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This paper proposes an approach for tracking multiple articulated targets using a combined data association and evolving
population particle filter. A visual target is represented as a pictorial structure using a collection of parts together with a model
of their geometry. Tracking multiple targets in video involves an iterative alternating scheme of selecting valid measurements
belonging to a target from a clutter or other measurements that all fall within a validation gate. An algorithm with extended
likelihood probabilistic data association and evolving groups of populations of particles representing a multiple-part distribution
is designed. Variety in the particles is introduced using constrained genetic operators both in the sampling and resampling steps.
We explore the effect of various model parameters on system performance and show that the proposed model achieves better
accuracy than other widely used methods on standard datasets.

1. Introduction

Tracking articulated targets is a central problem in computer
vision, with applications including robotics and surveillance.
The problem of multiple articulated target tracking (MATT)
deals with tracking a variable number of targets, each consist-
ing of the same number of different constituent body parts,
given noisy measurements at every instant of time from
a dynamic scene, and simultaneously maintaining correct
target identities irrespective of any visual perturbations [1–
4]. However, these tasks are complicated by the nonrigid
variation within the general class of objects that we wish to
track (e.g., people, animals, etc.), appearance variations of
targets, and the presence of occlusions. Different methods
have been proposed in the literature to cope with these
challenges, for example, [2, 5–7]. The pictorial structure
approach proposed in [6] is an appealing approach for
people modelling in view its simplicity and generality. A
different, limb-based structure model is developed in [5],
particularly suited for the detection and tracking of multiple
people in crowded scenes.

The problem of MATT can be divided into the subprob-
lems of estimation and data association. A popular approach
to solving this estimation problem is to build linearised
filters such as the extended Kalman filter (EKF) [8], under
a Gaussian noise assumption. Consequently, sufficient statis-
tics from such linearised filters are used for data association.
However, with nonlinear models in the state equation and
non-Gaussian noise assumption, such linearised models
often lead to inaccurate solutions or even face divergence.
The sequential Monte Carlo (SMC) methods, such as the
particle filters (PFs) [9] have proven their potential for the
estimation of nonlinear systems, with non-Gaussian noise
assumption and multimodal distributions.

In this paper, we propose an approach combining evolv-
ing population particle filtering with extended likelihood
data association for MATT applications. To account for the
uncertainty in the origin of the measurement, the extended
likelihood data association method [10] incorporates local
attribute information of measurements weighted by prob-
abilistic data association (PDA) for correctly identifying
the measurement from the target as against the clutter.
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On the other hand, the evolving population particle filter,
provides iterative convergence of groups of particles through
a specified kernel by introducing variety in the population
using constrained genetic operators in both the sampling and
resampling steps.

One of the main novelties of the method is that it
conveniently integrates data association into evolving popu-
lation particle filtering, thus allowing particles to regenerate
both in sampling and resampling steps by simultaneously
disregarding particle measurement that account for clutter
within a specified validation gate. Our results suggest that
the proposed integrated approach can considerably improve
performance when compared individually to a Markov chain
Monte Carlo (MCMC) combined data association technique
or a generic particle filter (non-MCMC filter). Second, the
geometrical constraints imposed by the picture structure
representing the target are intrinsically modeled into the
particle regeneration process through constrained genetic
operations. Furthermore, some of the system parameters
(such as the size of the validation gate) are learned from the
data rather than specified by hand.

The remaining part of the paper is organised in the fol-
lowing way. Section 2 makes an overview of related works.
Section 3 presents the proposed approach for multiple
articulated object tracking. Results are given in Section 4.
Finally, conclusions are summarised in Section 5.

2. Related Work

MATT is a highly challenging area of research within
computer vision and tracking communities. The high degree
of freedom of multiple articulated regions together with
the interdependencies between them and with other targets
requires efficient techniques able to cope effectively with the
dynamic changes of the objects. In general, motion tracking
of articulated objects in video consists of two distinct steps:
detection and tracking. During the detection process, we aim
to segment the human objects and their constituent body
parts from the frames of the video sequences. In tracking,
we are spatially locating these detected regions in time. A
number of techniques have been proposed for the detection
and tracking phases [2, 11–13]. In our paper, we assume
a standard procedure applied for the detection step and
propose a novel tracking methodology.

