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Abstract

This paper considers the problem of joint maneuvering target tracking and classification.
Based on recently proposed Monte Carlo techniques, a multiple model (MM) particle filter
and a mixture Kalman filter (MKF) are designed for two-class identification of air targets:
commercial and military aircraft. The classification task is carried out by processing radar
measurements only, no class (feature) measurements are used. A speed likelihood function
for each class is defined using a prior information about speed constraints. Class-dependent
speed likelihoods are calculated through the state estimates of each class-dependent tracker.
They are combined with the kinematic measurement likelihoods in order to improve the
classification process. The two designed estimators are compared and evaluated over rather
complex target scenarios. The results demonstrate the usefulness of the proposed scheme
for the incorporation of additional speed information. Both filters illustrate the opportunity
of the particle filtering and mixture Kalman filtering to incorporate constraints in a natu-
ral way, providing reliable tracking and correct classification. Future observations contain
valuable information about the current state of the dynamic systems. In the framework of
the MKF, an algorithm for delayed estimation is designed for improving the current modal
state estimate. It is used as an additional, more reliable information in resolving compli-
cated classification situations.
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1 Introduction

Recently there has been great interest in the problem of joint target tracking and
classification. It is due to the fact that the simultaneous implementation of these
two important tasks in the surveillance systems facilitates the situation assessment,
resource allocation and decision-making.Classification(or identification) usually
includes target allegiance determination and/or target profile assessment such asve-
hicle, shipor aircraft type. Target class information could be obtained from anelec-
tronic support measure(ESM) sensor, friend-and-foe identification system, high
resolution radar or other identity sensors. It can be inferred from a tracker, using
kinematic measurements only or in combination with identity sensors. On the other
hand, target type knowledge applied to the tracker can improve the tracking per-
formance by the possibility of selecting appropriate target models. Classification
information can assist in correct data association and false tracks elimination in
multiple target tracking systems. The notion ofjoint tracking and classification
(JTC)was introduced by Challa and Pulford in [1].

Several methods such asBayesian[1–4], Dempster-Shafer[5,6] methods andfuzzy
settheory [7] have been applied to solve different identification problems. Compar-
ative studies of these techniques have been published in the specialized literature
[5]. The inferences for their advantages and disadvantages are usually conflicting.
They are highly dependent on the particularities of the problem of interest. In ad-
dition, the combination of elements from different approaches often leads to inter-
esting results [6]. We focus here on the Bayesian methodology because it offers a
theoretically valid framework for overcoming the uncertainties of the JTC. From a
Bayesian point of view the problem is reduced to reconstructing of thejoint poste-
rior probability density function of the target state and class over time. However, the
optimal solution is infeasible in practice due to the prohibitively time-consuming
computations.

Suboptimal solutions can be found in different directions. One of them is related
to multiple modelestimation algorithms relying on approximate Bayesian filtering
of hybrid dynamic systems [2,8]. The well-known Generalized Pseudo-Bayesian
and the Interacting Multiple Model (IMM) estimation algorithms are essentially
a bank of Kalman filters or Extended Kalman filters, which approximate highly
nonlinear functions by Taylor series expansions. A Bayesian mechanism organizes
the cooperation between the individual filters and the estimation of classification
probabilities. An IMM-based algorithm for JTC is proposed in [3] by fusing mea-
surements from a suite of sensors: low resolution surveillance radar, high resolu-
tion imaging radar and an ESM sensor. An alternative approximation strategy is
aimed at a direct approximation of the underlying density functions. Grid-based
and Monte Carlo methods are representatives of this tendency. Challa and Pulford
[1] suggest a grid-based algorithm for JTC using ESM and radar data. However, the
computational efficiency of the grid-based algorithms depends on the state vector
dimension. In contrast to the grid-based algorithms, the Monte Carlo algorithms
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are more easily implementable for systems of high dimension.

Particle filters [9,10] are sequential Monte Carlo methods based on “particle” (sam-
ple) representation of probability densities. Multiple particles of the variables of
interest are generated, each associated with a weight which characterizes the qual-
ity of a specific particle. An estimate of the variable of interest is obtained by the
weighted sum of particles. In the grid-based algorithms the grid points are chosen
by the designer, whereas in the particle filter the particles are randomly generated
according to the model of the dynamic system and then naturally follow the state.
Sequential Monte Carlo algorithms are particularly suitable for classification pur-
poses. The highly non-linear relationships between state and class measurements
and non-Gaussian noise processes can be easily processed by the particle filtering
technique. Moreover, flight envelope constraints, especially useful for this task, can
be incorporated into the filtering algorithm in a natural and consistent way [11].

One of the first papers where particle filtering techniques are applied to tracking
and identification is [12] addressing two closely spaced objects in clutter. Later
other feasible implementations are reported [4,13]. Automatic target recognition
and tracking of multiple targets with particle filters is proposed in [14] by the in-
clusion of radar cross section measurements into the measurement vector.

The main idea of using sequential Monte Carlo filtering for JTC consists of filling
the state and class space with particles and then running the filtering procedure.
Since the probability of switching between classes is zero, all the particles might
eventually cluster around one class [4]. This is a crucial shortcoming in some cases
of classification. This could happen in many practical situations, for instance, when
the classification decision is not yet been taken, and all particles might be clustered
around one of the classes. Therefore, the number of particles for each class should
remain constant. To overcome this drawback, Gordon, Maskell and Kirubarajan [4]
suggest the following algorithm for JTC: a bank of independent filters, covering
the state and feature space are run in parallel with each filter matched to a differ-
ent target class. The class-conditioned independent filters stay in position “alert”
and the filtering system can “change its mind” regarding the class identification if
changes in the target behavior occur. An example of a successful application of this
approach to littoral tracking with classification is proposed in [13].

In the present paper we develop twosequentialMonte Carlo algorithms, a particle
filter (PF) and a mixture Kalman filter (MKF). They are intended for simultaneous
tracking and classification ofa maneuvering targetusing kinematic measurements
only, primarily in the air surveillance context. Maneuvering target tracking is imple-
mented by themultiple model(MM) estimation in the particle filtering framework
[15–18]. Multiple models, corresponding to different regimes of flight provide reli-
able tracking of fast maneuvering targets. In the particle filter the multiple models
correspond to different acceleration levels. Within the mixture Kalman filtering, the
maneuvering target is modelled by using a random indicator variable, called latent.
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The latent variable can take values over a given set of possible values depending on
the acceleration range. Given the indicator variable, a set of Kalman filters realize
on-line filtering based on dynamic linear models. In such a way a multiple model
structure is implemented together with Monte Carlo sampling in the space of the
latent variables, instead of in the space of the state variables. The paper represents
a further development and generalization of the results reported in [19,20]. Two air
target classes are considered:commercialaircraft (slowly maneuverable, mainly
straight line) andmilitary aircraft (highly maneuverable turns are possible). The
features of the proposed algorithms include the following:

• for each target class a separate filter is designed. These filters operate in parallel,
covering the class space.

