterestSim ), a 

member’s interest in his/her individual user model will not be changed. The next section will give 

more detail of how the individual user models are extracted. 

4.4.2 Individual User Models 

Cognitive Centrality 

The cognitive centrality is used to identify the importance of a community model to the VC. This can 

be helpful to identify the central members and how they contribute to the community. It can also be 

useful in identifying unique knowledge held by peripheral members. This is important for the 

community’s sustainability and flexibility - interests might shift in time (Lave and Wenger, 1991), 

knowing where unique knowledge is located can facilitate the transition from one subject area to 

another (Wegner, 1986). Awareness of who the central and peripheral members of the VC are can 

also help the improvement of the community shared mental models and transactive memory. 

There are different approaches to measure centrality used in the social network area, mostly 

inherited from graph centrality (Nieminen, 1974; Freeman, 1979; Freeman et al., 1991; Borgatti and 

Everett, 2006; Latora and Marchiori, 2007). Freeman (1979) describes in a general review three types 

of centrality as developed in social network research: degree, betweenness and closeness centrality. 

CCen deals with a member who holds the most valuable knowledge in the community. In our 

approach the importance of the knowledge a member holds depends on the relationships a member 

has (semantic connections) with other members. Consequently, in this research we are following and 

adapting the degree centrality as introduced by Nieminen (1974) where the degree centrality of a point 

in a graph is measured according to how many points that given point is connected to in the graph.  

Here we adapt the original formula as follows: ( )CCen a  of member a  is calculated as the number 

of all relationships member a  is having with any member b  (adding the value of the edge connecting 

the two members in the graph) considering the four relationship types (ReadRes, ReadSim, 

UploadSim and InterestSim).  

( )
n

b

CCen a ReadRes(a,b)+ReadSim(a,b)+UploadSim(a,b)+InterestSim(a,b)

1

( )

=

=∑     (6) 

where n represents the number of members in the community 

User Interests 

The interests of each user are stored in the individual user models. Interests are extracted based on 

the resources a member has uploaded and/or downloaded in the VC, or information users provide 

explicitly about their interests (if such a feature is available). The keywords (tags) of each of the 

resources member a  is uploading or downloading are aggregated in a ’s individual model. Using 

rKeywords for each resource uploaded or downloaded by a user, his/her interests are represented as a 

list of keywords with weights. For example, all keywords that member a  has shown any interest in 

are aggregated in the list aT , where every term at T∈  has weight ( , )aw t T that indicates the frequency of 

t in aT . The use of a weight ( , )aw t T  allows the mechanism to be used as an input in a system and 

display the keywords of a member as a tag cloud or folksonomy. If ( , ) Θaw t T ≥  (Θ is a threshold), t is 

added to the interests of a denoted by aI . aI is presented as member a ’s personal list of interests. 

Threshold Θ can be adjusted according to the size of list aT  in such a way that will allow a list of 

interests aI  to be created for every community member. For example if aT  is small, then Θ  will be 
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small so keywords will be allowed to be added to the list aI . Having Θ  allows the approach to be 

flexible and accommodate close-knit VC of smaller or larger sizes. In the study presented in this paper 

(Section 7) the value of Θ  was set to be 2. Not having a large number of resources, thus keywords 

shared within the VC, means that a value of Θ >2 was resulting in interests not being extracted for 

most members.  

Participation, Relationships and Personal Hierarchies 

In addition, the individual user model includes participation measures, relationships developed and 

hierarchies of folders built in the community by an individual member. 

Participation: The frequency of knowledge sharing activities of a member (uploading or 

downloading) is stored in his/her individual user model - uRate  is the number of resources uploaded, 

and dRate  also is the number of resources downloaded.  

Relationships: Each participating member in the VC is developing relationships with other 

members of the VC. These relationships ReadRes, ReadSim, UploadSim, InterestSim  are stored for each 

member in his/her personal profile.  

Personal Hierarchies: Folders F  and resources R  created by each member in the VC compose the 

personal hierarchies that a member is creating. The personal hierarchies can be used in extracting the 

resources and folders a member has created, providing information for the notification messages 

generated for individual members, see Section 6.  

4.4.3 Popular/Peripheral Topics and Cognitively Central Members 

List of Popular and Peripheral Topics 

In order for the VC to be able to adapt to changes (for example the main topic of interest of the VC 

is shifting or a new project comes and community members need to identify what resources in the 

community are relevant), a list of the most popular and peripheral topics has to be maintained. This 

will allow exploitation of knowledge that both cognitively central members (CCenM) and cognitively 

peripheral members (CPerM) have to offer in the VC. These lists are extracted based on the resources 

people are sharing in the VC and on the assumption that shared resources correspond to topics of 

interest of the VC members.  

Based on the keywords of the resources members are sharing in the VC, two lists of topics are 

extracted: PopL  represent the lists of popular topics and PerL  represents the list of peripheral topics. 

Assuming the keywords rKeywords  for each resource, a list allKeywords  is constructed which consists 

of all the keywords of all the resources in the VC. Each keywords is assigned a weight, 

( , )w k allKeywords  which represents the frequency of a keyword k  in allKeywords . If 

( , ) σPopw k allKeywords >  (σPop  is a threshold), k  is added to the list of popular topics PopL . If 

( , ) σPerw k allKeywords <  (σPer  is a threshold), k  is added in the list of peripheral topics PerL . PopL  and 

PerL  are updated each time a new community model is extracted for the VC. ThresholdsσPop  and 

σPer  can be adjusted according to the number of keywords appearing in allKeywords . Thus, if the list 

of allKeywords  is small, then σPop  and σPer  can be adjusted to let more keywords enter PopL  and PerL  

accordingly. This allows the approach to be applicable to close-knit VCs of different sizes. In the 

study presented in Section 7, after experimenting with different values, the values of thresholds were 

set to be Popσ 4≥  and Perσ 2≤ . Having these specific values for Popσ  and Perσ , allowed the topics 

added into the corresponding lists to represent the interests of cognitively central and peripheral 

members accordingly. 

List of Cognitively Central Members 

Having extracted the CCen  for every member in the VC, a list of members with the highest CCen  

is composed. The purpose is to have a list of the members who are sharing the most valuable 
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information to the VC at hand. This information can also be used in triggering the intelligent support 

described in Section 6. ( )CCen a  represents the cognitive centrality for member a  and ( )avg CCen  

defines the average cognitive centrality for the specific VC. If the ( ) ( )CCen a avg CCen> , then member 

a  is added in the list of cognitively central members for the VC under study. 

5 Knowledge Sharing Patterns Extraction 

This section presents graph based algorithms that automatically extract pre-defined static patterns 

from the community model defined earlier. The initial validation of the following graph based pattern 

detection algorithm has been presented in (Kleanthous and Dimitrova, 2010). 

5.1.1 Definition and Detection of Relationships in Graphs 

Each relationship in Section 4.4.1 defines a graph representing the corresponding links between 

community members: RS RS RSG V E( , )  is the graph derived for ReadSim , US US USG V E( , )  is the UploadSim  

graph, IS IS ISG V E( , )  is the InterestSim  graph, and RR RR RRG V E( , )  is the graph for ReadRes . RS RS RSG V E( , ) , 

US US USG V E( , )  and IS IS ISG V E( , )  are non-directed graphs of type G V E( , )  where V is the set of nodes 

representing community members and E  is the set of edges representing the existence of the 

corresponding relation between both members in the nodes. The weight of the edge corresponds to 

similarity between the members, using the algorithms presented in Section 4.4.1. An edge is present in 

a relationship graph only if the weight of that edge is greater than a pre-set threshold value. The value 

of the threshold can be adjusted according to the density of connections appearing in a graph, in such 

a way that the resultant graph is meaningful for the purpose for which it is constructed. For example, 

if only strong relationships need to be extracted the threshold value will be high so only highly 

weighted edges will be extracted. A neighbourhood of a node v , denoted as G vΝ ( ) , represents the ego 

network (Degenne and Forse, 1999) of v  and indicates members similar to v . Figure 3 shows 

example extracted graphs for InterestSim and ReadSim during the evaluation study (Section 7). 

 
  

 
Figure 3 InterestSim relation on the left shows the similarities in terms of interests between community 

members at the end of the third period of the evaluation study (Section 7). In this graph, M10, M8, M4 and M12 

only have an InterestSim with M5 but not among themselves. ReadSim relation on the right shows the 

similarities in terms of reading between the community members. On the left of that figure the disconnected 

dots represent the members who have not had a ReadSim with any other member in the community. 

RR RR RRG V E( , )  is a directed graph (Gross and Yellen, 1999), see Figure 4, where the direction of each 

edge represents that a member (head) has read a resource uploaded by another member (tail). Each 

node v  has an out-neighbourhood { }G v x V G v xΝ ( ) : ( ) :+
∈ →  representing community members who 

have downloaded resources uploaded by v , and in-neighbourhood, 

{ }G v x V G x vΝ ( ) : ( ) :−
∈ → representing members whose resources v  has downloaded.  
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Figure 4 ReadRes is represented in this Figure during the second period of the evaluation study (Section 7). The 

arrows show that members have read resources by other members. For example members M14, M11, M9 and 

M6 have read resources uploaded by M7. The isolated dots on the left show the members who do not have any 

ReadRes relation with others in the community. 

Let us denote member a  and member b  as members of a VC. A relation ReadSim a b( , )  exists if 

ab a be v v( , )=  or ba b ae v v( , )=  is in the set RSE . UploadSim  and InterestSim  can be detected in the same 

way using the respective graphs for each relationship type. ReadRes(a,b)  exists if there is an 

edge ab a be v v( , )= , ab RRe E∈ , i.e. b  has read resources uploaded by a . 

By analyzing the community relationships model and the individual user profiles, we can identify 

patterns of knowledge sharing behaviour related to TM, SMM, and CCen. The corresponding 

algorithms are presented in the next section. 

5.1.2 Detection of Knowledge Sharing Patterns 

A pattern is important if it can be detected and used in order to provide support to community 

members. We define seven patterns; for each pattern, we specify its relevance to TM, SMM and 

CCen, and describe how the pattern can be detected. 

P1. Unexplored similarity between community members 

Two members have ReadSim  with the same members but not among themselves. 

Importance: Identifying the above situation and making people aware of their unexplored 

similarity with others may motivate them to participate more actively, as pointed out in (Harper et al., 

2007). In addition, helping members understand that they hold complementary knowledge, (they 

might not be working in similar but related areas), improves the community TM system (Wegner, 

1986) and can promote collaboration within the community (Ilgen et al., 2005). 