Tracking in recent years is often considered as a dynamic
system estimation problem [14]. A number of different
techniques have been proposed [15] in the past to estimate
the variables of such dynamic systems. Some of the impor-
tant methods include the Kalman filter [16], and unscented
Kalman filter [17]. These methods assume that the posterior
probability density of the system model is Gaussian. This
assumption is more often restrictive and does not always suit
different applications. In order to cope with the nonlinearity,
extended techniques such as unscented Kalman filter [18],
extended Kalman filter [19], approximation grid filter, and
particle filters [17, 20] have been recommended. A particle
filter approximates the posterior state probability density
using a set of particles and propagating these particles over

time with appropriate weighting coefficients often produces
efficient tracking. Particle filters are robust to nonlinear, non-
Gaussian systems with multi-modal distributions. However,
even with a large population of particles, there may be no
or little number of particles near the actual correct state.
The second main drawback of particle filter methods is
degeneracy. The problem of degeneracy refers to some par-
ticles having negligible weight as against the weight being
concentrated on few others. Resampling techniques are
employed to tackle degeneracy issues but sometimes when
applied improperly can lead to sample impoverishment [21].

Population-based methods [22–24] are techniques that
generate a collection of samples in parallel as against single
independent or dependent samples. We can conveniently
categorize these population-based methods into (a) MCMC
type of methods and (b) methods based on importance
sampling and resampling ideas. While MCMC methods are
directed by theoretical convergence based on iterations, sam-
pling/resampling techniques rely on processing a number of
samples in parallel and sequential Monte. The population
MCMC methods apply population moves that exchange var-
iables between population members in order to generate the
new target density. An example of a population move is the
exchange move that swaps information between chains in a
population. Similar types of moves are realised in the genetic
algorithms, with the crossover, mutation, and exchange steps.
In contrast, the sequential Monte Carlo methods [25] were
constructed to sample from a sequence of related target
distributions, using resampling techniques on the samples
from previous target density. Commonly used resampling
techniques include multinomial resampling [26], residual
resampling technique [25], and stratified resampling [25].

One of the other main issues of MATT applications is the
presence of multiple parts of the body and multiple targets
that share similar feature characteristics, thus leading to
uncertainty in the origin of measurements. Data association
(DA) methods [27, 28] are used for correctly identifying the
measurement that originated from the target from clutter
of other multiple noisy measurements. It is assumed that
the clutter is a model of false detections whose statistical
properties are significantly different from those of the targets.
Data association is of crucial importance to our problem
because of the requirement to relate each measurement to
the correct body part of the correct object of interest. There
has been extensive studies in data association [10, 27, 29–36].
Most methods are restricted by assumptions on the number
of targets, statistical properties of observations, and number
of possible measurements.

In order to tackle the problem of MATT, it is important to
combine estimation techniques and data association so that
robust tracking is possible.

3. The Combined Data Association with
Evolving Population Particle Filter for
Multiple Articulated Object Tracking

In our proposed technique, we formulate MATT as an
estimation problem combined with data association. Let us
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begin by denoting the total number of targets in our scene
to be �. We represent each target τ as a pictorial structure
using a collection of n parts as in [6]. The objective of the
proposed technique is to estimate the state vector xk,τ of
each target τ at time instant k by recursively updating the
posterior distribution of each target p(xk,τ | Zk) based on
a set Zk = {z1, z2, . . . , zk} of measurements at time k. The
movement of each target is described by a general nonlinear
state space model and estimated using the prediction step:

p
(
xk,τ | Zk−1

) =
∫

p
(
xk,τ | xk−1,τ

)
p
(
xk−1,τZk−1

)
dxk−1,τ ,

(1)

and update/filtering step

p
(
xk,τ | Zk

) =
∫

p
(
zk | xk,τ

)
p
(
xk,τ | Zk−1

)
dxk,τ , (2)

where, p(xk,τ | xk−1,τ) is the dynamic model of state evolu-
tion and p(zk | xk,τ) is the likelihood of any measurement zk
given the state xk,τ .