• each class-dependent filter represents aswitchingmultiple model filtering proce-
dure, covering the class-dependent kinematic state space.

• two kinds of constraints are imposed on the target kinematic parameters: on the
accelerationand on thespeed. Two speed likelihood functions are defined based
on a prior information about the speed constraints of each class. At every filtering
step, the estimated speed from each class-dependent filter is used to calculate
class-dependent speed likelihoods. These speed likelihoods are combined with
kinematic likelihoods in order to improve the process of classification.

• Future observations contain valuable information about the current target state
[21] and a delayed sampling scheme applied to fading communication channels
was shown to improve the estimation accuracy. The JTC solution can achieve
better performance when such a delayed estimation of the currentmaneuvering
modestate is incorporated into the MKF structure. It is used as an additional,
more reliable information in resolving ambiguous classification situations.

The novelty of the present paper relies on combining the multiple model (MM)
approach with the particle filtering and mixture Kalman filtering for JTC purposes,
the manner of imposing the speed constraints on target behavior and the use of
delayed estimation for classification. Although we consider only two classes, the
generalization for more target classes is straightforward.

The remaining part of the paper is organized as follows. Section 2 summarizes the
Bayesian formulation of the JTC problem according to [4,13,22]. Section 3 presents
the developed MM particle filter, MKF, and delayed-pilot MKF using speed and
acceleration constraints. Simulation results are given in Section 5. Finally, Section
6 contains the conclusions.

2 Bayesian joint target tracking and classification

Consider the following model describing the target dynamics and sensor measure-
ments
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xk = F (mk) xk−1 + G (mk) uk(mk) + B (mk) wk, (1)
zk = h (mk,xk) + D (mk) vk, k = 1, 2, . . . , (2)

wherexk ∈ R
nx is the base (continuous) statevector with transition matrix

F , zk ∈ R
nz specifies the measurement vector with measurement functionh,

uk ∈ R
nu represents a known control input andk is a discrete time. The in-

put noise processwk and the measurement noisevk are independent identically
distributedGaussian processes having characteristicswk ∼ N (0,Q) andvk ∼
N (0,R), respectively. Themodal (discrete) statemk, characterizing the differ-
ent system modes (regimes), can take values over a finite setS, i.e. mk ∈ S ,

{1, 2, . . . , s}. We assume thatmk is evolving according to a time-homogeneous
first-order Markov chain with transition probabilities

πij , Pr {mk = j | mk−1 = i} , (i, j ∈ S) (3)

and initial probability distributionP0(i) , Pr {m0 = i} for i ∈ S, such that
P0(i) ≥ 0, and

∑s
i=1 P0(i) = 1. Next we suppose that the target belongs to one

of M classesc ∈ C whereC = {c1, c2, . . . , cM} represents the set of the target
classes. Generally, the number of the discrete statess = s(c), the initial probability
distributionP c

0 (i) and the transition probability matrixπ(c) =
[

πc
ij

]

, i, j ∈ S(c)
are different for each target class. Note that the joint state and class is time varying
with respect to the state and time invariant with respect to the class [4].

Denote withωk , {zk, yk} the set ofkinematiczk andclass (feature)yk measure-
ments obtained at time instantk. Then Ω

k =
{

Zk,Y k
}

specifies the cumulative

set of kinematicZk = {z1, z2, . . . , zk} and featureY k = {y1,y2, . . . , yk} mea-
surements, available up to timek.

Thegoal of the joint tracking and classification task is to estimate simultaneously
thebase statexk, themodal statemk and theposterior classification probabilities
P

(

c | Ωk
)

, c ∈ C based on all available measurement informationΩ
k.

If we can construct theposterior joint state-mode-class probability density func-
tion (pdf) p

(

xk,mk, c | Ωk
)

, then the posterior classification probabilities can be
obtained by marginalization overxk andmk:

P
(

c | Ωk
)

=
∑

mk∈S(c)

∫

xk∈Rnx

p
(

xk,mk, c | Ωk
)

dxk. (4)

Suppose that we know the posterior joint state-mode-class pdfp
(

xk−1,mk−1, c | Ωk−1
)

at time instantk−1. According to the Bayesian framework,p
(

xk,mk, c | Ωk
)

can

be computed recursively fromp
(

xk−1,mk−1, c | Ωk−1
)

in two steps –prediction
andmeasurement update[4,13].

The predicted state-mode-class pdfp
(

xk,mk, c | Ωk−1
)

at timek is given by the
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equation

p
(

xk,mk, c | Ωk−1
)

= (5)
∑

mk−1∈S(c)

∫

xk−1∈Rnx

p
(

xk, mk | xk−1,mk−1, c,Ω
k−1

)

× p
(

xk−1,mk−1, c | Ωk−1
)

dxk−1,

where the state prediction pdfp
(

xk,mk | xk−1,mk−1, c,Ω
k−1

)

is obtained from
the state transition equation (1)

p
(

xk,mk | xk−1,mk−1, c,Ω
k−1

)

∝

∝
∑

mk∈S(c)

p
(

xk | mk, xk−1, mk−1, c,Ω
k−1

)

× P
(

mk | xk−1,mk−1, c,Ω
k−1

)

=

=
∑

mk∈S(c)

p
(

xk | mk, xk−1, mk−1, c,Ω
k−1

)

∑

mk−1∈S(c)

πc
mk−1mk

P
(

mk−1 | xk−1, c,Ω
k−1

)

.

(6)

The form of the conditional pdf of the measurements

p (ωk | xk,mk, c) = λ{xk,mk,c} (ωk) (7)

is usually known. This is the likelihood of the joint state and feature and has a key
role in the classification algorithm. In our case we do not have feature measure-
mentsyk, k = 1, 2, . . . . The speed estimates from theM classes, together with
speed envelope constraints, whose shapes are given in Section 3.3, form avirtual
“feature measurement” set{Y k}.