Detection: To detect unexploited similarity between a  and b , we extract the neighbourhoods of 

both members from RS RS RSG V E( , ) . If one of the members does not belong to the other’s 

neighbourhood, pattern P1 is discovered:  

( ) ( )RS a RS b a RS bv v v vΝ ( ) Ν ( ) Ν ( )∩ ≠ ∅ ∧ ∉     (7) 

In the same way, P1 is defined for the UploadSim  and InterestSim  relationships. 

P2. Community members may not be aware of their similarity  

Two members have ReadSim  with the same members and among themselves. 

Importance: Community members may not be aware of how similar they are in terms of 

uploading, reading or interests with other members of the community. Detection of this pattern can be 

used to promote the development of SMM (Mohammed and Dumville, 2001) ( members will become 

aware of what others are working on), and enhance TM (Wegner, 1986) (members will know who 

they relate to in the community and how similar they are to others). 

Detection: This pattern is detected by extracting the neighbourhoods of both members from 

RS RS RSG V E( , ) . If one of the members belongs to the other’s neighbourhood, pattern P2 is identified:  

( ) ( )RS a RS b a RS bv v v vΝ ( ) Ν ( ) Ν ( )∩ ≠ ∅ ∧ ∈    (8) 

In a similar way, P2 is defined for the UploadSim  and InterestSim . 
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P3. Members not benefiting 

A member uploads resources but does not download. 

Importance: This pattern can be useful to identify members who are not downloading from the 

community. These members can be prompted to make the most of their time in the community.  

Detection: Detection of P3 is done by using the upload and download rates of a member: 

( ) ( )uRate a dRate a( ) 0 ( ) 0> ∧ =    (9) 

P4. Members not contributing 

A member who appears to download but not upload resources to the community can be detected 

similarly to P3, which can be denoted as 

( ) ( )uRate a dRate a( ) 0 ( ) 0= ∧ >   (10) 

P5. Important peripheral members not downloading 

Members who do not download and occasionally upload resources that other members have 

downloaded. 

Importance: We can use this pattern to motivate peripheral members (who have sporadically 

uploaded an important resource in the community but have not effectively engaged in other activities) 

to benefit from the community. Notifying them that others are interested in what they upload can 

motivate those members to start reading resources uploaded by the members they are similar to. This 

pattern may help to promote collaboration. 

Detection: P5 is calculated using the upload and download rates for a  and the out-neighbourhood 

in RR RR RRG V E( , )  to check that a  uploads relevant resources: 

( ) ( ) ( )RR auRate a dRate a v( ) 0 ( ) 0 Ν ( )+
> ∧ = ∧ ≠ ∅     (11) 

This pattern is a subset of P3. If both patterns P3 and P5 are detected, then only P5 will be considered. 

P6. Important peripheral members not uploading 

A member appears to download only and has InterestSim  with other members. 

Importance: This pattern can be used to motivate people who are only downloading from the 

community relevant resources to start uploading, by showing them how similar their interests are to 

other members. This can improve the TM system of the community since members will be aware of 

others’ interests (Wegner, 1986). Motivating them to upload to the community may help the 

community to sustain.  

Detection: To detect P6, we check a member’s upload and download rates and his/her 

neighbourhood in IS IS ISG V E( , ) : 

( ) ( ) ( )IS auRate a dRate a v( ) 0 ( ) 0 Ν ( )= ∧ > ∧ ≠ ∅     (12) 

Pattern P6 is a subset of P4. If both patterns P4 and P6 are detected, then only P6 will be considered. 

P7. Unexplored complimentary similarity between members 

Two members have UploadSim  but do not have ReadSim . 

Importance: Members who upload similar resources in the community but are not reading similar 

resources, have similar and complimentary interests but are unaware of this. Making these people 

aware of their similarities and differences may improve the TM system since members will be able to 

identify where important knowledge, for them, is located (Ilgen et al., 2005). At the same time, this 

may improve the building of SMM (Mohammed and Dumville, 2001), since members can appreciate 

how everybody contributes to the community. Awareness of where complimentary knowledge is 

located may encourage collaboration. 

Detection: P7 is identified using US US USG V E( , )  and RS RS RSG V E( , ) , and checking that one of the 

members belongs to the other member’s neighbourhood in US US USG V E( , )  but does not belong to the 

neighbourhood of that member in RS RS RSG V E( , ) :  

( ) ( )a US b a RS bv v v vΝ ( ) Ν ( )∈ ∧ ∉     13 

Table 2 summarises the patterns, indicating when and how they can be used to generate adaptive 

notifications and how this relate to the key social processes – TM, SMM and CCen. 
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The above algorithms can capture patterns of behaviour in the VC at certain time points. All 

measures including CCen, are set to zero before the next time point is considered and the above 

pattern algorithms are applied. Consequently, if a member is detected as important at time point 1 and 

at time point 2 dropped his/her activity, then this change will be picked up and the relevant pattern 

will be triggered. A different approach has also been considered where temporal patterns have been 

defined and algorithms implemented (Kleanthous and Dimitrova, 2009).  

6 Adaptive Notification Mechanism   

This section will illustrate how the community model and detected patterns can be used to generate 

community-tailored support. There are four notification categories considering community 

participation and awareness aspects: 

• participation of Cognitively Peripheral Members (CPerM); 

• participation of Cognitively Central Members (CCenM); 

• improving the community TM system;  

• developing SMM.  

We will provide here rationale for using each notification category. 

Rationale for CPerM notifications: Studies have shown that acknowledging the uniqueness of 

peripheral members’ expertise may increase their confidence, and thus improve their level of 

participation and contribution (Phillips, 2003; Thomas-Hunt et al., 2003). In addition, CPerM can be 

motivated to participate more by becoming aware of the importance of their unique expertise for the 

rest of the community (Thomas-Hunt et al., 2003).  

Rationale for CCenM notifications: CCen members influence other VC members due to their 

status and knowledge. Research showed that less central members are influenced and usually follow 

the CCen members (Kameda et al., 1997). Hence, notifications for CCenM should aim at helping 

members from the periphery gain confidence and become influential. Participation of CCen members 

may be motivated by acknowledging their importance to the VC (Thomas-Hunt et al., 2003).  

Rationale for notifications to improve TM: When a TM system is developed in a VC, members are 

able to locate knowledge important to them and identify who the experts in specific areas are 

(Wegner, 1986). By providing notification messages that include personalised information, we can 

help individuals in the VC become aware of what others are working on, who they are similar to and 

what resources might be of interest to them. 

Rationale for notifications to improve SMM: Understanding what processes are happening in a 

community, what the VC purpose is, and being aware of the activities that relate members, creates an 

awareness and develops SMM (Mohammed and Dumville, 2001). 

A notification may serve more than one of the purposes listed above. The notification categories 

will be targeted for both newcomers and existing members of the VC. The role of the VC members 

(e.g. student, supervisor, project coordinator), will not be considered since we are catering for equal 

membership as defined in the VC characteristics in Section 1. Similarly, as far as existing members 

are concerned, the period that a user has been a member of the VC is also not considered when 

notifications are generated. The reason for using newcomers and existing members is to examine the 

impact that the selected processes and notification messages can have in both categories of members. 

Notification messages are triggered based on the detection of a pattern or a change in the VC. 

Consequently, different notification messages need to be generated according to the detection. Two 

types of notifications are defined: (i) Type1 - Notifications based on detected knowledge sharing 

patterns; (ii) Type2 – Notifications that combine data from the patterns detected and the community 

model. Table 2 shows which patterns will generate a Type 1 and Type 2 notification messages and 

how these are linked to the relevant processes.  

This paper does not provide an exhaustive list of notification messages that can be generated, as 

notifications can vary according to the VC type, subject area, and size. The notifications provided 

here are just a sample of what can be generated, and illustrate how patterns detected using algorithms 

from Section 5 can be used to generate support for a close-knit VC. 
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Table 2 Summary of the main patterns and corresponding Type 1 and Type 2 notifications that will be 

generated for each pattern together with the expected affect on the community social processes. 

Notification Type Pattern Affects 
N1-1: Inform members of their 

unexplored similarity 

P1: unexploited similarity between 

members 

Collaboration, TM System, 

SMM 

N1-2: Inform members of their 

similarity 

P2: members unaware of their 

similarity 
SMM, TM System 

N1-3: Facilitate a member’s integration 

by showing similar members 

P3: members participating but not 

benefiting 
Improve participation, 

Sustainability, TM 

 
N1-4: Facilitate a member’s integration 

by showing similar members 
P4: members not contributing 

N1-5: Facilitate a CPerM who is 

downloading only to integrate 

P5: peripheral members not 

downloading 
Awareness, SMM 

N1-6: Facilitate a CPerM who is 

uploading only to integrate 

P6: peripheral members not 

uploading 

N1-7: Inform members of their 

complementary similarity 

P7: unexplored member 

complementarities 

SMM, TM System, 

Collaboration 

N2-1: Exploit an important CCenM P1 and CCen information 
Motivate CCenM, develop 

TM and SMM 

N2-2: Pair a CCenM with a CPerM 

Information from Individual User 

Model (CCen) and Relationship 

Model 

Help a CPerM integrate and 

Motivate a CCenM. Develop 

TM and SMM 

N2-3: Welcome message to newcomers 
Member must be detected as 

newcomer 
Develop TM in newcomers 

 

6.1 Notifications based on Detected Knowledge Sharing Patterns – Type 1 

Notifications based on the knowledge sharing behaviour of members will be used to inform members 

of their status in the VC, how their behaviour affects themselves and other VC members, and to 

provide suggestions on how to exploit the material and knowledge available in the VC. We consider 

seven Type 1 notifications, as described below: 

N1-1 (Inform members of their unexplored similarity) Members will be informed of the read, 

interest or upload similarity they appear to have with the same set of other members but not between 

themselves. The message can encourage members to read resources that others are reading and 

uploading. Links are provided to relevant resources along with the detected members. Aim: Develop 

TM and SMM since members will be informed of what others are working on. 

N1-2 (Inform members of their similarity), will inform a group of members of the similarity 

they appear to have in terms of reading, uploading, or interests. Suggest other types of relationships 

that they might want to develop with these members by providing links to resources these members 

are uploading or downloading. In this message the members’ ID will be mentioned and the relevant 

relationship type will be pulled from the Relationships Model. Aim: Improve TM and SMM by 

informing members of their similarity with others. 

N1-3 (Facilitate a member’s integration by showing similar members) A member who is only 

downloading will receive this notification which will develop awareness of how the member is related 

to others in the VC to help him/her integrate. A list of similar members will be provided in the 

message. Aim: Develop TM as a member will become aware of how he/she relates to others. 

N1-4(Facilitate a member’s integration by showing similar members) Similarly to N1-3, this 

notification targets members who only upload, and encourages them to start benefiting from the 

resources available in the VC. Aim: Similar to N1-3. 

N1-5 (Facilitate a CPerM who is downloading only to integrate) A message will be sent to a 

CPerM, or a newcomer, who only downloads and appears to have similar interests to other members. 