The proposed technique is meant to track multiple
targets by taking into consideration the geometrical con-
straints of the various parts which represents the target
before evaluating the marginal distribution. An evolving
population Markov chain Monte Carlo (EPMCMC) filter
is developed that encapsulates constrained evolution of the
populations using specific genetic operators and robust
association of measurements to targets incorporating local
attribute information using the expected likelihood data
association method [10]. The developed approach can be
summarised as follows:

(1) initialisation: using pictorial structure type models as
in [7], we localise all the � targets along with the
configuration of their n parts,

(2) for iterations 1, . . . ,T,

(a) evolve particles using constrained genetic oper-
ators as in EPMCMC filter,

(b) the expected likelihood data association pro-
vides an efficient solution for data association
of each object into the particle weights of the
EPMCMC filter.

In the following sections, we describe the two steps in
detail before outlining how they are integrated within the
proposed framework.

3.1. EPMCMC Filter. The EPMCMC filter algorithm pro-
ceeds in three distinct steps. The first step involves initialising
the populations of particles from their respective proposal
distributions. Let x(i)

k,τ , i = 1, . . . ,N represent the population
of particles for target τ (each particle is a configuration vector
containing the position and speed of the n body parts for the

target) at time instant k. So, during initialisation: x(i)
k=1,τ =

Γk=1,τ , where Γk=1,τ is the distribution of particles around the
initial localisation of different body parts of target τ. During

initialisation, we also evaluate the initial weights of particles

w(i)
k=1,τ(x(i)

k,τ) and normalise the weights to get W (i)
k=1,τ .

The EPMCMC filter iterates between the resampling
and sampling steps. The resampling step is usually per-
formed only when the effective sample size (ESS) is less
than a predefined threshold Nthreshold and is measured as

(
∑N

i=1 (W (i)
k,τ)

2
)
−1

. During the resampling step, we perform
local evolution of particles; that is, particles from the same
population belonging to the same part of the target are
combined iteratively using steps of crossover, mutation,
or exchange. This approach introduces variety in particles
by regenerating a unique and good population. Here, we
also recalculate weights of particles in each population
using a relevant likelihood metric and normalise them. An
illustration of the genetic moves involved in the EPMCMC
filter is presented in Figure 1.

In the sampling step, we perform global evolution of
particles, that is, iteratively evolving particles from different
populations belonging to different parts of the target using
the steps of crossover, mutation, or exchange. However, the
main difference from local evolution of particles is that
in the global evolution we enforce geometrical constraints
into the evolution, process. These geometrical constraints
are derived from the pictorial structure model of the target
and are based on the neighbourhood structure of every part
of the target. When subjecting the particles to evolution
using genetic operators, we allow particles of one part to
be influenced by only the particles of its neighbours. For
example, when performing the crossover operation, between
two particles xs,τ and xq,τ , we crossover chromosomes only
based on the neighbourhood relationships that parts share
with each other. That is, we restrict crossovers between the
arms of one particle to the legs of the other and encourage
crossovers between arms of one part together with the torso
of the other, as these are neighbouring regions of the elastic
pictorial structure model.

In addition, we evaluate the likelihood of each particle
based on how well the image data supports the proposed
hypothesized candidate parts. We map this support as the
weighted summation of two subsequent terms: the first one
indicates the goodness of fit of the part with the image data,
and the second one measures the goodness of fit of pairs of
candidate parts as connected in the pictorial structure model.

The proposed EPMCMC filter is given in Algorithm 1,
the population MCMC move is presented in Algorithm 2,
and the details for each step of the genetic algorithm
(crossover, mutation, and exchange) are given in the next
subsection.

3.1.1. Resample Moves. In the resample move step, equally
weighted particles are chosen, and population MCMC is
applied. We summarise the population MCMC algorithm as
shown in Algorithm 2.

3.1.2. Crossver. In the proposed framework, the state vector
is represented as a string of bits. The crossover point lc is a
random point on the string of bits of length l. The crossover
operator cannot be applied to all parts of the state vector.
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Figure 1: Illustration of the EP MCMC filter.