When the measurementωk arrives, the update step can be completed

p
(

xk,mk, c | Ωk
)

=
λ{xk,mk,c} (ωk) p

(

xk, mk, c | Ωk−1
)

p
(

ωk | Ωk−1
) , (8)

where

p
(

ωk | Ωk−1
)

=
∑

c∈C

∑

mk∈S(c)

∫

xk∈Rnx

p (ωk | xk,mk, c) p
(

xk,mk, c | Ωk−1
)

dxk.

The recursion (5)-(8) begins with the prior densityP {x0,m0, c}, assumed known,
wherex0 ∈ R

nx , c ∈ C, m0 ∈ S(c). Using Bayes’ theorem, the posterior probabil-
ity of the discrete statemk for classc is expressed by

P
(

mk | xk, c,Ω
k
)

= (9)
1

αk

λ{xk,mk,c} (ωk) ×
∑

mk−1∈S(c)

∫

xk−1∈Rnx

πc
mk−1mk

P
(

mk−1 | xk−1, c,Ω
k−1

)

× p(xk−1, c|Ωk−1)dxk−1,
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whereαk is a normalizing constant. Eq. (9) is substituted into (6) in order to predict
the state pdf at timek + 1.

Then the target classification probability is calculated by the equation

P
(

c | Ωk
)

=

∑

mk∈S(c)

∫

xk∈Rnx p
(

ωk | xk,mk, c,Ω
k−1

)

p(xk,mk, c | Ωk−1)dxk

p
(

ωk | Ωk−1
}

(10)

that can be expressed as

P
(

c | Ωk
)

=
p

(

ωk | c,Ωk−1
)

P
(

c | Ωk−1
)

∑M
i=1 p

(

ωk | ci,Ω
k−1

)

P
(

ci | Ωk−1
)

with an initial prior target classification probabilityP0(c),
∑

c∈C P0(c) = 1.

The state estimatêxc
k for each classc

x̂c
k =

∑

mk∈S(c)

∫

xk∈Rnx

xkp
(

xk,mk, c | Ωk
)

dxk, c ∈ C (11)

takes part in the calculation of thecombinedstate estimate

x̂k =
∑

c∈C

x̂c
kP

(

c | Ωk
)

. (12)

It is obvious from (5)-(12) that the estimates, needed for each class, can be calcu-
lated independently from the other classes. Therefore, the JTC task can be accom-
plished by the simultaneous work ofM independent filters.

3 Maneuvering target tracking and classification

3.1 Maneuvering target model

The two-dimensional target dynamics are given by

xk = Fxk−1 + G (uk + wk) , k = 1, 2, . . . , (13)

where the state vectorx = (x, ẋ, y, ẏ)′ contains target positions and velocities in
the horizontal (Oxy) Cartesian coordinate frame. The control input vectoru =
(ax, ay)

′ includes target accelerations alongx andy coordinates. The process noise
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w = (wx, wy)
′ models perturbations in the accelerations. The transition matrices

F andG are [23]

F = diag (F 1,F 1) , G = diag (g1, g1) ,

where

F 1 =







1 T

0 1





 , for g1 =
(

T 2

2
T

)′

,

T is the sampling interval andB = G. The target is assumed to belong to one of
two classes (M = 2), representing either a lower speedcommercial aircraftwith
limited maneuvering capability (c1) or a highly maneuveringmilitary aircraft (c2)
[1]. The flight envelope information comprises speed and acceleration constrains,
characterizing each class. The speed v=

√
ẋ2 + ẏ2 of each class is limited respec-

tively to the interval:

{c1 : v ∈ (100, 300)} [m/s] and{c2 : v ∈ (150, 650)} [m/s].

The range of the speed overlap section is[150, 300] [m/s]. The control inputs are
restricted to the following sets of accelerations:

{c1 : u ∈ (0, +2g,−2g)} [m/s2] and{c2 : u ∈ (0, +5g,−5g)} [m/s2],

whereg = 9.81 [m/s2] is the acceleration due to gravity. The acceleration process

uk is a Markov chain with five states (modes)s(c1) = s(c2) = 5 [24]:

1. ax = 0, ay = 0, 2. ax = A, ay = A, 3. ax = A, ay = −A,

4. ax = −A, ay = A, 5. ax = −A, ay = −A, (14)

whereA = 2g stands for classc1 target andA = 5g refers to the classc2 (as shown
on Fig. 1 (a)).

The initial probabilities of the Markov chain are selected equal for the two classes
as follows:P0(1) = 0.6, P0(i) = 0.1, i = 2, . . . , 5. The matrixπ(c) of transition
probabilities πc

ij, i, j ∈ S is assumed of the same form for both types of targets:
pij = 0.7 for i = j; p1j = 0.075 for j = 2, . . . , 5; pi1 = 0.15 for i =
2, . . . , 5; pij = 0.05 for j 6= i, i, j = 2, . . . , 5.

The process noise is Gaussian,w ∼ N (0,Q), Q = diag(σ2
wx, σ

2
wy), having differ-

ent standard deviations for each mode and class:

{c1 : σ1
w = 5.5; σj

w = 7.5 [m/s2], j = 2, . . . , 5} and

{c2 : σ1
w = 7.5, σj

w = 17.5 [m/s2], j = 2, . . . , 5} ,

where (σw = σwx = σwy).
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3.2 Measurement model

The measurement model at timek is described by

zk = h(xk) + vk, (15)

with

h(xk) =

(

√

x2
k + y2

k, arctan
xk

yk

)′

, (16)

where the measurement vectorz = (D, β)′ consists of the distanceD to the target
and bearingβ, measured by the radar. The measurement error vectorv ∼ N (0,R)
is assumed to be independent fromw. The measurement noise covariance matrix
for the particle filter has the formR = diag(σ2

D, σ2
β). The measurement function

h(x) is highly nonlinear and can be easily processed by the particle filter.

The MKF algorithm, however, works with linear state and measurement equations.
For the purposes of the MKF design, a measurement conversion is performed from
polar (D , β) to Cartesian (x , y) coordinates:z = (D cos(β), D sin(β))′. Thus,
the measurement equation becomes linear with anz × nx measurement matrixH,
where all elements are zeros, except forH11 = H23 = 1. The components of the
corresponding measurement noise covariance matrixR are

R11 = σ2
D sin2(β) + D2σ2

β cos2(β); R22 = σ2
D cos2(β) + D2σ2

β sin2(β);

R12 = (σ2
D − D2σ2

β) sin(β) cos(β); R21 = R12.

The following sensor parameters are selected in the simulations:σD = 100.0 [m]
σβ = 0.15 [deg]. The sampling interval isT = 5 s.