The content of the message will include information on similar members and encourage the member 

to start contributing so others can benefit from his/her knowledge. Aim: Provide support to a CPerM 

and develop TM and SMM by providing awareness. 
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N1-6 (Facilitate a CPerM who is uploading only to integrate) message will be sent to a CPerM, 

or a newcomer, who only uploads and others appear to be interested in what he/she is uploading. The 

content of the message will include information on similar members and encourage the member to 

start downloading so he/she can benefit from the knowledge available in the VC. Aim: Similarly to 

N1-6, supports a CPerM to integrate and develops TM and SMM. 

N1-7 (Inform members of their complementary similarity) Inform a group of members of their 

complementary similarity and show them resources uploaded by each other. Links to resources and 

members’ IDs will be included in the message. Aim: Improve TM and SMM by providing 

information on the similarity between members. 

6.2 Notifications based on Combining the Community Model and Detected Patterns –Type 2 

Further information stored in the community model will also be used in order for notifications to be 

more effective. Type 2 notifications combine data from both the community model and the patterns 

presented above. 

N2-1 (Exploit an important CCenM) it is used to inform a CCen member of how important 

he/she is among the VC members and, at the same time, to encourage that member to continue 

contributing and collaborating with less active members with whom he/she relates. The message will 

include the CCen rank of that member, member’s ID and the IDs of less active members.  

Aim: Motivate a CCenM and help develop TM and SMM in the VC. 

N2-2 (Pair a CCenM with a CPerM) This notification will be sent to both the CCenM and the 

CPerM who are detected to be similar and encourage them to pair in order for the CPerM to benefit 

from the CCenM and integrate in the VC. The content of the message will differ for each member and 

can be seen in Table 3. 

Aim: Motivate a CCenM and support CPerM to integrate. Develop TM and SMM. 

N2-3 (Welcome message to newcomers) This message will be generated when a new member 

joins and will include information about other members and how they relate to the newcomer.  

Aim: Support the integration and development of TM of newcomers. It is important for them to know 

how they relate to other members to realise the benefits of their membership in the VC. 

6.3 Generating Notification Messages 

Each notification has a goal, which relates to one of the categories defined, CPerM, CCenM, TM and 

SMM. The content of each notification message is designed to promote the goal of the notification. 

Two different formats of personalised notification messages have been generated varying the level of 

detail (see Table 3 for illustration).  

Table 3 Examples of the two personalised message formats: notifications sent to members M7 and M2 during 

the evaluation study reported in Section 7. For more examples see (Kleanthous Loizou 2010, Appendix D). 

Member 

Id 

Example of first personalised message Example of second personalised message 

M7 

You appear to upload similar resources with 

M9 and M3. You may find it helpful to see 

the resources these members are uploading 

and downloading. Use the links provided 

below to navigate through the resources: 
 

General link to the VC space is provided. 

Your influence to this VC is dropping due to stop 

uploading valuable resources. The resources you 

previously uploaded have been valued in this VC. Start 

sharing your knowledge again and keep your centrality 

up. You also appear to have reduced your download 

activity in this VC. Use the links below to navigate 

through resources that might be of your interest 
 

Resources by M9: Link to resource provided 
 

Resources by M5: Links to resources provided 

M2 

You appear to have similar interests with 

M6, M7 and M9. You may find it helpful to 

see the resources these members are 

uploading and downloading.  
 

General link to the VC space is provided. 

You appear to have reduced your download activity in 

this VC. Use the links below to navigate through 

resources that might be of your interest. 
 

Resources by M5: Link to resources uploaded by M5 
 

Resources by M11: Link to resources uploaded by M11 
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Having two different message forms, allowed us to examine whether a more personalised approach 

rather than a less personalised approach was preferred by VC members (see Section 7). In the first set 

of notifications, members received information according to the patterns detected including similar 

members (no links to profiles), and only links to the general read history of the VC were sent. In the 

second set of notifications, more personalised information relevant to a given member (e.g. links to 

specific resources that might be of interest, links to profiles of members who have similar interests 

with that member, links to specific relevant folders) are provided. 

Next we give a description of the formalisation of the adaptive notification mechanism and 

introduce the notations used. 

6.3.1 Formalisation of Adaptive Notifications Mechanism 

The derived patterns in Section 5 are used as an input for generating notification messages. For every 

notification message a standard structure is followed: 

• Detection – the situation that triggers the notification - the knowledge sharing pattern detected. 

• Target Users - the list of community members to whom the notification will be sent.  

• Goal – defines the aim of the notification in relation to TM, SMM, and CCen. 

• Content Template - the textual template, together with corresponding parameters, used to 

generate the notification. 

Selected representative examples of notification definitions are given in 
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Table 4.  

The following notations are used. The VC members are represented as a set of members 

{ }nM M M1 2, ,...,��  where n , is the total number of community members. A subset of �  is derived, 

{ }
ni i iM M M

1 2
, ,...,' =�  which represents the members extracted in a detection - such that ⊆�� � . 

Additionally, three more sets have been derived: CCenM (a set of the cognitively central members), 

CPerM (a set of the cognitively peripheral members) and Newcomers  (the set of all the new members 

of the VC); CCenM ⊆� , CPerM ⊆� , and Newcomers ⊆� . If a notification can be generated for 

more than one detection, the RelationshipType< > is used to indicate the type of relationship from the 

community model.  

A threshold value is used in the algorithms when constructing the list of target members 

{ }
ni i iM M M

1 2
, ,...,  to whom a notification should be sent. In the study in Section 7, after experimentation, 

the threshold value was set to 3, i.e. the three most similar members were added to the target members 

list { }
ni i iM M M

1 2
, ,...,  that was used in sending the notification messages. Numbers greater than three 

(e.g. five most similar members) have not selected, since due to the closeness of the VC most 

members would have received the same messages and this eliminates the personalised aspect of the 

approach. On the other hand, if too few members (e.g. one or two) are selected to be notified about a 

similarity or a relationship, then this makes the impact of the message to the VC very insignificant 

and does not help in promoting TM and SMM within the VC. 
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Table 4 Selected illustrative examples of the definition of Notification Messages – For a more comprehensive 

list of the notifications defined please refer to (Kleanthous Loizou, 2010) 

Type Detected Situation 

Target 

Members 

(T ) 

Notification Goal Content Template 

Notifications Based on Knowledge Sharing Behaviour Patterns 

N1-1 

(Inform 

members of 

their 

unexplored 

similarity) 

P1: Members 

{ }
ni i iM M M

1 2
, ,...,  have 

RelationshipType< > with 

the same members but 

not among themselves. 

n

i i

i

M M

M

1 2
, ,

...,

  
 
  

 

Inform members of their 

similarity and encourage 

them to read resources the 

others’ are reading. 

Develop TM and SMM 

For every
ji

M : “Did you 

know you have a 

RelationshipType< >  

similarity with { }
ji

T M\ . You 

may find it helpful to check 

the resources these members 

are reading and uploading. 

Follow the links below:” 

N1-4 

(Guide 

member’s 

integration 

by showing 

similar 

members) 

P3: Member { }
ji

M ∈�  is 

downloading only 

{ }
ji

M has a 

RelationshipType< > with

{ }
ni i iM M M

1 2
, ,..., where 

{ } { }
j ni i i iM M M M

1 2
, ,...,∉  

{ }
ji

M  Develop awareness of the 

member relates to others 

and provide information on 

where resources important 

to him are located. Develop 

TM. 

“Share your knowledge with 

the rest of the community by 

start uploading resources. 

{ }
ni i iM M M

1 2
, ,..., have 

RelationshipType< > with you 

and will benefit from what 

you share with them.” 

Combination of Patterns and Information from community model 

N2-1 

(Exploit an 

important 

CCenM) 

{ }
ji

P M CCenM1 ∧ ∈  { }
ji

M  

Let a CCenM know of 

his/her importance in the 

VC, encourage him to 

continue and suggest he/she 

pairs with less active 

members to help them 

integrate. 

“You are an important 

member connecting 

{ } { }
n ji i i iM M M M

1 2
, ,..., \  Keep up 

the good work and upload 

more interesting resources. 

Can you suggest resources 

that these members may 

read? You may wish to 

contact each member” Also 

generate N1-1 

N2-2 

(Pair a CCenM 

with a CPerM) 

{ } { }

( )

i i

i i

M CPerM M CCenM

RelationshipType M M

1 2

1 2
,

∈ ∧ ∈

 
{ }iM

1
 

Let a CPerM know of 

his/her relationship with a 

CCenM and suggest pairing 

with the CCenM to help 

him integrate. 

“You have a RelationshipType< >  

with { }iM
2

 who is an 

important member in this VC. 

Check what { }iM
2

 is 

uploading and downloading 

using the links below. You 

can also contact { }iM
2

 if any 

help is needed.”  

N2-3  

(Welcome 

message to 

newcomers) 

{ }
ji

M Newcomers∈  

{ }
ji

M  has an InterestSim  

with { }
ni i iM M M

1 2
, ,...,  where 

{ } { }
j ni i i iM M M M

1 2
, ,...,∉  

{ }
ji

M  

Inform a newcomer of 

people with similar interests 

in order to help that 

member start benefiting 

from the VC. Help him 

integrate and develop TM. 

“Welcome to the community! 

Based on the information you 

have provided, the following 

members { }
ni i iM M M

1 2
, , .. .,  

might have uploaded 

resources that could be of 

interest to you. Links:” 
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7 Evaluation Study with a Knowledge Sharing Community 

An evaluation study is conducted to examine the effect of community-adapted notifications on 

individual members and on the VC as a whole (knowledge sharing). The overall framework was 

employed in a VC to derive a community model, extract knowledge sharing patterns and generate 

adaptive notifications sent to individual members via email.  
The aim of the evaluation is to identify the effects of the notification mechanism so it can be 

employed in supporting close-knit knowledge sharing communities. Specifically, it examines what 

influence intelligent notification support, designed based on TM, SMM and CCen, can have on 

individual members and the functioning of a VC as a whole. The following questions are addressed: 

Effect on the community as a whole: is CCen shifting between members; do peripheral members 

become more central; do members develop links and follow resources from others? 

Effect of notifications on oldtimers: have oldtimers followed the notifications, and, if not, why; in 

what ways (if any) can the notifications be useful for oldtimers; do notifications motivate oldtimers to 

engage in the community; do oldtimers become more confident to contribute; is there any effect on 

the TM and SMM of oldtimers; does oldtimers’ behaviour change following the notifications? 

Effect of notifications on newcomers: have newcomers followed the notifications, and, if not, why; 

in what ways (if any) can the notifications be useful for newcomers; do notifications motivate 

newcomers to integrate in the community; do newcomers become more confident to contribute; is 

there any effect on the TM and SMM of newcomers; does newcomers’ behaviour change as a result of 

the notifications they receive?  