(1) Initialisation: at k = 1 generate initial samples x(i)
k,τ and their respective weights W (i)

k,τ = 1/N .
(2) Sampling

(i) For k = 2, . . . .
(ii) For each sample i = 1, . . . ,N .

Draw x(i)
k,τ ∼ qk , where x(i)

k,τ is the ith sample at kth time instant and qk is a known transition prior at time
instant k.

(iii) Move the populations of samples by x(i)
k,τ ∼ Gk(x(i)

k−1,τ), using the genetic transition kernel Gk(·) according to
crossover, mutation or exchange steps as described below.

(iv) Evaluate weights w(i)
k,τ (x(i)

k,τ ) from the likelihood as presented in the next subsection and normalise the weights
to obtain W (i)

k,τ = w(i)
k,τ /
∑N

i=1 w
(i)
k,τ .

(3) Resampling
(i) If ESS ≤ Nthr1 , where the ESS is measured as (

∑N
i=1(W (i)

k,τ)2)−1 and Nthr1 is some threshold.
(a) For t iterations

(a1) Resample using one of the standard resampling techniques such as residual resampling.
(a2) Perform population MCMC based moves to samples as mentioned in Section 3.1.1.
(a3) Recompute the weights w(i)

k,τ (x(i)
k,τ ) and normalise the weights to obtain W (i)

k,τ .
(b) End

(ii) Increment the time instant k = k + 1.
(iii) Iterate steps (2). and (3).

Algorithm 1: The proposed evolving population Markov chain Monte Carlo filter.

(1) Initialisation

(i) Select i∗ resampled particles from each population x(i∗)
k,τ , where i∗ = 1, . . . ,N .

(2) Iterate steps (2) and (3).
(3) (a) Mutation

Perform Mutation as illustrated in Section 3.1.3.
(b) CrossOver or Exchange Move Perform CrossOver or Exchange moves as illustrated in Section 3.1.2

or Section 3.1.4, respectively. Accept the move based on the Metropolis-Hastings rule, for example,
from the probability min{1,A} as described in Section 3.1.4.

Algorithm 2: Population MCMC moves.
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Some parts of the state vector may not undergo any changes,
and thus for such components, the probability of crossover
ρc is zero. This leaves the crossover being operated only on
components that are expected to undergo random changes.
The crossover operator functions on two distinguished
offsprings (paired particles), for example, xs,τ , xq,τ . The
algorithm for crossover is described below:

(i) draw a uniform random number uc for every com-
ponent uc ≈ U(0, 1), and if uc ≤ ρc, then perform
crossover,

(ii) estimate a crossover point lc based on a uniform
random integer between 1 and the length of the
component l,

(iii) generate two offsprings

xs,τ =
(
x1s, x2s, . . . , x(lc−1)s, xlcq, . . . , xdq

)
,

xq,τ =
(
x1q, x2q, . . . , x(lc−1)q, xlc s, . . . , xds

)
,

(3)

where ds and dq refers to the length of the samples xs,τ and
xq,τ , respectively.

For simplicity in the remaining derivation, we will omit
the index τ. For crossover, the proposal distribution q(·)
can be expressed as a product of the proposals for the two
offsprings

q
(
xk | xs,k−1, xq,k−1

)
∼ p

(
xs,k−1 | zk−1

)
p
(
xq,k−1 | zk−1

)
.

(4)

Then, in the crossover operation, performed with the two
offsprings xs,k and xq,k , the particle weight can be expressed
in the form

wcr,(i)
k

=
p
(
zk | x(i)

s,k

)
p
(
zk | x(i)

q,k

)
p
(
x(i)
s,k | x(i)

s,k−1

)
p
(
x(i)
q,k | x(i)

q,k−1

)

q
(
x(i)
s,k−1 | zk−1

)
q
(
x(i)
q,k−1 | zk−1

) .