3.3 Speed constraints

Acceleration constraints are imposed on the filter operation by the use of an appro-
priate control input in the target model. The speed constraints are enforced through
the speed likelihood functions. They are constructed based on the speed envelope
information (3.1). Such constraints are incorporated into other approaches for deci-
sion making [25]. We define the following speed likelihood functions, respectively
for each class

g1 (vc1
k ) =



























0.9, if v c1
k ≤ 100 [m/s]

0.9 − κ1 (vc1
k − 100) , if (100 < vc1

k ≤ 300 [m/s])

0.05 if v c1
k > 300 [m/s]
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and

g2 (vc2
k ) =



























0.1, if v c2
k ≤ 150 [m/s]

0.1 + κ2 (vc2
k − 150) , if (150 < vc2

k ≤ 650 [m/s])

0.95, if v c2
k > 650 [m/s]

whereκ1 = 0.7/200 andκ2 = 0.85/500. Fig. 1 (b) illustrates the evolution of the
likelihoods as a function of the speed.
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Fig. 1. (a) Mode sets for two classes (b) Speed likelihood functions

According to the problem formulation, presented in Section 2, two class-dependent
filters work in parallel withNc number of particles for each class. At time stepk
each filter gives a state estimate{x̂c

k, c = 1, 2}. Let us assume that the estimated
speed from the previous time step,

{

v̂c
k−1, c = 1, 2

}

, is a kind of “feature measure-
ment”.

The likelihoodλ{xk,mk,c} (ωk) = λ{xk,mk,c} ({zk, yk}) is factorized [4]

λ{xk,mk,c} ({zk,yk}) = f (zk|xk,mk) gc (yc
k) , (17)

whereyc
k = v̂c

k−1. Practically, the normalized speed likelihoods represent speed-
based class probabilities estimated by the filters. The posterior class probabilities
are modified by this additional speed information at every time stepk. The inclusion
of the speed likelihoods is done after some “warming-up” interval, comprising the
filter initialization.

3.4 Multiple Model Particle Filter Algorithm

Within the JTC formulation problem as given in Section 2 a separate PF is designed
for each target class. Assuming two classes of targets – commercial and military, we
develop a bank of two independent PFs (M = 2). Each PF propagates a set ofNc

10



hybrid particles{x(i)
k ,m

(i)
k }Nc

i=1, containing all the necessary information about the
target base state and modal state (mode). Each mode takes values from the setS(c).
The modes evolve in time according to a Markov chain with a transition probability
matrix (3). The cloud of particles for every PF allows a sequential update of the
pdfs (5)-(12) by two main stages:prediction and update. During the prediction
each particle is modified according to the state model, including the addition of a
random noise simulating the effect of the uncertainties on the state. Then in the
update stage, each particle’s weight is re-evaluated based on the new sensor data.
Theresamplingprocedure deals with the elimination of particles with small weights
and replicates the particles with higher weights.

A detailed scheme of the proposed particle filter is given in Table 1.

Table 1: A Particle Filter for Joint Target Tracking and Classification

(1) Initialization, k = 0.

For class c = 1, 2, . . . , M set class probabilitiesP
(

c | Ω0
)

= P0(c).

* For j = 1, 2, . . . , Nc,

sample
{

x
(j)
0 ∼ p0(x0, c), m

(j)
0 ∼ {P c

0 (ℓ)}s(c)
ℓ=1

}

and set initial weightsW (j)
0 = 1/Nc ;

* End for j
End forc

Set k = 1.

(2) For c = 1, 2, . . . , M (possibly in parallel) perform

* Prediction step

For j = 1, 2, . . . , Nc

drawm
(j)
k from the setS(c) = 1, 2, . . . s(c) with probability

P
(

m
(j)
k = i

)

∝ πc
ℓ i , for ℓ = m

(j)
k−1 ,

draw w
(j)
k ∼ N (0, Q(m

(j)
k , c)),

calculatex
(j)
k = Fx

(j)
k−1 + Gu(m

(j)
k , c) + Gw

(j)
k ,

whereu(m
(j)
k , c) denotes the pair of accelerations from (14) corresponding tom

(j)
k .

End forj

* Measurement processing step: on receipt of a measurementωk = {zk, yk}:

For j = 1, 2, . . . , Nc evaluate the weights

W
(j)
k = W

(j)
k−1f(zk | x

(j)
k )gc (yc

k) ,
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wheref(zk | x
(j)
k ) = N (h(x

(j)
k ),R) and gc (yc

k) = gc

(

v̂c
k−1

)

;

calculatep
(

ωk | c,Ωk−1
)

=
∑Nc

j=1 W
(j)
k and set L(c) =

∑Nc

j=1 W
(j)
k

End forj

normalize the weightsW (j)
k = W

(j)
k /

∑Nc

j=1 W
(j)
k ;

* Compute updated state estimate and posterior mode probabilities

x̂c
k =

∑Nc

j=1 x
(j)
k W

(j)
k ,

P
(

mk = ℓ | c,Ωk
)

= E
{

1 (mk = ℓ) | c,Ωk
}

∼=
∑Nc

j=1 1(m
(j)
k = ℓ)W

(j)
k , ℓ = 1, 2, . . . , s(c),

where1(·) is an indicator function such that
1(mk = ℓ) = 1, if mk = ℓ and1(mk = ℓ) = 0 otherwise;

* Obtain a hard mode decision:

m̂c
k = arg max

ℓ∈S(c)
P

(

mk = ℓ | c,Ωk
)

∼= arg max
ℓ∈S(c)

Nc
∑

j=1

1(m
(j)
k = ℓ)W

(j)
k

* Compute effective sample size:Neff (c) = 1/
∑Nc

j=1

(

W
(j)
k

)2

End forc

(3) Output: Compute posterior class probabilities and combined output estimate

P
(

c | Ωk
)

=
L(c)P(c|Ωk−1)

∑M

i=1
L(ci)P(ci|Ω

k−1)
, c = 1, 2, . . . , M

x̂k =
∑M

c=1 P
(

c | Ωk
)

x̂c
k

(4) If Neff (c) < Nthres, c = 1, 2, . . . , M

resample with replacementNc particles{x(j)
k ,m

(j)
k }; j = 1, . . . , Nc

from the set{x(j)
k , m

(j)
k }; j = 1, . . . , Nc according to the weights;

setW (j)
k = 1/Nc, j = 1, . . . , Nc

(5) Setk ←− k + 1 and go to step 2.