7.1 Study Design 

This section provides information about the community and outlines the experimental study. 

7.1.1 Outline 

Platform: In this study the close-knit VC was created in BSCW system
5
. BSCW is a general tool 

for cooperation over the web which supports the main knowledge sharing activities, such as upload, 

download, search for resources, synchronous and asynchronous communication, and version control 

(Wolfgang et al., 2004). The convenience of using BSCW is that the system keeps tracking data about 

every activity/modification in the shared collaboration space, and every member has access to this 

data. The data tracked by the system was necessary in order for us to derive the community model. In 

addition BSCW provides generic functionality that is reflected in its tracking data. For example, 

resource keywords and tags can be added similarly to the way used in CiteULike
6
 to describe 

resources; members can collaboratively rate or add/edit the description of a resource as it can be done 

in shared wiki spaces. In this work, we have exploited only generic tracking data from BSCW 

(resource name, formal and informal keywords, uploading and downloading activity, members 

join/leave), that can be tracked in other collaborative Web2.0 and Semantic Web applications. The 

only difference is that in this case we had full access and control
7
 of the full tracking data including 

time-stamps. During the study, members have only received messages sent by us as part of the 

evaluation and have not used the notifications provided by BSCW. 

Community: The close-knit community included 15 members (researchers and doctoral students) 

from different research groups working on similar research topics around Personalisation and 

Intelligent Knowledge Management. The community members were working on different projects and 

some of them participated in joint seminars. The members were based in two countries (UK and 

USA), some people knew each other and belonged to a physical community (attended weekly 

seminars together) but others were working remotely. Eight members were oldtimers (existing 

members), and seven were newcomers (new members invited to join the VC during the study). Eleven 

                                                      
5
 http://public.bscw.de/ 

6
 CiteULike is a web environment for sharing academic citations: http://www.citeulike.org/ 

7
 For example in the case of CiteULike, you can have a private group of people sharing citations, but members 

do not have full access or control of the activity tracking data.  
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members in this community were research students working on separate projects, two members (M2 

and M6) acted as supervisors for the research students participating in the community, and two 

members (M4 and M5) were active researchers in their fields but were not directly engaged with 

supervising students from this community (both members worked at remote geographic locations and 

had not met most of the other members). A virtual space for reference sharing (hereafter referred to as 

the VC) was created in the BSCW system. Gradually members embraced the idea of having a VC, and 

used the BSCW to create folders, upload and download shared references.  

The community was created by the first author who acted as the experimenter and did the initial 

seeding with relevant content. Although she was a member of the community, her activity and 

contribution to the VC was not considered in the data collected, and she has not replied to any of the 

questionnaires circulated. The second author was also a member of the community (M2), she was one 

of the oldtimers. She was not involved in the study design, data collection, and analysis. We have 

excluded the data submitted by M2 to the questionnaires in the results reported in the paper. However, 

M2 was referred to in several answers by community members, and we have preserved these 

references in the reported analysis. 

The most popular activity in the VC before the experimental study with notification generation 

was uploading papers. During the pre-study period, which lasted 21 months, there were several phases 

of high activity and times when there was no activity in the VC (although activity in the physical 

community continued). The high activity periods relate to collaboration work on different research 

projects. Although the VC was created for members to share resources with each other, most of the 

members shared resources in small teams of two–three people since they were collaborating among 

themselves but not with everyone (e.g. working on joint projects or organising workshops). Thus, 

although interesting resources were uploaded by some members, other members had not looked at 

those (no one had downloaded any of the resources M5 uploaded in the VC since many were not even 

aware of the existence of that member - M5 was not part of the physical community involving most of 

the other members. 

The VC had some duplicate resources. In five out of the six occurrences, M7 re-uploaded a 

resource that was already in the VC space. M7 was working on a joint project with M2 and M6 and 

was uploading resources relevant to that project. This shows that M7 did not know that the resources 

were already there. It is important to note that M7 was the most CCenM of this VC before the 

experimental study began. The above occurrences indicate a lack of TM and SMM in both the 

physical and virtual community and show the need for some intervention to provide better awareness 

of links with VC members who are remotely collaborating. Even when people were involved in the 

same physical community (11 members were working in the same lab) they had developed SMM and 

TM with their supervisors and close friends but not with people who might be similar or share the 

same interests, which may help develop useful connections. 

Method outline: This work aims at providing intelligent support to knowledge sharing virtual 

communities. Consequently, it was vital to assess the effect the notification messages had on the 

knowledge sharing in the VC by comparing collected data before and after the notifications were 

generated. Two groups were considered - the existing members of the community (oldtimers), and the 

newly joining members (newcomers). Comparing the findings from both groups gives us a better idea 

of the effect notifications could have on the main user categories. All members were asked to 

complete online questionnaires conducted with the help of a web survey tool (prior and during the 

study) to examine issues relevant to TM, SMM and CCen and also members’ opinions about the 

notifications they had received. During the study, five notification types were sent to all members 

(three of type N1-1, four of type N1-2, one of type N1-4, one of type N1-6 and seven of type N2-3). 

The data analysis combined data collected from the questionnaires with data extracted in the 

community model (e.g. participation of members, CCen, relationships).  

Notification messages were sent during the middle of the day each time. This was not planned but 

ensured that members were active at that time of the day and messages would be noticed. 

Data: Objective data was the log data collected over the duration of the study (2 months) using the 

BSCW activity tracking features. In order to keep the input as generic as possible, we collected data 

concerning only the basic functionality of the system, such as uploading/downloading, naming a 

resource, and providing keywords/tags. The tracking data was pre-processed and transferred into 
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database tables in line with the input format to the algorithms developed. The Java algorithms for 

community modelling, pattern detection, and notification generation were run. 

In addition to the tracking data, subjective data was collected using questionnaires that combined 

open ended questions, choice questions (multiple and single answers), and alternative selection 

questions. Two types of questionnaires were used. The first one was sent to both oldtimers and 

newcomers only one time and aimed at extracting initial interests of members and to assess issues 

relevant on TM, SMM and CCen. The second questionnaire was sent two times to oldtimers (after 

each set of notifications generated) and one time to newcomers. The purpose of this questionnaire was 

to evaluate the effect of notifications and assess aspects relevant to TM, SMM and CCen in the VC. 

Extracting interests: In the first questionnaire the first question asked members to provide 5-10 

keywords/phrases that described their research interests. Based on this data combined with what was 

extracted in the community model the first set of notifications was generated. Assessing TM, SMM 

and CCen of members: In both questionnaires, eight questions provided members with the list of all 

members in the community and asked them to select three members that considered as similar to them 

in terms of reading/uploading, who they might contact for information, who they believe they can 

benefit from in terms of the knowledge that member holds and also who the three most CCen 

members of the community are. These questions allowed us to collect evidence of TM, SMM and the 

perception members had for CCen. Participation/Activity: The first questionnaire contained multiple 

selection questions and was asking members about their participation and activity in the community 

(uploading/downloading) and reasons for that, allowing them to select the option “other” where free 

text could be added. Relevance of Notifications: In the second questionnaire, there was a binary 

question asking members if the information they received with the notifications was relevant to them 

and for the negative answer a mandatory text box was provided for additional comments. A multiple 

selection question followed a positive answer asking members to select how the information they 

received helped them. Actions following the notifications: The second questionnaire provided a 

binary question asking members if they followed the links provided with the notifications. A positive 

answer was leading to a multiple selection question where members could select the activity resulted 

(uploading/downloading/non of the two). If members selected “none of the two”, they were directed 

to a text box for providing more information for taking no action. Motivation and Confidence: In the 

second questionnaire members were asked if the notifications received motivated them to remain 

active and if they were feeling more confident to contribute. 

The questionnaire data was transformed into a suitable format and analysed using spreadsheets 

(MS Excel) and a statistical package (SPSS for Windows). The replies to open ended questions were 

analysed, coded and quantified by the first author (Section 7.1.3). 

7.1.2 Stages 

Pre-Study Period: This period acted as a seeding period during which eight members were invited 

to join the VC space, and encouraged to upload or download resources according to their interests and 

needs. Immediately at the start of the study, the first questionnaire was given to the existing members 

(oldtimers) to collect their interest and compose an Individual User Model for each member. 

Additionally, this questionnaire assessed issues relevant to TM, SMM and CCen of this community 

before any interventions have been done. The community model acquisition mechanism was 

employed to extract an initial community model, based on which algorithms for discovering 

knowledge sharing patterns were applied.  

During the Second Period, the knowledge sharing patterns were used to decide what notification 

messages should be triggered (following the first format of messages, as described in Section 6.3) to 

provide members with relevant information based on their individual user models and the community 

relationship models. Individualised notifications were sent to each oldtimer. They included general 

messages pointing at relevant users – according to their derived relationships and patterns. A week 

after the email notifications were sent, a second questionnaire was sent to all oldtimers. This allowed 

examining the effect of the first format of notifications to oldtimers. The data extracted from the 

questionnaire along with log data was used to assess the effect and benefits of the first set of 

notifications. During this time, seven new members were also invited to join the VC (i.e. the new 

members joined two weeks after the study started). The newcomers had to reply to an initial 
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questionnaire which was used to extract their individual interests and to assess issues related to TM, 

SMM and CCen of newcomers prior to receiving any notifications.  

During the Third Period, based on data extracted from the newcomers’ initial questionnaire, the 

data in the derived community model, and the application of the static knowledge sharing patterns, 

welcome email messages were sent to the newcomers (two weeks after their registration) with 

information relevant to the interests of each member. At the same time, pattern detection and 

notification generation algorithms were applied to the VC interaction data, which was used for 

generating the second set of notifications sent to every member (each member received tailored 

messages, as described in Section 6.3). The form of these notifications was different from the first 

round – in addition to pointing at relevant members (as in the first round), we included a list of 

relevant papers – extracted based on the relationships members had with other VC members - 

providing the links to these papers in the email message. Thus, each member could go straight to the 

BSCW system from the notification message he/she received. 

In the Fourth Period, members were asked to complete a final questionnaire, which was sent to 

them a week after the second round of notifications was sent. Data from the generated community 

model (e.g. participation, behaviour and patterns) along with a comparison between the second and 

final questionnaires was used to assess the effects of the notifications on the VC as a whole. 

 
Figure 5 Evaluation timeline including the periods and methods used during each period. 

7.1.3 Data Analysis 

The results extracted from the questionnaires were statistically analysed in order to understand the 

effect of notifications. The first eight questions in all questionnaires asked members to list three 

related community members, such as people whom they would read papers from, people who may 

benefit from papers they upload, etc. In order to statistically analyse the replies, we needed to quantify 

them in a uniform way. The reply of each member was a set of members (three). Similarly, the 

community model indicated a set of members found to be related to each member. Let us define two 

sets, � denotes the top most similar members to a given member as derived in the community model. 