(5)

Then, the recursive weights can be written as

wcr,(i)
k = wcr,(i)

s,k−1w
cr,(i)
q,k−1Ls

(
zk, x(i)

s,k

)
Lq

(
zk, x(i)

q,k

)
. (6)

Here, L(i)
s (zk, x(i)

s,k) = p(zk | x(i)
s,k) is the likelihood

function for the sth offspring, L(i)
q (zk, x(i)

q,k) = p(zk|x(i)
q,k) is

the likelihood function of the qth offspring and wcr,(i)
s,k−1 and

wcr,(i)
q,k−1 are the weights at (k − 1)th time instant, for the sth

and qth offspring, respectively.
Hence, in the case of the crossover, where there are paired

particles with the same weight, we marginalise one of them
and express the weights as a function of the proposal PDF of
the other PDF.

3.1.3. Mutation. A probability of mutation ρm is initially
defined for each component. Such a probability is chosen in

order to make sure that components that need no stochastic
fluctuations could be prohibited from undergoing mutation
operation. For such components, the probability of mutation
ρm is considered zero. The components are assumed as a
vector string of binary units. According to the proposed
mutation mechanism,

(i) draw a uniform random number um for every
component um ≈ U(0, 1), and if um ≤ ρm, then
perform mutation,

(ii) estimate a mutation point lm based on a uniform ran-
dom integer between 1 and length of the component
l,

(iii) flip the mutation point lm.

The weights are of the form

wmutation,(i)
k =

p
(
x(i)
k | x(i)

k−1

)

Uq
(
x(i)
k | x(i)

k−1

) , (7)

where, U is a uniform random number. During mutation,
samples that undergo mutation are mutually independent.
Therefore, the updated proposal distribution at time k is a
factor of the proposal distribution at the previous iteration
k − 1.

3.1.4. Exchange. Consider two independent chains of sam-
ples, for example, xs,k and xq,k . For their target distributions
πs and πq, respectively, the swap of information between
these two chains can be performed with a Metropolis-
Hastings step. The swap occurs with probability min{1,A},
where

A =
πs
(
xq,k

)
πq
(
xs,k
)

πs
(
xs,k
)
πq
(
xq,k

) . (8)

The genetic transition kernel combines the effectiveness
of samples between various populations to create more
efficient groups of samples.

3.2. Expected Likelihood Probabilistic Data Association
(ELPDA). Since the state vector xk,τ = {xk,τ,η}nη=1 for target
τ consists of the states for all body parts η = 1, . . . ,n, a data
association problem needs to be resolved. In our work, we
adopt the expected likelihood data association method from
[10]. For the set of available measurements, we assume that
one of the measurements originates from the target, and the
rest are due to spurious clutter. In the case of tracking the
pictorial structure of the human target, colour histograms
are used for matching and the corresponding measurement
equation is highly nonlinear. The data association problem
is considered with respect to the whole pictorial structure
(the whole graph) representing the target, for example, with
respect to xk,τ .

We adapt the weights of particles w̃(i)
k,τ(x(i)

k−1:k) in the move
step of the EPMCMC filter specified in Section 3.1.

Let mk denote the number of available measurements at
time step k. The measurements at time step k are denoted as
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zk = {z jk}, where j = 0, . . . ,mk . If θ denotes any association

event, then θ
j
k is a particular association event that assigns

the jth measurement to target τ. According to [10], the

conditional probability density function p(θ
j
k | Zk) of the

association event θ
j
k that the jth measurement within the

validation gate is the measurement that originated from the
target is given by

p
(
θ
j
k | Zk

)
= p

(
θ
j
k | zk,mk ,Zk−1

)
, (9)

for the set of mk measurements zk that fall within the
validation gate. We expand the conditional probability from
above using the Bayesian rule to get

p
(
θ
j
k | zk,mk ,Zk−1

)

∝ p
(
zk | θ j

k,mk ,Zk−1

)
× p

(
θ
j
k | mk,Zk−1

)
.