In step (3) the posterior class probabilities are computed after applying the Bayes
rule, i.e. the posterior is equal to the product of the likelihood and the prior, divided
by the evidence.
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3.5 The Mixture Kalman Filter Algorithm

The mixture Kalman filter (MKF) [26,27] is another sequential Monte Carlo esti-
mation technique which has been successfully applied to different problems in tar-
get tracking and digital communications (see e.g. [28,29]). It is essentially a bank of
Kalman filters (KFs) run with the Monte Carlo sampling approach. The MKF is de-
rived for state-space models in a special form, namelyconditional dynamic linear
model(CDLM), conditional linear Gaussian model, or partially linear Gaussian
model:







xk = F λk
xk−1 + Gλk

uλk
+ Gλk

wk,

zk = Hλk
xk + V λk

vk,
(18)

wherewk ∼ N (0, Q) andvk ∼ N (0, Rc) are Gaussian distributed processes.
{λk} is a sequence of random indicator variables (calledlatent), independent of
wk, vk and the past statexs and measurementzs, s < k. The termconditional
justifies the characteristic of these models: they are linear for a given trajectory
of the indicatorλk. Then, the Monte Carlo sampling works in the space oflatent
variablesinstead of in the space of the state variables. The matricesF λk

, Gλk
, Hλk

andV λk
are known, assuming thatλk is known. For simplicity, in the remaining

part of the paper we are omitting the subscriptλk from the matrices of (18). The
indicatorλk usually takes values from a preliminary known finite set. The MKF
relies on the conditional Gaussian property and uses a marginalization operation in
order to improve the efficiency of the sequential Monte Carlo estimation technique.

Let Λk = {λ0, λ1, λ2, . . . , λk} be the set of indicator variables up to time in-
stant k. By recursively generating a set of properly weighted random samples
{(Λ(j)

k ,W
(j)
k )}N

j=1 to represent the pdfp(Λk|Ωk), the MKF approximates the state
pdf p(xk|Ωk) by a random mixture of Gaussian distributions [27]

N
∑

j=1

W
(j)
k N (µk

(j),Σk
(j)), (19)

whereµk
(j) = µk(Λ

(j)
k ) andΣk

(j) = Σk(Λ
(j)
k ) are obtained by a KF, designed

with the system model (18). We denote byKF
(j)
k = {µk

(j),Σ
(j)
k } the sufficient

statistics that characterize the posterior mean and covariance matrix of the statexk,
conditional on the set of accumulated observationsΩ

k and the indicator trajectory
Λ

(j)
k . Then based on the set of samples{(Λ(j)

k−1, KF
(j)
k−1,W

(j)
k−1)}N

j=1 at the previous

time(k−1), the MKF produces a respective set of samples{(Λ(j)
k , KF

(j)
k ,W

(j)
k )}N

j=1

at the current timek. It is shown in [27] that the samples{(Λ(j)
k , KF

(j)
k ,W

(j)
k )}N

j=1

are indeed properly weighted with respect top(Λk|Ωk), if the samples
{(Λ(j)

k−1, KF
(j)
k−1,W

(j)
k−1)}N

j=1 are properly weighted at time(k − 1) with respect to
p(Λk−1|Ωk−1). The MKF for JTC is described in Table 2.
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Table 2: The Mixture Kalman Filter for Joint Tracking and Classification

(1) Initialization, k = 0
For classc = 1, 2, . . . , M set initial class probabilitiesP

(

c | Ω0
)

= P0(c).

* For j = 1, . . . , Nc,

sampleλ(j)
0 ∼ {P c

0 (λ)}s(c)
λ=1, whereP c

0 (λ) are the initial indicator

probabilities (for the target accelerations).

SetKF
(j)
0 = {µ0(λ

(j)
0 ),Σ0(λ

(j)
0 )}, whereµ0(λ

(j)
0 ) = µ̂0 and

Σ0(λ
(j)
0 ) = Σ0 are the mean and covariance of the initial statex0 ∼ N (µ̂0,Σ0).

Set the initial weightsW (j)
0 = 1/Nc.

* end for j
End for classc
Set k = 1.

(2) Forclassc = 1, 2, . . . , M complete

* For j = 1, . . . , Nc,

• For eachλk = i, i ∈ S(c), compute
- KF prediction step

(µ
(j)
k|k−1)

(i) = Fµ
(j)
k−1|k−1 + Gu(λk = i, c),

(Σ
(j)
k|k−1)

(i) = FΣ
(j)
k−1|k−1F

′ + GQ(λk = i, c)G′,

(z
(j)
k|k−1)

(i) = H(µ
(j)
k|k−1)

(i),

(S
(j)
k )(i) = H(Σ

(j)
k|k−1)

(i)H ′ + V RV ′.

Note thatj is a particle index, whilei = 1, 2, . . . , s(c) is an index of the Kalman

filters with the different acceleration levels (14).

- on receipt of a measurementzk calculate the likelihood

L(j)
k,i = f(zk|λk = i,KF

(j)
k−1) p(λk = i|λ(j)

k−1), where

f(zk|λk = i,KF
(j)
k−1) = N ( (z

(j)
k|k−1)

(i), (S
(j)
k )(i) ), and

p(λk = i|λ(j)
k−1) is the prior transition probability of the indicator

• Sampleλ(j)
k from a setS(c) with a probability, proportional toL(j)

k,i , i ∈ S(c); sup-

pose thatλ(j)
k = ℓ, whereℓ ∈ S(c). Appendλ

(j)
k to Λ

(j)
k−1 and obtainΛ(j)

k .

• perform the KF update step forλ
(j)
k = ℓ:

K
(j)
k|k = (Σ

(j)
k|k−1)

(ℓ)(H)′[(S
(j)
k )(ℓ)]−1,
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µ
(j)
k|k = (µ

(j)
k|k−1)

(ℓ) + K
(j)
k|k[zk − (z

(j)
k|k−1)

(ℓ)],

Σ
(j)
k|k = (Σ

(j)
k|k−1)

(ℓ) − K
(j)
k|k(S

(j)
k )(ℓ)K

(j)′

k|k ,

• update the importance weights

W
(j)
k = W

(j)
k−1gc

(

v̂c
k−1

)
∑s(c)

i=1 L
(j)
k,i

* end forj

SetL(c) =
∑Nc

j=1 W
(j)
k ;

Normalize the weightsW (j)
k = W

(j)
k /

∑Nc

j=1 W
(j)
k

Computethe updated state estimate, posterior mode probabilities and hard mode de-
cision

x̂c
k =

∑Nc

j=1 µ
(j)
k|kW

(j)
k , P (λc

k = i) =
∑Nc

j=1 1(λ
(j)
k = i)W

(j)
k , i ∈ S(c)

λ̂c
k = arg max

i∈S(c)
P (λc

k = i)

Computethe effective sample size:Neff (c) = 1/
∑Nc

j=1

(

W
(j)
k

)2

Endfor classc

(3) Output: Compute the posterior class probabilities and combined output estimate
(such as in the PF)

P
(

c | Ωk
)

=
L(c)P(c|Ωk−1)

∑M

i=1
L(ci)P(ci|Ω

k−1)
, c = 1, 2, . . . ,M

x̂k =
∑M

c=1 P
(

c | Ωk
)

x̂c
k

(4) If Neff (c) < Nthres, c = 1, 2, . . . , M

resample with replacementNc particles for each class:

λ
(j)
k , µ

(j)
k|k, Σ(j)

k|k; j = 1, . . . , Nc according to the weights;

SetW (j)
k = 1/Nc, j = 1, . . . , Nc

(5) Setk ←− k + 1 and go to step 2.