� denotes the set of members selected by a given member as a reply to a questionnaire� ��� � �  

represents the set of members who appear in both the selection of a member (as indicated in his/her 

questionnaire replies) and in the community model that was generated at the time the questionnaire 

was issued. Adapting precision, recall and F1 metrics (Herlocker et al., 2004; Lo and Lin, 2006; Olson 

and Delen, 2008), we can quantify the replies of the questionnaires as follows. 

Following precision metrics (i.e. the ratio of relevant items selected to number of items selected), 

we consider the ratio P of the overlap between selections made by a given member and the set of 

members extracted in the community model for this member over the number of selections suggested 
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in the community model: i.e. 
B

P
C

=
8
. Following recall metrics (the ratio of relevant items selected to 

total number of relevant items available), we consider the ratio R of the overlap between selections 

made by a given member and the set of members extracted in the community model for this member 

over the selections made by the member, i.e.
B

R
A

= . To combine both metrics into one number, we 

will adapt the standard F1 metric (which combines precision and recall into a single number): 
P R

F
P R

1 2
×

= ×
+

.  

F1 is computed for the replies to every question in each pair of the questionnaires (Questionnaire 1 

– Questionnaire 2, Questionnaire 2 – Questionnaire 3 and Questionnaire 1 – Questionnaire 3). The 

statistical Wilcoxon non-parametric test is applied to compare the mean F1 scores before and after the 

notifications. 

7.2 Findings 

We will discuss the findings from the experimental studies following the main objectives and 

considering the effect of notifications on the VC as a whole, as well as on each of the two groups – 

oldtimers and newcomers. For the purpose of consistency as well as anonymity ‘he’ will refer to a 

community member male or female. 

7.2.1 Effect of Notifications on the Community 

In all four periods, the activity in the community included uploading and downloading resources, 

237 resources in total. One member was only uploading and one was only downloading. Five 

members (all newcomers) were isolates and never uploaded or downloaded resources. Eight members 

uploaded and downloaded from the VC. During the second period (after the first set of notifications 

generated for oldtimers), there was no uploading. With the second set of notifications, we noticed 

resource uploading from a newcomer (M15) - third period. This minimal uploading activity, and 

given that the VC was at the forming stage, indicates that after the second round of notifications some 

activity in the VC started.  

Downloading took place during all periods except the second period. During the third period, after 

the second set of notifications was sent, the downloading resumed and continued until the end of the 

experimental study. It is encouraging to see that with the triggering of notification messages oldtimers 

(e.g. M9), as well as newcomers (e.g. M14, M15) had downloaded resources from the VC. 

CCen was shifting between members during the experimental study (see Figure 6).  

M3 M5 M6 M7 M9 M11 M13

Oldtimers' Id

CCen1 CCen2 CCen3 CCen4

M1 M4 M8 M10 M12 M14 M15

New comers' Id

CCen3 CCen4

 
Figure 6 CCen variations during the experimental study

9
. The bars show the CCen rank of the centrality of each 

member during each period. The left figure shows the CCen of oldtimers and the right figure shows the CCen of 

                                                      
8
 S denotes the cardinality of a set S 

9
 M2 excluded from this graph to ensure objectivity of the approach 
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newcomers. In both groups, members’ centrality starts to improve after the first set of notifications was sent 

during the third and fourth periods (CCen3 and CCen4, respectively). 

Since the activity of all oldtimers dropped, and resumed during the experimental study, CCen also 

dropped. The important fact is that after notifications were generated members began to gain CCen. 

For example M11, who had CCen=0 during the second period, started uploading and downloading in 

the fourth period and had CCen = 0.789. M14 and M15 (both newcomers) also gained CCen during 

the third period. M9 had CCen=0 during the first two periods, and after the generation of notifications 

M9 became more active and was detected as the most cognitively central member. An interesting fact 

was noted – during the first questionnaire M9 could not indicate related members or cognitively 

central members. In the second questionnaire, M9 identified correctly that M7 was one of the CCenM. 

This demonstrates that after the notifications were generated, M9 became more active and aware of 

what was happening in the VC. 

During the study, the member with the highest CCen changed three times (after each set of 

notification sent) demonstrates that the notification had some positive effect on the VC functioning as 

a whole. At the end of the first period, the two most CCen members were M7 and M6. At the end of 

the third period, CCen shifted to M9 and M7. During the fourth period, CCen shifted to M13 (see 

Figure 6). The shifting of CCen to different members in the VC shows a fairly dynamic VC where 

different members engage at different times. M14 who was a newcomer was peripheral at the 

beginning of the third period but gained centrality at the end of this period. There were four cases 

when a CPerM read resources uploaded by CCenM. Two newcomers M14 and M15 read resources 

uploaded by two different CCenM - M7 and M9, respectively. In two other occasions oldtimers who 

used to be in the periphery of the VC before the second period and completely inactive, downloaded 

resources uploaded by central members. The above detections provide some evidence that 

notifications acted as a trigger to promote the resources uploaded by central members, and hence 

helped CPerM to identify relevant resources they were previously unaware of.  

7.2.2 Findings from the Oldtimers’ Pre-Test Questionnaire 

At the end of the first period, the first questionnaire was given to oldtimers to assess issues relevant to 

the community’s TM, SMM and CCen.  

One member uploaded but did not download from the VC and according to his reply, this member 

(i) had difficulties identifying in which folder resources relevant to his interests were stored, and (ii) 

was only interested in resources uploaded by specific members. 

Members were asked to identify who they believed were the two most central members in the 

community. It is important to note that from the answers we received on the first questionnaires 

members were influenced mostly by what they knew about the physical community and not by what 

was happening in the VC. For example, most members regarded M2 (who led several of the projects 

community members participated in) as one of the CCenM, although M2 had not made valuable 

contributions to the VC. Furthermore, this shows that members had made the assumption that CCenM 

in the VC were the senior researchers in the overall community, which in fact was not the case.  

Members were asked why this specific VC was created in order to evaluate their SMM before the 

notifications were generated. The responses are documented in Figure 7. The three most popular 

answers are “To Share resources”, “To keep important papers in one place” and “So others in the 

group can see what we are reading”. SMM in a VC requires all members to have a shared 

understanding of what the purpose of the creation of a specific VC is. In this case the results show a 

common understanding since they have all picked the “To share resources” and “To keep important 

papers in one place” options. One member selected the first option “To socialise” which does not 

represent the purpose of the community under study. A positive observation is that no members have 

selected the “I don’t know”, which shows that all members had an opinion on the purpose of this VC. 



30 

 

0 1 2 3 4 5 6 7

To socialize

To Share resources

To have a resource repository online

To keep important papers in one place

So others in the group can see what we are reading

 

Figure 7 Replies of seven oldtimers (M2 is excluded from this graph) to the question “Can you please state in 

your own understanding, why the Personalisation & Intelligent Knowledge Management VC has been created?” 

7.2.3 Effect of Notifications on Oldtimers 

Two sets of notifications were generated and sent to members with different formats according to the 

description in Section 6.3. The first format of notifications which included the general links to the VC 

has been evaluated using the second questionnaire (at the end of period 2), and the second format of 

notifications has been evaluated using the third and last questionnaire (at the end of period 4).  

From the second questionnaire (after the first set of notifications was sent) we can see that the 

opinion of members changed regarding CCen with the exception of M3, M6 and M7. For example, 

M5 selected at the first questionnaire M2 and M7 as the CCen members of the VC while at the second 

questionnaire M5 selected M2 and M3 who were the members mentioned as similar to M5 in the first 

set of notifications sent to that member (note that M5 had never met in person or collaborated in any 

way with M3). Similarly, M11 selected M2 and M6 as the CCenM replying in the first questionnaire 

(these two members are supervisors in the physical community). In the second questionnaire, M11 

indicated M13 and M7 as central (both members appearing as similar to M11 in the first notification 

message). These observations show that the notification messages make people aware of other 

members in the community. In contrast, there were members, such as M3, M6 and M7, who did not 

change their opinion about community centrality across the three questionnaires. Their answers 

represent who they considered as CCenM in the physical community rather than the VC. 

Have oldtimers followed the notifications sent? Two members reported they had followed the 

links in the first notifications and downloaded from the VC. Two members followed the links 

provided in the notifications but no actions were taken after that. The reason, as reported by the 

members, was lack of time:  

“I am planning to do so, it was just a busy month for me.”(M5, Questionnaire 2) 

Four members did not follow the links in the notifications for the following reasons. One member 

stated that the information was not relevant to him, one member stated that he had not noticed the 

links in the notification and two members mentioned lack of time. 

The situation was different after the second set of notifications. The results show that all oldtimers 

followed the links in the notifications. One member uploaded resources due to the notifications, one 

member downloaded resources, and seven members, although they had followed the links to the VC, 

had not uploaded or downloaded from the VC. Members stated that lack of time was the reason for 

not taking any action after they followed the links. “I was busy at that time. I've just checked the 

message.”(M3, Questionnaire 2). The second set of notifications included more personalised 

information providing links to resources uploaded by similar members. We can infer here that 

compared to the general links provided in the first set of notifications, the second set was more 

appealing to oldtimers to follow and explore the links provided. 

In what ways were the notification messages useful for oldtimers? Oldtimers rated the 

information they received in both message formats as relevant to them.  

The information received through the first set of notifications (the beginning of the second period) 

helped VC members identify people with similar interests. Six members agree that the messages 
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helped identify people they could contact for information, as well as to identify who was uploading 

similar resources. In addition, five (out of seven oldtimers) replied that the messages helped them 

identify people and resources that could be useful:  

“I have discovered one connection which I didn’t think of before.”(M7, Questionnaire 2)  

“Have not been using it (the VC) for a while...a message like this may be enough to remind me that 

there is a pool of information there for me to visit/revisit.”(M6, Questionnaire 2) 

Similar results were obtained from the third questionnaire which looked at the effect of the second 

set of notifications that followed a different format of personalised information (see Figure 8). Three 

members suggested they were motivated to upload resources and identify who the CCenM were 

because of the notification they received. As one of the members commented: 

“The papers that were recommended to me sounded very interesting and of high quality. Until now 

I haven't been active in the community, but I have come across some papers that could be of interest 

to others. It would be nice to contribute to the community and give something back.” (M11, Q 3) 

 

0 1 2 3 4 5 6 7

Identify people w ith similar interests

Identify people w ho I might contact for information

Identify potential collaborators

Identify w ho is reading resources I upload

Identify w ho is reading similar resources as I do

Identify w ho is uploading similar resources as I do

Identify w ho are the cognitively central members of the

VC

Bcome more active by uploading in the VC

become more active by dow nloading from the VC

Identify w here resources important to me are located

Responses

Responses Questionnaire2 Responses Questionnaire3

 
Figure 8 Replies of the seven oldtimers (M2 is excluded from the data presented in this graph) to the question 

how information received with the notifications helped members 

From people’s replies to the questionnaires after the notifications were sent, we can see that 

oldtimers at first tend to believe that the notifications provided a way of creating awareness (develop 

TM and SMM) in the VC, while after the second round of notifications members believed that the 

notifications were not only providing awareness but helped members to remain/become active. 