(10)

If the incorrect measurements have a uniform probability
density function within the gating volume Vτ , and with the
assumption of a normal measurement error for a correct
measurement, we can rewrite

p
(
zk | θ j

k,mk ,Zk−1

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vτ
−(mk−1)P−1

G N
(
z
j
k; 0; Sk

)
,

∀ j = 1, . . . ,mk ,

V−mk
τ ,

∀ j = 0,

(11)

where PG is the probability of gating, Sk is the covariance

matrix of the innovation vector z
j
k. Finally, it has been shown

[10] that the probability p(θ
j
k | zk,mk ,Zk) of association

events can be computed as

p
(
θ
j
k | mk,Zk

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
C
× P(−1)

G

× (PDPG)μF(mk − 1)
mkPDPGμF(mk − 1) + (1− PDPG)μF(mk)

×V−(mk−1)
τ ×N (zk; 0; Sk),

∀ j = 1, . . . ,mk ,

(1− PDPG)μF(mk)
PDPGμF(mk − 1) + (1− PDPG)μF(mk)

,

∀ j = 0,
(12)

where PD is the detection probability, μF is the probability
mass function of the number of incorrect measurements,
PDPG refers to the probability that a target is detected
and its measurements fall within the gate, and Rk is the
measurement error covariance matrix.

Finally, we approximate the weights of the particles based
on the computed expected likelihood using

w̃(i)
k,τ ∝ w̃(i)

k−1,τ ×
p
(
θ0
k | mk , zk−1

)
V−(mk)
τ

q
(
x(i)
k,τ | x(i)

k−1,τ , zk
)

+

∑mk
j=1 p

(
θ
j
k | mk, zk−1

)
V−(mk−1)
τ P−1

G

q
(
x(i)
k,τ | x(i)

k−1,τ , zk
)

×
N
(
zk, z

j
k,Rk

)
p
(
x(i)
k | x(i)

k−1,τ

)

q
(
x(i)
k,τ | x(i)

k−1,τ , zk
) ,

(13)

where i = 1, . . . ,N .

4. Results

In this section, we perform systematic experiments evaluat-
ing (1) the accuracy of our proposed EPMCMC + ELPDA
method with the EPMCMC + PDA algorithm and with a
generic particle filter framework with a joint probabilistic
data association (JPDA PF) proposed in [37, 38] and (2) the
influence of the system parameters on the model including
the geometric constraints, number of parts being tracked,
the radius of the validation gate. We demonstrate our results
on videos containing human targets, where the pictorial
structure of the target is modeled as a graphical model of
the parts of the body. The transition prior is assumed to
be a constant velocity model [8] applied jointly with the
pictorial structure for each target. The pictorial structure is
represented as rectangles for each body part, and the state
vector consists of the position and speed for the centre of
each body part. To evaluate the performance of the models,
we compute the root mean square error distance (RMSE)
between the estimated center point of every part and its
manually labeled counterpart. The results are presented in
the form of a cumulative RMSE for all the targets in the
video.

4.1. Multiple People Tracking. To track multiple people
(together with their multiple body parts) in video, we use
the CAVIAR [39] data set sequences. The CAVIAR dataset
contains over 80 video sequences with one or more targets
moving in real-time scenarios. We have chosen 11 videos
from the data set at varying levels of complexity in terms
of the motion characteristics, occlusion, and clutter (due
to illumination changes). We have further divided the 11
selected sequences in 17 short clips with varying number
of targets. Table 1 elaborates on the chosen sequences and
the clips that have been extracted from these sequences
along with the details of the frames, number of targets, the
level of occlusion, and the presence of clutter. The tracked
people have been manually annotated in these clips using
a maximum 10-point model consisting of the centers of
the head (1 point), torso (1 point), arms (2 points for
each arm), and legs (2 points for each leg). We would like
to particular highlight that the frames are of resolution
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(a) Proposed model (EPMCMC + ELPDA)

(b) Baseline model (EPMCMC + PDA)

(c) Non-MCMC baseline model (JPDA PF)

Figure 2: Sample video frames of the tracked body torso of two targets (trajectories presented in Figure 3).