Two MKFs are run in parallel, each of them according to the hypothesis: respec-
tively commercial or military aircraft. In our JTC problem theindicator variableλ
corresponds to themodevariablem from the previous sections. It takes values from
a finite discrete setS(c) , {1, 2, . . . , s(c)} and evolves according to a Markov
chain with transition probabilities (3).

At every time instantk, for each particle(j), j = 1, . . . , Nc, the MKF scheme
runss(c) KF prediction steps, according to eachλ ∈ S(c). The likelihood func-
tions of the predicted states are calculated based on the received measurementzk.
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They form a trial sampling distribution, according to which the newλk is selected.
The MKF explores the predicted space in order to select the most likely value of
λ. Then the KF update step is accomplished only for the selectedλk. In the par-
ticle filtering approach this procedure is realized in some chaotic (random) sense.
This fact, together with the lack of the base state sampling, make the MK filtering
more precise and more computationally efficient. However, the MKF application is
limited to the CDLM. For that purpose the measurement equation (2) is linearized
through a coordinate conversion. It is assumed that the matricesF ,G,H ,V have
the same structure for two classes.

Notice that in both MM PF and MKF the updated state estimates and posterior
mode probabilities are calculated before the resampling step, because resampling
brings extra variation to the current samples ([30], [26], pp. 103).

3.6 Delayed-Pilot Mixture Kalman Filter

Since both types of aircraft can perform slow maneuvers, the recognition can only
be achieved during the aircraft maneuvers with high speed and acceleration. In
some cases it might take a rather long tracking time to distinguish the types. The
estimated posterior mode probabilities can be used for a classification in compli-
cated ambiguous situations. The reliability of the mode information can be further
improved by using of a delayed mode estimation scheme. Since target maneuvers
are usually modelled as ahighly correlatedacceleration process, the observations
in the near future can provide a valuable information about the current mode state.

Recently, delayed estimation methods have been proposed for the purposes of mo-
bile communications [29,21]. The idea of the delayed estimation consists in the
following. Based on the posterior distributionp(xk, λk | c,Ωk), an instantaneous
inference is made on the statexk and the indicator variableλk. If we use the next
measurements(ωk, . . . , ωk+△,△ ≥ 0) with the distributionp(xk, λk | Ω

k+△),
the current state and mode accuracy can be improved at the cost of delayed es-
timation at timek + △. Consequently, the aim of delayed estimation is to gener-

ate samples and weights
{

λ
(j)
k ,W

(j)
k

}Nc

j=1
from the distributionp(Λk | Ω

k+△) at

timek +△. However, the algorithms for delayed estimation are more complicated.
Several schemes for delayed estimation are suggested in [29,21] in the context of
mixture Kalman filtering: delayed-weight, delayed-sample sampling, delayed-pilot
sampling. A highly effective delayed-sample sampling method is developed and
studied in [29]. It realizes a full exploration of the space of future states of△ steps,
and generates samples of both the current state and the weights. Due to the need of
marginalization over the future states, its computational complexity is exponential
in terms of the delay.

A less complicated delayed-pilot sampling method is proposed in [21]. Instead of
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exploring the entire space of future states, the delayed-pilot sampling generates a
number of random pilot streams, each of which indicates what would happen in the
future if the current state takes a particular value. The sampling distribution of the
current state is then determined by the incremental importance weight associated
with each pilot stream. For each classc, at each time stepk, the delayed-pilot
algorithm generatess(c) random pilot streams of the future states of△ steps. Each
pilot stream starts with one of the possible valuesλi, i ∈ S and implements△
MKF steps. An incremental importance weight of this pilot stream is calculated
and assigned toλi. The aim is to utilize this information (that can forecast what
would happen in the future) for generating better samples ofλ. A sample of the
current state is drawn proportionally to the incremental importance weight. This
algorithm partially explores the space of future states. This fact explains why the
pilot approximation introduces a bias, which is additionally corrected by the inverse
of the pilot weights. A scheme of the delayed-pilot MKF [21], adapted to the JTC
is given in Table 3. The algorithm starts with a conventional MKF, described in
the previous section. The inclusion of the delayed estimation is done after the time
interval of15 scans. Only the steps that are different are described for conciseness
(the other steps : initialization, output and resampling are the same as given in
Table 2).

Suppose at time(k−1), a set of properly weighted samples
{(

Λ
(j)
k−1, KF

(j)
k−1,W

(j)
k−1

)}Nc

j=1

with respect top
(

Λk−1 | c,Ωk−1
)

are available. Then, as the new dataωk, . . . , ωk+△

arrive, the following steps are implemented to obtain
{(

Λ
(j)
k , KF

(j)
k ,W

(j)
k

)}Nc

j=1
for

each classc:

Table 3: The delayed-pilot MKF for Joint Tracking and Classification

For j = 1, . . . , Nc,

• for eachλk = i, i = 1, 2, . . . , s(c) run a Kalman filter
KF

(j)
k−1 → zk → KF

(j)
k,i , N

[

µk

(

Λ
(j)
k−1, λk = i

)

,Σk

(

Λ
(j)
k−1, λk = i

)]

compute L(j)
k,i = f(zk|Λ(j)

k−1, λk = i,KF
(j)
k−1)p(λk = i|Λ(j)

k−1),

• for eachλ = i do the following:

for s = k + 1, . . . , k + △, repeat

* Let Λ
(i,j)
s−1 =

[

Λ
(j)
k−1, λk = i, λk+1 = λ

(i,j)
k+1, . . . , λs−1 = λ

(i,j)
s−1

]

for each λs = q, q ∈ S(c), run a Kalman filter

KF
(j)
s−1,i → zs → KF

(q,j)
s,i , N

[

µs

(

Λ
(i,j)
s−1 , λs = q

)