Have the notifications motivated oldtimers? Although, there is not much evidence that messages 

motivated members, four members stated that the first set of notifications helped them remain active 

by visiting the VC space (uploading/downloading). As a VC member noted: “When I read the 

notification e-mail, it motivated me to look at who have the same interests and read similar resource 

with me. That means, I can download the interesting resources from them or might take advice from 

them. If I did not receive the e-mail, I would forget to contribute to the community.”(M9, 

Questionnaire 2) 

After the second set of notifications, one member believed the notifications motivated him to 

download and three members believed that the messages would motivate members to upload 

resources. Six oldtimers indicated that the information they received in the second set of notifications 

helped them in their everyday practice and motivated them to become/remain active: “As a result of 

the email I uploaded and downloaded some resources” (M11, Questionnaire 3) 

“The notifications show a list of people who are interested in similar topics as me. It is useful to 

look at those papers uploaded from them” (M3, Questionnaire 3) 

Have oldtimers become more confident to contribute Four oldtimers agree that receiving 

notifications in both formats would boost their confidence in contributing to the VC:  “I now feel 

more confident to share/download information from the community” (M9, Questionnaire 2) 
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Four members selected the “Neither agree nor disagree” option and commented that: 

“I don't think a message is enough to change my behaviour. But, if I get this regularly over a 

period of time which showed some activities it may rekindle my use of BSCW.”(M6, Questionnaire 2) 

I would not say I feel more confident, I may feel more engaged to this. However, unfortunately 

other activities retained me to contribute to the community. (M7, Questionnaire 3) 
Based on the above findings, we cannot conclude that the notifications had an impact on the 

confidence of oldtimers to contribute in the VC, even though four members stated that they felt more 

self-assured in uploading and being active in the VC.  

Have notifications had an effect on TM and SMM of oldtimers? One of the purposes of 

generating the notification messages was to develop TM and SMM. In all three questionnaires to 

oldtimers, members were asked to identify three other members from the VC who: may have similar 

research interests (Q8), may read similar resources (Q9), may upload similar resources (Q10). 

Following the method described in Section 7.1.3, the data was statistically analysed and compared 

among the three questionnaires. With regard to Q8 and Q10, the Wilcoxon non-parametric signed test 

shows no significant changes between the three questionnaires. This outcome was expected since the 

experiment ran for a relatively short period of time between the generated notifications sets. On the 

other hand, the results for Q9 show a marginal statistical difference between the questionnaire 

answers (Table 5), i.e. before notifications and after the two rounds of notifications were generated.  

Table 5 Wilcoxon signed non-parametric test results for Q9 from oldtimers questionnaire. Results extracted 

from the questionnaires compared to the data in the community model for all members. The results show 

marginal statistical significant difference between the replies of questionnaires 1 and 3. 

Wilcoxon Signed Non-Parametric Test for Q9 

F1 metric for Q9 Replies Z p (2-tailed) 

 FQ1 – FQ3 -2.236 0.025 

Although statistical results do not show much difference, looking at the data we can identify some 

interesting cases that show the influence of notifications on oldtimers. For example, in the first 

questionnaire M5 selected M2, M7 and M13 for Q8 (members with similar interests), while in the 

second questionnaire M5 changed his opinion and selected M6 instead of M13 (which actually was 

closest to that member’s interests). Furthermore, M3 selected M2, M9 and M7 in the first 

questionnaire and changed his opinion to M2, M1 and M6. It is interesting to note that in M3’s 

selection, a newcomer - M1 - was added. This shows that M3 acknowledged the addition of a new 

member and identified the similarity in interests they had.  

With respect to Q9 (members who read similar resources), five (out of 7 oldtimers) changed their 

opinions after the first set of notifications. Changes can be seen also after the second set of 

notifications (between the second and third questionnaires). An interesting example is M3 who 

selected in the second questionnaire M2, M1 and M6, while after the second set of notifications M3 

changed his opinion and thought that M8 was reading similar resources to him (note that M1 and M8 

were newcomers to the community). This selection reflects what was happening in the physical 

community, and indeed M1, M8 and M3 realised their similarities and engaged in research activities 

outside the VC. Members M6 and M9 did not have an opinion about relevant members in the first 

questionnaire but after the notifications they made selections. In the case of M9, he selected two of the 

members who appeared also in his community model. In general the overlap between members’ 

selections and what was extracted from the community model increased between the first and third 

questionnaires (p= 0.025, Table 5). 

The selections of members for Q10 (members who upload similar resources) have changed also 

between the three questionnaires. Members’ selections show they became aware of the newcomers, 

for example M7 selected M8 and M1 as having uploaded resources similar to his. Furthermore M5 

was becoming aware of his similarity with M8 (in questionnaire 2 after the first notifications were 

sent) and with M7 (in questionnaire 3 after the second notifications were sent); although M5 had not 

worked with either of these two members.  

There were noticeable changes following the two sets of notifications. Although members’ 

selections initially reflected what was happening in the physical community, their opinions after the 
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notifications (questionnaires 2 and 3) changed. Members became aware of people who joined the VC 

recently or people whom they had not met physically. This can be considered a positive effect 

attributed, to some extent, to the notifications. However there are clear cases where the members’ 

opinion did not change and were far from the community model. In summary, although notifications 

did not have considerable impact on the actual behaviour of members, there was evidence that in 

some cases notifications helped members to develop a better awareness of what was happening in the 

VC (TM and SMM improved). The slow development of TM and SMM in the VC was also 

confirmed in some user comments.  

 “I have discovered one connection I didn’t think of before”(M6, Questionnaire 2). 

“It (notification message) shows the list of people who are interested to similar topics with me, so 

it's useful to look at those papers from them.” (M9, Questionnaire 3) 

7.2.4 Findings from the Newcomers’ First Questionnaire 

The first questionnaire was sent to the seven newcomers a few days after they joined the VC (i.e. at 

the end of the second period). The primary purpose of this questionnaire was to extract an initial list 

of interests for each joining member in order to generate their individual user models. In addition, this 

questionnaire helped in assessing issues related to the newcomers’ awareness (TM, SMM).  

Out of the seven newcomers, five did not participate at all in the VC prior to the generation of 

notifications. One member uploaded and downloaded and one member only uploaded to the VC. M1 

and M12 commented that they did not participate in the VC due to lack of time. M12 reported that in 

his opinion “I don't really work in similar areas with any of the other members”(M12, Newcomers 

Questionnaire 1). However, this member is in the same research group with four other members of 

the VC and, based on his individual user model, the community model indicated similarities between 

M12 and members M15, M6 and M9 (these members are in M12’s research group). Another member, 

M14 only downloaded and noted, “I am a new member and don't know what others are interested 

in”(M14, Newcomers’ Questionnaire 1). This indicates the initial lack of confidence, which can be 

attributed to a lack of awareness of how the newcomer could contribute to the community – lack of 

TM and SMM. To properly analyse the effect of notifications on newcomers’ confidence to 

participate, longer term studies would be required.  

With respect to CCen, the newcomers’ replies to the first questionnaire show that they were 

unaware of who the cognitively central members were. Newcomers selected predominantly their 

supervisors (five out of seven) as the central members.  

With regard to SMM, newcomers were asked to state why the specific VC had been created (see 

Figure 9). Several options were given from which the members could select several. Six (out of 

seven) newcomers chose the option “To Share resources” and three (out of seven) selected “to keep 

important papers in one place” and “to have a resource repository online”. Two members selected, 

“to socialise”, which does not represent the purpose of the VC. One member commented: “To 

improve my awareness of the field & get up to date information about the field”(M12, Newcomers’ 

Questionnaire 1). The replies indicate that the newcomers’expectations joining the community was to 

share papers, which is in line with the purpose of this VC.  

0 1 2 3 4 5 6 7

To socialise

To Share resources

To have a resource repository online

To keep important papers in one place 

So others in the group can see what we are reading

Other

 
Figure 9 Seven newcomers replied to the question “Can you please state in your own understanding why the 

Personalisation & Intelligent Knowledge Managament VC has been created?” One member replied “Other ” and 

he specified: “To improve my awareness of the field & get up to date information about the field”. 
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7.2.5 Effect of Notifications on Newcomers 

The notification to newcomers was delivered as a welcome message providing relevant information 

and links (members and resources) according to individual interests of each member extracted from 

the newcomers’ questionnaire.  

After notifications were sent to newcomers their opinions about the CCen members changed. For 

example, M4 selected M5 as a cognitively central member in the final questionnaire, despite the fact 

that M4 never met M5. In the first newcomers’ questionnaire, M14 selected his supervisor - M2 – and 

M13 to be the CCenM. After the notifications were sent, M14 thought that M13 and M7 were the 

central members. Similarly, M15 initially considered M2 and M6 (the two supervisors) as the two 

CCenM in the VC, but after the notifications were sent, M15 thought that M6 and M9 were central. 

The observed changes in the opinions about cognitive centrality indicate that the notifications may 

help build newcomers’ awareness of who the influential members in the VC are. 

Have newcomers followed the notifications sent? Three (out of seven) newcomers followed the 

notifications and two downloaded resources from the VC. One newcomer (M12) did not upload nor 

download any resources, commenting: “My main research interest is in a different field.” (M12, 

Questionnaire 3). As discussed earlier, M12 did have InterestSim with others in the VC and although 

the notifications did bring this similarity to M12’s attention, this member did not consider such 

information valuable. Four newcomers did not follow the notifications. One of them mentioned he 

had not noticed the links provided in the message and the others pointed at time restrictions. 

For newcomers, it is harder to follow the notifications and upload/download resources from the 

VC than for oldtimers (newcomers were introduced to both a new community and a new software 

environment). Nevertheless, three newcomers (out of seven) followed the links to the VC, which is a 

positive indication that some newcomers may benefit from the notification approach. However, this 

conclusion should be taken with caution and can be validated in future longer term experimental 

studies. 

In what ways were the notification messages useful for newcomers? 6 newcomers rated the 

information received with the notification messages as relevant to them. One member suggested that 

the information he received was not directly relevant to his research.  