384 × 288 captured at 25 frames per second. The scales of
the human targets are fairly small in comparison with the
resolution of the image, and thus in some of the images,
a 10-point model gives a dense set of labeled ground-truth
which is unusable; therefore, in such sequences, we use a 6-
point model. We use the method of [7, 40] to initialise the
multiple body parts composed multiple targets in first frame
of each video using the pictorial structure model. For all our
experiment described below unless mentioned otherwise, the
number of Monte Carlo cycles is fixed to 100, the number
of particles used is 500, and the size of the validation gate is
15. All our experiments are conducted on an Intel Duo Core
processor with 3 GB RAM.

4.2. Comparison of Proposed with Related Techniques. One
of the main novelties of the proposed EPMCMC + ELPDA
method is its integration of expected likelihood into the
weights of EPMCMC. The following experiments compares
the accuracy of the proposed algorithm with the combined
EPMCMC and PDA filter. We present the trajectories of two
targets tracked by both techniques in Figure 3 and sample

image frames from the corresponding tracked torso of the
two targets in Figure 2. We also present some sample image
frames of tracked torso’s of multiple targets (four targets)
from a different video sequence in Figure 4. The combined
RMSE curves (in Figures 5 and 6) indicates that our
technique has better accuracy than the baseline method. The
mean combined RMSE values recorded for increasing Monte
Carlo cycles are 2.5369 and 4.2667 for target 1 and 3.2547 and
4.3737 for target 2 using the proposed and baseline strategies,
respectively. In terms of the computational demand, our
algorithm takes 3419 msec on an average per image frame
as against the combined EPMCMC and PDA methods that
take 2169 msec (implemented in MATLAB). This is mainly
due to the computation of the expected likelihood of all
measurements that fall within the validation gate. We have
also found that the cumulative error in the localisation of
the target reduces by approximately 39% for an increased 1.2
seconds in the processing time. We presume that the tradeoff
between the time taken for processing as against the accuracy
of our technique acceptably good. A detailed analysis of the
computation time per image frame across various different
video clips is summarised in Table 1.
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(a) Proposed method (EPMCMC + ELPDA) output
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(c) Non-MCMC baseline method (JPDA PF) output

Figure 3: Trajectory of multiple targets (a) using proposed method (red/blue), (b) using baseline method (magenta/black) and (c) using
Non-MCMC baseline method (green/blue), the JPDA PF proposed in [37, 38].

(a) (b) (c)

Figure 4: Sample video frames of the tracked torso of multiple targets.

4.3. Effect of Changing System Parameters. We study the
effect of different changing system parameters and compare
them between the proposed EPMCMC + ELPDA and the
EPMCMC + PDA model. We do not compare our results
to the generic particle filter framework, as these parameters
are particularly relevant to the parts-based models. First, we
examine the effect of increasing the number of targets being
tracked on the performance of the models. Figure 7 suggests

that increasing the number of targets from 1 to 2 decreases
the accuracy of the proposed EPMCMC + ELPDA model, but
increasing the targets beyond this does not significantly alter
its accuracy.

Secondly, we investigate the effect of increasing the
number of parts of each target that is used for tracking. In
the lower levels of the model, we have a smaller collection
of more salient parts representing the target followed by
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Table 1: Tabular description of the chosen video clips (B2-Browse2, BWW1-BrowseWhileWhalking1, FC-Fight Chase, FR1-FightRunway1,
LB-LeftBag, LBx-LeftBox, MC-MeetCrowd, MWS-MeetWalkSplit, MWT1-MeetWalkTogether1, RFF-RestFallenFloor, WBS1-Walk and
ByShop1) and comparison of combined RMSE between EPMCMC + ELPDA model (Proposed), EPMCMC + PDA model (Baseline) and
RMSE of Torso alone in generic particle filter framework (JPDA PF).