,Σs

(

Λ
(i,j)
s−1 , λs = q

)]

* compute the sampling density

L(q,j)
s,i = f(zs|Λ(i,j)

s−1 , λs = q, KF
(j)
s−1,i)p(λs = q|Λ(i,j)

s−1 )
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and draw a sampleλ(i,j)
s according to the sampling density;

if λ(i,j)
s = ℓ, then setKF

(j)
s,i = KF

(ℓ,j)
s,i

* compute the incremental importance weight

L(j)
s,i =

∑s(c)
q=1 L(q,j)

s,i

end fors

ρ
(j)
k,i = L(j)

k,i

∏k+△
s=k+1 L(j)

s,i ,

end for eachλk = i,

ρ̃
(j)
k,i = ρ

(j)
k,i/

∑s(c)
r=1 ρ

(j)
k,r, i = 1, 2, . . . , s(c),

use ρ̃
(j)
k,i , i = 1, 2, . . . , s(c) as the sampling distribution, draw a sample

λ
(j)
k and obtainΛ(j)

k =
[

Λ
(j)
k−1, λ

(j)
k

]

,

if λ
(j)
k = ℓ, set KF

(j)
k = KF

(j)
k,ℓ

• Compute the importance weights:

if λ
(j)
k = ℓ, W

(j)
k = W

(j)
k−1

L
(j)
k,ℓ

ρ̃
(j)
k,ℓ

gc

(

v̂c
k−1

)

,

calculate the auxiliary weight W̃
(j)
k = W

(j)
k

∏k+△
s=k+1 L(j)

s,ℓ ,
endof j

use the auxiliary weight to compute the posterior mode probabilities,
• Output: compute updated state estimate, posterior class probabilities and

combined output estimate according to the MKF scheme in Table 2.
• Resamplingif the effective sample size is below a certain threshold.

• Setk ←− k + 1 and go to the beginning of the scheme.

Comment: The delayed-pilot MKF algorithm for JTC generates at time(k + △) a

weighted sample set
(

Λ
(j)
k ,W

(j)
k

)Nc

j=1
, which is not properly weighted with respect

top(Λk | Ωk+△
k ). A better inference onλk at time(k+△) is done by the calculation

of auxiliary weights [21]. The auxiliary weights are used both for inference onλk

and in the resampling step. The investigation of this algorithm for JTC shows, that
the scheme slightly deteriorates the posterior class probabilities in comparison with
the MKF.
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4 Simulation results

The performance of the implemented filters for JTC is evaluated by simulations
over representative trajectories (shown on Figures 2 and 11) together with the radar
location, indicated by a triangle. The target motion is generated without a process
noise. The target trajectories were generated with a model ([31] Eqs. (57)–(60))
differing from the models used in the filters. The MM particle filter and the MKF
using both speed and acceleration constraints with likelihood computed according
to (17) are compared to filters without speed constraints, which likelihood is equal
to λ{xk,mk,c} = fxk

(zk|xk,mk, c). The performance of the designed delayed-pilot
sampling algorithm for JTC is demonstrated on a specially selected target scenario
(Fig. 22).

Measures of performance. Root-Mean Squared Errors(RMSEs) [32]: on position
(both coordinates combined) and speed (magnitude of the velocity vector),average
probability of correct class identificationand average time per updateare used
to evaluate the filters performance. The results presented below are based on 100
Monte Carlo runs. The PF hasNc = 3000 particles per class, the MKF hasNc =
300 particles per class, and the resampling threshold isNthresh = Nc/10. The prior
class probabilities are chosen to be equal:P0(1) = P0(2) = 0.5. The parameters of
the base state vector initial distributionx0 ∼ N (m0, P 0) in the PF are selected as
follows: P 0 = diag(1502 [m], 20.02 [m/s], 1502 [m], 20.02 [m/s]); m0 contains
the exact initial target states. The MKF initial parameters (mean and covarianceµ̂0

Σ0 of the initial statex0 ∼ N (µ̂0,Σ0)) are obtained by a two-point differencing
technique [23] (p. 253), andV = I. The sampling period isT = 5 [s].

Test trajectory 1.The simulated target path is shown in Figure 2. The target accom-
plishes two turn maneuvers with normal accelerations2g [m/s2] and1g [m/s2],
respectively with a constant speed of v= 200 [m/s]. Then a maneuver is per-
formed with a longitudinal acceleration of2g [m/s2] in the frame of 3 scans. The
speed increases up to500 [m/s]. Practically, these maneuvers are typical for targets
of the first class. If the speed constraints are not imposed, the target is classified as
belonging to the first class as it can be seen from Figure 7. But it actually belongs to
the second class which is correctly distinguished by the speed likelihoods (Figure
9) when the target speed exceeds the value of300 [m/s] (during the maneuver with
longitudinal acceleration). After this maneuver, one observes switching in the class
probabilities (Figure 8), which shows the importance of the speed information for
classifying the target in the proper class. The class probabilities for both filters are
almost identical and for this reason only the class probabilities of the PF are pre-
sented (Figures 7 and 8). Figure 10 shows the mode probabilities of the MKF for
class 1. The speed RMSEs are nearly identical for the two filters as well (Figures 5
and 6), whilst the PF position RMSE is larger than those of MKF (Figures 3 and 4).
The RMSEs shown are for each separate class, and the combined RMSE obtained
after averaging with the class probabilities, similarly to (12).
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Test trajectory 2.The target performs four turn maneuvers (Figure 11) with inten-
sity 1g, 2g, −5g, 2g. The third5g turn provides an insufficient true class infor-
mation, since the maneuver is of short duration, and the next2g turn leads to a
misclassification in the PF and MKF without speed constraints (Figure 16). The
target speed of260 [m/s] provides better conditions for the probability, that the
target belongs to class 2, according to the speed constraints. The estimated speed
probabilities assist in the proper class identification, as we can see in Figure 17. The
normalized speed likelihoodsgc(v̂

c), c = 1, 2, obtained by the MM particle filter
and MKF are quite similar. For these reasons we present only the results from the
MKF (Figure 18). According to the results from the RMSEs (Figures 12, 13, 14,
15) the peak dynamic errors of the PF are considerably larger than the respective
MKF results.