According to the information collected through questionnaire 3, notifications helped newcomers 

identify where resources important to them were located, identify people with similar interests, 

become more active by downloading and identify people they might contact for information. Two 

members stated that the information they received allowed them to become more active by uploading, 

to identify who is uploading similar resources as they do, to identify who is reading similar resources 

as they do and identify potential collaborators. One member mentioned that he got help in identifying 

who the central members of the VC were. Members provided further comments on how the 

notifications could help them integrate into the VC: 

 “Notifications reminded me that some of the resources in the VC could be useful for my current 

work!” (M4, Questionnaire 3) 

“The notifications were a useful approach in sharing/reading resources and communication with 

others.”(M10, Questionnaire 3) 

Although only three members have followed the notifications and only two of them had an activity 

in the VC, five members agreed that the information they received would motivate them to be active.  

“Having the notifications will make me aware about the community” (M15, Questionnaire 3) 

Newcomers see the notifications as an awareness feature (to help them develop TM and SMM) 

that helps them identify their similarities with others in the VC, and the cognitively central members. 

In addition, notifications can serve as a motivational tool encouraging newcomers to visit the VC 

space. However, it is very difficult to motivate new members to contribute to a VC (Brazelton and 

Gorry, 2003), and it is even harder if their research interests do not directly fit with the VC (e.g. 

M12). The fact that five (out of seven) newcomers in the VC found the notification messages 

motivational, gives encouraging support that notifications could be a way of motivating and keeping 

newcomers active in a VC. Further experimental studies with larger user numbers would be needed to 

systematically examine the extent to which newcomers can be motivated by adaptive notifications. 

Have newcomers become more confident to contribute? Five out of seven members agree that 

the information they received helped them build confidence in uploading/downloading from the VC.  
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“I’ will keep working/collaborating in VC and spend more time on navigation.” 

“Based on what other people have contributed I'll find it easier to evaluate whether an article may 

be of interest to others in the community.” (M4, Questionnaire 3) 

According to the newcomers’ comments, we can infer that the information they received with the 

notifications could have helped some members develop confidence in remaining active in the VC and 

consequently which could facilitate newcomers’ integration. However, the data from the study is 

insufficient to make a general conclusion about the possible connection between notifications and 

newcomers’ confidence. 

Have the notifications had an effect on the TM or SMM of newcomers? The TM and SMM of 

newcomers were examined using the first and second newcomers’ questionnaires. Similarly to 

oldtimers, newcomers had to identify three other members from the VC who: may have similar 

research interests to them (Q8), may read similar resources to them (Q9), and may upload similar 

resources to them (Q10). Following the method described in Section 7.1.3, the data from both 

questionnaires was compared and statistically analysed. Wilcoxon non-parametric test was applied on 

the data collected for Q8, the results show a small difference with p 0.024=  (Table 6) between the 

two questionnaires. This can be due to newcomers’ interests extracted according to what they had 

provided as interests and thus TM or SMM was easier to be captured through this data. In terms of Q9 

nothing could be extracted from the community model for the newcomers except M14 and M15 who 

were reading resources from the VC. The data for these two members showed that they had changed 

their opinions with respect to their selections after receiving notifications. M14 selects M1, M13 and 

M2 in the first questionnaire. After he received the notifications, M14 selects M1, M13 and M7. For 

Q10, the community model extracted information only for M15 who was the only newcomer 

uploading resources to the VC. The selection M15 made at the first questionnaire did not change after 

he received notifications. It is important to note that the selection of M15 represents what was 

happening in the physical community and not in the VC since M10 and M12 (selected by M15 as 

similar in uploading) were members from his research group and supervised by the same supervisor.  

There are interesting observations with respect to Q8. Five out of seven members had changes in 

their opinion on who had similar interests to them. In the first community model extracted for 

newcomers the interests of each member were derived based on the keywords provided in the first 

questionnaire. Based on what members replied, the algorithms extracted the three most similar 

members in terms of interests to every newcomer. Although this model was based on the keywords 

they have provided there is overlap only on two occasions. After notifications were generated and the 

second community model extracted, there was a greater overlap between the members selected by 

newcomers in the second questionnaire and what has been extracted in the community model (Table 

6). For example, M1 selected M2, M13 and M8 as the most similar members in the first questionnaire. 

In the second questionnaire, he selected M2, M13 and M3, which was exactly what was indicated in 

the community model. M4 selected only M2 in the first questionnaire, but in the second questionnaire 

M4 also selects M3 (and similarities were also detected in the community model). M8 had selected 

M2, M7 and M3 at the beginning but after the notifications M8 added M1, which is a link present in 

the community model as well. These examples show that new members joined the VC with limited 

(or no) TM but after the notifications they became more aware of who had similar interests to them. 

This is also confirmed in the newcomers’ comments, e.g.: 

“VC helps me identify/discover broader details on members’ interests and locate additional 

resources I am not aware of” (M1, Questionnaire 3) 

Table 6 Wilcoxon non-parametric test results for Q8 for newcomers. Results extracted from the questionnaires 

compared to the data in the community model for all members. The results show marginal statistical significant 

difference between the two questionnaires. 

Wilcoxon Signed Non-Parametric Test for Q8 

F1 metric for Q8 Replies Z p (2-tailed) 

 FQ1 – FQ2 -2.264 0.024 

Have newcomers had an increase in their CCen? CCen for newcomers is calculated in the same 

way as for oldtimers (see Section 4.4). Figure 6 summarises the CCen variations, 2 newcomers had an 
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increase in their centrality. During the first and second periods of the experiment, the centrality is 0 

for all newcomers since these members were not members of the VC yet. Period 3 is the time 

newcomers were invited to join the VC and received the notification messages. M14 and M15 

increased their CCen after the first and second set of notifications sent.  

8 Discussion and Conclusions 

This section will discuss the evaluation results focusing on key lessons learnt regarding community-

adapted support, which can be beneficial for researchers in personalisation and user-adaptive systems. 

We will then conclude revisiting the research questions stated in Section 1. 

8.1 Lessons Learnt 

8.1.1 Supporting Community Social Processes 

This research started with the assumption that support for communities should be given in a 

holistic way, considering the community as an entity. We looked at three key processes - TM, SMM 

and CCen – identified as important for the VC to grow and sustain. The evaluation results give 

confidence in the selection of these three processes as the basis for community support. It has been 

shown that problematic patterns relevant to TM, SMM, and CCen can be defined and identified by 

analysing community log data. By providing notification messages we aimed to create awareness 

among members with respect to who the CCenM are, how VC members relate to each other, and the 

purpose of the VC (TM, SMM). Based on the results extracted from the questionnaires and the 

community model, we can conclude that although the notification messages have not had an actual 

effect on the uploading/downloading activity, they had an effect on members’ awareness and 

perception of how they related to other members in the VC. Furthermore, in some cases this 

awareness was transferred to the physical community, where in two occasions members engaged in 

discussions after discovering they had common interests in the VC. 

The study confirms that community-adapted support based on TM, SMM, and CCen can lead to 

improved community awareness. Nevertheless, long term studies are necessary for any affirmative 

claims about the positive effect of using these processes for intelligent community support (e.g. the 

study showed that members needed a long time to conceptualise what was happening in the VC and 

this would affect their behaviour in the VC). Our focus has been on specific community processes 

which could be monitored by analysing log data. More comprehensive approaches would be needed to 

consider other processes, e.g. trust, motivation, and group efficacy. 

8.1.2 Taking into Account Community Stages and Characteristics 

Following the main stages of a VC as presented in (McDermott, 2000), we can conclude that the 

adaptive notifications approach presented in this paper is more suitable for the Grow and Sustain 

stages of a community where members are trying to make connections and keep the community 

active. There was small evidence from this study that the notification messages helped some of the 

oldtimers to be more active and also that they were beneficial for newcomers and helped some of 

them to integrate. 

The study showed a strong backing for considering different community actors when providing 

community-adapted support. Our experimental design distinguished between the newcomers and 

oldtimers, which helped identifying different effects. We expected the newcomers’ participation in the 

VC to be more influenced by notifications but only two newcomers engaged into an activity in the 

VC. According to the newcomers’ comments, time was a problem since many of them were working 

against deadlines during the period when the study took place. One of the newcomers was leave at 

some point during the study. On the other hand, one of the inactive newcomers became active after 

the end of the study. Newcomers only received one round of notifications and this has not provided 

enough time for them to integrate properly within the VC. Nevertheless, some of them integrated and 

became aware of the similarities they had with others. The effect on oldtimers was different – we 

noted that they became more active following notifications sent to them, some of which led to helping 
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newcomers integrate. Notably, the importance of a ‘disconnected’ oldtimer (outside the physical 

community) was ‘discovered’ by other members, and they started to benefit from the resources this 

member had uploaded.  

An important finding about the behaviour of oldtimers is that participation in the VC is influenced 

by the physical community. In most of the cases what is happening online, in a VC, is part of a larger 

environment, usually within particular organisational settings. Knowledge sharing happens in the 

physical space, as well as in the virtual. In this research we have not considered any physical 

interactions of the community members when modelling or supporting the VC. When the community 

has only virtual interactions and members do not have physical contact, the approach proposed here 

would be a feasible way for modelling a VC. The evaluation shows that members might consider an 

influential person from their physical community to be a CCenM in the VC (although this may not 

represent the virtual activity of that member). This will not be captured in the tracking data, and hence 

will be missed in the community model. There is a need for further research to develop extended 

approaches that exploit the convergence of physical and virtual spaces when providing community 

support. For example, an open community model can be used to allow members to inspect and modify 

the community model to reflect what is happening in the physical space. The discrepancy between the 

community model generated by the system and the open model modified by members can be used to 

better target the notification messages.  

The evaluation study showed that the virtual space used would impact the functioning of the 

community. The study used the BSCW system as a virtual space, which had advantages and 

disadvantages. BSCW is a robust system and the functionality is stable and well-tested. It also 

allowed us to keep the tracking data used as generic as possible. However, BSCW has a specific style 

of interaction, which some of the members were not familiar with. Most members had not used 

BSCW before and also, during the study, were not using BSCW for any other activities in their 

practice. Several members commented that they were less motivated to participate because they 

disliked the BSCW interaction style. We can assume that some of the negative results obtained may 

be attributed to the BSCW platform following studies that people tend to perform best when the tools 

are similar to what they are used to and also what appeals to their working style (Uruchrutu et al., 

2005). This highlights the importance of taking into account a broad range of human factors, which 

we feel would be a feasible direction for future work in community-adapted support. 

8.1.3 Using Tracking Data 

The approach followed in this research is based on analysis of tracking data from the VC. 