Video Frames Targets Occlude Clutter Proposed Baseline JPDAPF Time

B2
173 1 No 0 1.1821 2.0413 0.9648 3187

198 1 Self 0 1.6669 2.3425 1.1578 3276

BWW1 361 1 Self 1 2.1638 2.6804 1.5673 3106

FC
129 1 No 0 0.5187 0.9835 0.2784 3016

178 2 Yes 0 2.7861 4.0076 3.1279 3127

FR1 199 2 Yes 0 2.7883 3.9801 1.4531 3229

LB

201 3 Self 0 3.4412 7.6359 5.8763 3663

401 3 Partial 1 3.6567 8.0015 5.1455 3841

208 1 No 0 1.4009 2.2156 1.0151 2923

146 1 Self 0 1.9768 3.8970 2.1412 3312

LBx
373 2 Partial 0 2.8990 5.7682 4.2349 3401

370 1 Yes 1 2.5238 3.3532 2.0451 3198

MC 282 4 Partial 0 3.8982 6.4235 6.7347 3789

MWS 301 2 Partial 1 2.0679 4.2176 3.9567 3128

MWT1 323 2 Partial 0 2.5003 3.9134 2.2734 3215

RFF 388 1 Self 0 2.3027 4.5231 1.7235 3309

WBS1 876 5 Yes 0 3.5694 9.2722 7.0163 4789
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Figure 5: Combined RMSE versus the number of Monte Carlo
cycles for target 1.

increasing number of lesser important parts. In the following
experiment, we examine the impact of increasing the number
of parts representing the target by comparing the model with
level one (1 part: torso), level two (2 parts: head and torso),
level three (6 parts: head, torso, two hands, and two legs),
and level four (10 parts-head, torso, four for hands, and four
for legs). The plot in Figure 8 suggests that increasing the
representation of the target (using a larger subset of parts)
increases accuracy.

In Figure 9, we present the results showing the effect of
increasing the size of the validation gate against the accuracy
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Figure 6: Combined RMSE versus the number of Monte Carlo
cycles for target 2.

of EPMCMC + ELPDA technique. The cumulative RMSE
curves demonstrating the effect of increasing the size of
the validation gate indicate that with increase gate size,
accuracy increases, but beyond this, it does not improve the
performance further.

Finally, in Figure 10, we demonstrate the effect of
geometric constraints being enforced in the measurement of
the likelihood against the accuracy of EPMCMC + ELPDA
technique. The cumulative RMSE curves prove beyond
doubt that with appropriate geometrical constraints on the
pictorial structure model accuracy increases.
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Figure 7: Cumulative RMSE versus the number of targets in the
Video.
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Figure 8: Cumulative RMSE versus the number of parts represent-
ing the target.

4.4. Failure Modes. In this subsection, we highlight some
of common failure modes of the proposed framework. We
attribute the missed detections of our proposed framework
to three main conditions. First, when the object(s) of
interest are subject to a high degree of self occlusion due
to articulation of body parts, our framework fails to match
the pictorial structure well to the image data and subse-
quently fail during tracking. The illustrations in Figure 11(a)
show a scenario from our test set, where tracking multi-
ple body parts accurately was highly difficult due to the
aforementioned conditions. In such test sequences, we have
resorted to models containing lower number of distinguish-
able body parts. In Figure 11(b), we highlight the second
mode of failures that are mainly caused due to rapid
changes in illumination conditions. Finally, we also describe
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Figure 9: Cumulative RMSE versus the size of the validation gate.
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Figure 10: Effect of geometric constraints on combined RMSE for
different video sequences (yellow without constraints/brown with
constraints).

conditions such as the image acquisition perspective and
scale of the object(s) of interest as other causes for missed
detections in Figure 11(c).

5. Conclusion

We have proposed an innovative method for combining
extended likelihood data association with evolving popu-
lation particle filtering for robust and accurate multiple
target tracking. The evolving population filter introduces
variety in the population of particles by combining them
in both the sampling and resampling steps using con-
strained genetic operations. The extended likelihood data
association filters those measurements that belong to the
target from a clutter of other noisy measurements anal-
ysed within the validation gate. System parameters such
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(a) Complex occlusion of body parts of a single target

(b) Object navigating in areas with rapid illumination changes

(c) Changing the image acquisition perspective and small object scale

Figure 11: Failure modes of the proposed EPMCMC + ELPDA model: (a) complex occlusion example; (b) rapid change in illumination
conditions; (c) image acquisition perspectives.

the radius of validation gate are reestimated during each
iteration, rather than fixed empirically, resulting in a model
that outperforms similar recent methods on standard data-
sets.
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