The chosen target model (13) in combination with the sequential Monte Carlo
technique provides an easy way of imposing acceleration constraints on the target
dynamics. Air targets usually perform turn maneuvers with varying accelerations
alongx andy coordinates. These varying accelerations consecutively make active
different models from the designed multiple model configuration, since the models
have fixed accelerations alongx andy directions. During the maneuver different
models may have similar probabilities which makes it difficult to infer which is
the most probable between them. The approach proposed here clearly distinguishes
different motion segments, as can be seen from the plots of the posterior model
probabilities, Figure 10 for scenario 1, and Figure 19 for scenario 2.

Figure 20 shows the clouds of the PF particles for both classes and the true target
position indicated by a square. The particles corresponding to class 2 have higher
likelihoods: conclusions can definitely be drawn that the target is of class 2. Figure
21 represents the MKFy-position histogram at time instantk = 56 (at the begin-
ning of the5g turn). The particles corresponding to class 2 are in proximity to the
true target position. They quickly adapt to the changeable target dynamics.

Test trajectory 3.The trajectory is similar in shape to the previous scenario 2. The
target performs four turn maneuvers with normal accelerations−1g, 2g, −5g, 4g,
displayed in Figure 22(b). In scenario 2, the target speed of260 [m/s] provided
better conditions for the probability that the target belongs to class 2 according to
the speed constraints. Now the target speed is245 [m/s] and the speed information
is insufficient to distinguish the classes. The short-durable−5g turn is followed
by a4g turn, which is located between the acceleration constraints, bounding the
classes -2g and5g. The situation is vague from the point of view of the classifi-
cation logic. It is difficult for the MKF to solve the classification task - within 100
Monte Carlo runs, there are more than 50 realizations with wrong classification.
The posterior mode probabilities can help to choose between : making the decision
on the classnow or postponingit to the future time. The delayed-pilot sampling
algorithm provides more reliable mode information. It can be seen from Figures 23
and 24. The acceleration of−50 [m/s2] along they-axis is processed consecutively
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by the models3 and5 of class two filter. The−5g turn is short-durable (2 scans)
and the effect of the delayed estimation is comparably small. That is why the hard
mode decision probabilities, obtained by the delayed-pilot MKF are a little better
than the respective values of the MKF (see Figure 23(b) ). The next maneuver of a
4g turn is longer and lasts4 scans. The acceleration of40 [m/s2] along the y-axis
is processed consecutively by models2 and4 of the filter for class two. The4g turn
is identified by the delayed-pilot MKF with a probability of0.88 (Figure 24(b)),
while the probability of the conventional MKF is 0.35. The posterior probabilities
of the last two maneuvers, provided by the delayed-pilot MKF give a consistent
information for putting off the classification decision. The experiments with the
delayed estimation are realized with a time delay of two steps (△ = 2).

The following inferences can be drawn from the experiments. The results obtained
by the MKF approach for solving the JTC problem confirm the theoretical infer-
ences [27], that the MKF can provide better estimation accuracy compared to the
particle filter. The lower peak dynamic errors of the MKF are particularly useful for
the classification task. This enables tracking and classifying objects of quite differ-
ent types, with rather distinct dynamic parameters. This capability ensures some
robustness of the algorithm, because the designed type parameters are not always
precisely known.

The MM PF and MKF computational complexity allow for an on-line imple-
mentation. An advantage of the MKF is its reduced complexity compared to the
MM PF. The MKF was investigated in the cases of three sample sizes:Nc =
300, 200, and100. The relative computational time of the PF versus the MKF is
presented in Table 4. The computational time for a PF withNc = 3000 particles
is considered as a reference time, which is compared to the MKF computational
time. The experiments are performed on PC computer with AMD Athlon processor
2 GHz. Both algorithms permit parallelization at least of some parts : the MM fil-
ters corresponding to each class can definitely be run in parallel. The delayed-pilot
MKF is realized with a sample sizeNc = 200 and a delay of two steps (△ = 2). It
is 3 times more computational time consuming compared to the MKF.

Table 4. Relative computational time

Nc 3000 300 200 100

PF comp. time 1

MKF comp. time 0.6 0.38 0.185

Delayed-pilot MKF 2
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Fig. 2. Test trajectory 1
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Fig. 3. PF position RMSE [m] (traj. 1)
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Fig. 4. MKF position RMSE [m] (traj. 1)
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Fig. 5. PF Speed RMSE [m/s] (traj. 1)
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Fig. 6. MKF Speed RMSE [m/s] (traj. 1)
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Fig. 9. PF normalized speed likelihoods
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Fig. 10. MKF posterior mode probabilities
- class 1 (traj. 1)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

x  [km]

y 
 [k

m
]

START

RADAR

Fig. 11. Test trajectory 2
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Fig. 12. PF position RMSE [m] (traj. 2)
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Fig. 13. MKF position RMSE [m] (traj. 2)
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Fig. 14. PF speed RMSE [m/s] (traj. 2)
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Fig. 15. MKF speed RMSE [m/s] (traj. 2)
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Fig. 16. Class probabilities (without speed
constraints) (traj. 2)
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Fig. 18. Normalized speed likelihoods
(traj. 2)
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Fig. 19. MKF posterior mode probabilities
- class 2 (traj. 2)
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Fig. 23. Hard decision for5g maneuver (modes 3 and 5) for class 2
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Fig. 24. Hard decision for4g maneuver (modes 2 and 4) for class 2

5 Conclusions

In this paper we propose a multiple model particle filter, a mixture Kalman filter
and a delayed-pilot mixture Kalman filter for the purposes of jointmaneuvering
target tracking and classification. It was shown that distinct constraints, enforced
by the changeable target behavior can be easily incorporated into the Monte Carlo
framework. Two air target classes are considered:commercialandmilitary aircraft.
The classification task is accomplished by processing kinematic information only,
no class (feature) measurements are used. A bank of twomultiple modelclass-
dependent particle filters is designed and implemented in the presence of speed and
acceleration constraints. The acceleration constraints for each class are imposed by
using different control inputs in the target model. Speed constraints are enforced
by constructing class-dependent speed likelihood functions that assist the classi-
fication process. The filters performance is analyzed by simulation over typical
target trajectories in a plane. The results show reliable tracking and correct target
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type classification. A generalization of the algorithms’ application to the three-
dimensional case is straightforward. In complicated target scenarios, the posterior
mode probabilities can help in choosing from two possibilities: to make the de-
cision on the classnow or to postponeit to the future time. The posterior mode
probabilities, provided by the delayed-pilot MKF offer a more reliable information
for decision making.

Although the effectiveness of the developed PF and MKF algorithms is demon-
strated over measurements from a single sensor their application over a network of
sensors is possible and it is an open issue for future research.
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