Obviously, there are elements that can be captured by this kind of data and others that cannot. The 

advantage of extracting a community model based on tracking data is that it represents the actual 

interaction of members with the resources available in the VC. Furthermore, if members are working 

explicitly online, then a community model is a good source to represent a VC and use it to provide 

support. In the case when the VC is an extension of the physical community, tracking data is 

insufficient to capture all community interactions. Hence, no matter how robust the algorithms 

developed are, one cannot do much if there is no enough input. However, using the tracking data we 

can discover connections between members that they were unaware of. For example most of the 

research students involved regarded their supervisors as the only members they were connected to at 

the beginning of the study, but after the notifications they discovered that they were also connected to 

other members in the VC that they did not know about before. Although the notifications did not 

influence radically the behaviour of members, there was indication of positive effects on the 

awareness of people in the virtual space which enhanced their view of the physical space.  

A disadvantage of using the tracking data for extracting a model of a VC is that members’ interests 

change, and if the VC does not represent this change (e.g. when a member is not using the VC 

regularly) the extracted community model will not represent the current interests of the members. 

Opening the community model to the VC members and allowing them to modify their individual user 

models can be a possible way to address this problem. A second and well known problem of relying 

on tracking data to extract a community model is the cold-start problem. When people did not use the 

VC to upload or download resources, the algorithms were not able to extract connections among 

members. To overcome the cold start problem, we used the first questionnaires to gather information 
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about members’ interests. However, when members did not download/upload papers, the extracted 

community model included only interest similarity graphs. This is especially an issue when the VC is 

voluntary, like in our case, and there is no explicit incentive for people to participate. 

8.1.4 Interference and Motivation 

Our study looked only at notifications, sent as emails to community members. Some participants 

saw the approach of receiving notification messages as an interruption of their practice. On the other 

hand, some members found the targeted notification messages to be useful reminders. Members 

commented in favour of notifications and there was some evidence that notifications could motivate 

people to engage in the community. In other cases, notifications acted as a reminder that there was a 

pool of information that could be exploited. Similarly, some members mentioned the information in 

the notification messages influenced their confidence in contributing to the VC. We can conclude that 

the study found that notifications would be a useful approach to influence the awareness of the 

community as a whole (though there is a caution that the approach would not be uniformly accepted). 

Although there were members who benefited from the notifications, there were members who were 

not influenced by the notifications. This can be attributed to the volunteering principle for 

participating in the VC and the lack of any explicit incentives (see below). 

Regarding the different message formats, members’ responses show a clear preference for the 

more targeted (personalised) messages rather than the general ones sent with the first notifications. 

During the experimental study we have employed two formats of notifications. One was containing 

general links that pointed to the VC space, and the second included more personalised links pointing 

at relevant members and specific resources and folders containing information relevant to that specific 

member. Although there was more activity after the second (more personalised) notifications, this 

might also be a result of the members adapting to the methods in the study. Other approaches for 

designing notification messages can be considered, implemented and validated using the current 

framework. Social theories can inform the design of persuasive, motivational, and incentive driven 

messages that can influence members to contribute to the community and help them see the added 

value of their participation (Cialdini, 1993; Kollock, 1999; Preece et al., 2004; Rafaeli et al., 2004; 

Preece, 2009). It is more straightforward to facilitate participation in a community when some reward 

mechanism linked to participation can be given, e.g. students’ participation in an online learning 

community can be encouraged with a small reward to their course mark (Cheng and Vassileva, 2005). 

When the VC is voluntary, further incentives and motivation strategies are needed. Consequently, an 

interesting continuation of our approach will be to investigate theories and design message content 

that will facilitate community participation and examine their impact on a close-knit VC. 

8.1.5 Wider Applicability of the Proposed Approach 

An appealing continuation of this work is the further application to different types of social web 

groups. Communities of Practice are an attractive possible application of our framework. It will be 

interesting to examine whether our approach will have a benefit to community of practice. Especially, 

when people are located in geographically dispersed areas, it will be interesting to examine what 

effects (if any) the approach can have on the knowledge sharing behaviour of members in such 

communities. Actors involved in communities of practice usually have different roles in the 

community: CCenM, CPerM and facilitators. A future extension would be to examine how to exploit 

these roles in providing support for knowledge sharing in communities of practice. A community of 

learners can be another possibility. Extracting semantic relationships among students who are sharing 

resources as part of a module and providing support through notifications to these members will allow 

us to examine what effects will this have on their sharing behaviour given that no incentive is given. 

For example, will students be self motivated and socially influenced by their CCen peers to contribute 

to the VC, how will lurkers react to the notifications? A more recent trend concerns the support of 

Collaborative Innovation Networks, which might exist in organisations or in the educational sector 

and involve actors from geographically dispersed areas and of diverse knowledge and skills. In these 

networks people are brought together to work towards the generation of innovation. It is believed that 

members of these networks need to be supported in identifying their complementarities more 
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importantly than their similarities. It will be interesting to investigate what connections need to be 

modelled in this kind of social groups, and how the our framework should be adapted. 

8.1.6 Study Design Choices 

A limitation of the evaluation study can be the formulation of the open questions in all 

questionnaires. Members were asked to select three members from a list of all VC members as their 

reply to each question. This allowed us to extract the conceptualisation of members on who the 

CCenM of the VC were, who was uploading/reading resources similar to them, etc. What would have 

been a better approach was to provide a checkbox next to a person’s name and allow members to 

select as many VC members as they want to define their similarities in the community. Furthermore 

this would have made the use of Precision, Recall and F1 metrics more meaningful. Since we had 

equal number of members selected as replies in the questionnaires (three members selected), and we 

had also three members (closest to a member), extracted in the community model the value for 

Precision, Recall and F1 was the same. In a more general approach where the selection number is not 

fixed, the precision, recall, and F1 metrics would be more informative. 

Another aspect of the study design is the choice made that the experimenter was a member of the 

community. The questionnaires were given before the community model was extracted in each period 

in order to mitigate the influence on the experimenters’ behaviour. When participants know the 

experimenters, they might reply in the questionnaire in a biased way. Having this issue in mind the 

experimenter tried to mitigate any noise in the data. In addition, the questionnaires have been 

structured in such a way that members’ replies could not be adapted in order to please the 

experimenters, since they did not know what could be a correct answer. In fact, there was no way to 

be positively biased, as it was not known what the community model was at the time the 

questionnaires were conducted. Moreover, despite knowing the experimenter (the first author), some 

members did not contribute to the community, which shows that there was no bias to try to please the 

experimenter. The participation of the second author did not impact in any way the experimental 

study, as this author was not involved in the study design, conducting, and analysis. The subjective 

data from this community member have been excluded from the reporting in the paper. 

On the other hand, being members of the VC, the authors could gain an insight of what was 

actually happening in the community, which enabled the interpretation of the results in a more 

meaningful way. For example, the important issue about the link between virtual and physical 

community or the links formed between members outside the VC could not be picked had the authors 

not been members of the physical and virtual community.  

8.2 Conclusions 

We will conclude the paper by revisiting the three research questions stated in Section 1. 

 

How to extract a computational model to represent the functioning of a community as a whole by 

using semantically enhanced system log data?  

 

We have formalised the input data to capture essential information about members, including 

information about users (member Id, email, date joined the community), activity data 

(uploading/downloading), resources (name, keywords (tags), description, rating) and an ontology 

representing the VC domain. Appropriate algorithms have been developed to extract a community 

model based on tracking data and semantically enriching this data using an ontology. We have 

described a general model for VCs that consists of individual user models of the community 

members, several relationship graphs, a list of popular and peripheral topics, and a list of the 

cognitively central members. Generic community tracking data have been used to extract this model, 

together with an ontology used to extract semantic relationship graphs. The algorithms for extracting 

relationship graphs have been kept flexible and can be adjusted according to the input data at hand. A 

study with archival data from an existing VC was conducted. Patterns of community behaviour were 

detected, and provided as the basis for community-tailored support. The proposed community 

modelling mechanism can be used in other knowledge sharing applications where key words or tags 
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are associated with shared resources. The existence of an ontology is beneficial but not necessary (in 

the absence of a domain ontology, WordNet alone can be used as the source for discovering semantic 

relationships). The key limitation of the community modelling approach is its sole reliance on system 

log data. Although this ensures generality and wider applicability, we should point out that further 

extension is needed to take into account other input about the user/community behaviour (e.g. 

participation in external communities, characteristics of the physical community, user roles). Further 

work is also needed to improve the efficiency of the proposed community modelling algorithms. 

 

How can user modelling, adaptation and personalisation techniques be utilised to support processes 

which are important for the functioning of close-knit virtual communities? 

 

We have developed graph-based algorithms to analyse the extracted community model and 

identify knowledge sharing patterns. Knowledge sharing behaviour patterns in a VC have been 

defined, following selected processes (TM, SMM and CCen) important for the effective functioning 

of close-knit communities. Section 5 demonstrated how these patterns can be detected and used to 

provide community-tailored support in the form of personalised notifications. Although the 

interventions we consider - email notifications - are sent to individual members, the content of the 

notifications is based on what is known about the overall community behaviour regarding the specific 

community processes chosen. The adaptive notification mechanism defines why and how a 

notification is generated, according to detected knowledge sharing patterns. This allows deploying the 

approach in different close-knit VCs. In this paper, we have demonstrated how tracking data extracted 

from a widely used knowledge sharing system - BSCW - can be used in designing and extracting a 

community model and providing community-tailored support. The evaluation study has confirmed the 

feasibility of the approach and has pointed at additional aspects to be taken into account in selecting 

content and shaping the form of notifications: members’ status (oldtimers versus newcomers), 

member’s roles and relationships in the physical community (e.g. group leader, seminars moderator, 

supervisor, collaborator), frequency and timing of notifications (e.g. based on certain time points or 

when significant events are detected). 

 

Can adaptive support, driven by community processes, affect the functioning of the community?   

 

An experimental study was conducted with a knowledge sharing VC. Results provide evidence 

that supporting the development of TM, SMM and CCen in a VC can be beneficial for community 

knowledge sharing. The results of the evaluation show that notification messages can have a positive 

effect on members (both newcomers and oldtimers). Two formats of notification messages (general 

and personalised) have been sent to VC members. The second message format (personalised 

information for each member pointing at relevant members and providing links to resources in the 

VC) was preferred by members. In both cases, members rated the notification messages as relevant to 

them. In general, notification messages can be used for motivating members to keep active in the VC 

and, in the case of newcomers, to upload and download resources. The confidence of members 

slightly increased after receiving notifications and a slow development of TM and SMM was shown 

in members’ comments. Members reported that they were becoming aware of the resources and 

people available in the VC. Some newcomers and oldtimers increased their activity after receiving 

notification messages. Finally, the results show evidence that monitoring the CCen of members can be 

used to support the knowledge sharing in a close-knit VC. The evaluation study has allowed us to 

draw wider implications for a newly forming research direction in personalisation and user-adaptive 

systems which considers holistic, community-adapted personalised support. 
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