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Box-Particle Probability Hypothesis Density

Filtering
Marek Schikora, Amadou Gning, Lyudmila Mihaylova,

Daniel Cremers, and Wolfgang Koch, Fellow, IEEE

Abstract—This paper develops a novel approach for multi-
target tracking, called box-particle probability hypothesis density
filter (box-PHD filter). The approach is able to track multiple
targets and estimates the unknown number of targets. Further-
more, it is capable of dealing with three sources of uncertainty:
stochastic, set-theoretic and data association uncertainty. The
box-PHD filter reduces the number of particles significantly,
which improves the runtime considerably. The small number
of box particles makes this approach attractive for distributed
inference, especially when particles have to be shared over
networks. A box-particle is a random sample that occupies a
small and controllable rectangular region of non-zero volume.
Manipulation of boxes utilizes methods from the field of interval
analysis. The theoretical derivation of the box-PHD filter is
presented followed by a comparative analysis with a standard
sequential Monte Carlo (SMC) version of the PHD filter. To
measure the performance objectively three measures are used:
inclusion, volume and the optimum subpattern assignment met-
ric. Our studies suggest that the box-PHD filter reaches similar
accuracy results, like a SMC-PHD filter but with considerably
less computational costs. Furthermore, we can show that in the
presence of strongly biased measurement the box-PHD filter even
outperforms the classical SMC-PHD filter.

Index Terms—Multi-Target Tracking, Box-Particle Filters,
Random Finite Sets, PHD Filter, Interval Measurements

I. INTRODUCTION

MULTI-TARGET tracking is a common problem with

many applications. In most of these the expected target

number is not known a priori, so that it has to be estimated

from the measured data. In general, multi-target tracking

involves the joint estimation of states and the number of targets

from a sequence of observations in the presence of detection

uncertainty, association uncertainty and clutter [1]. Classical

approaches such as the Joint Probabilistic Data Association

filter (JPDAF) [2] and multi-hypothesis tracking (MHT) [3]

need in general the knowledge of the expected number of

targets. The finite set statistics (FISST) approach proposed by

Mahler [4] is a systematic treatment for multi-target tracking

with an unknown and variable number of objects. To reduce

the complexity Mahler proposed an approximation of the
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original Bayes multi-target filter, the Probability Hypothesis

Density filter (PHD). One of the main advantages of the PHD

filter is that it avoids the data association problem and resolves

the measurement origin uncertainty in an elegant way. In [5],

[6] it was shown that the PHD filter outperforms the classical

approaches such as the Kalman Filter, standard particle filters

and the Multiple Hypothesis Tracking. Algorithms based on

the JPDAF [7] tend to merge tracking results produced by

closely spaced objects. This drawback cannot be observed,

when using the PHD filter. Many implementations of the

PHD filter have been proposed, either using sequential Monte

Carlo methods [8]–[10], or with Gaussian mixtures [11]. An

improved implementation of SMC-PHD filter was published

in [12].

The traditional measurement noise expresses uncertainty

due to randomness, often referred to as statistical uncertainty.

In many practical applications, however, the standard measure-

ment model is not adequate. Complex distributed surveillance

systems, for example, are often operating under unknown

synchronization biases and/or unknown system delays. The

resulting measurements are affected by bounded errors of

typically unknown distribution and biases, and can be ex-

pressed rather by intervals than by point values. An interval

measurement expresses a type of uncertainty which is referred

as the set-theoretic uncertainty [13], [14], vagueness [15] or

imprecision [16]. Some of the first works about representing

densities as a mixture of box-particles can be traced back

to the early seventies, see [17] for a review. The concept of

box-particle filtering in the context of tracking was introduced

in [18]. In [19] it was shown that box-particles can be seen

as supports of uniform probability density functions (PDFs),

leading to Bayesian understanding of box-particle filters. In

[20] a single target box-particle Bernoulli filter with box

measurements is presented.

The main contribution of this work is a general derivation

of box-particle methods in the context of multi-target tracking

with an unknown number of targets, clutter and false alarms.

We present here a box-particle version of the multi-target PHD

filter. In addition, a comparison of the Box-PHD filter with a

standard sequential Monte Carlo PHD Filter is performed. The

optimum subpattern assignment (OSPA) metric [21] is used as

performance measure, together with the criteria for measuring

the inclusion of the true state and the volume of the posterior

PDF [20].

The remaining part of this article is structured as follows.

A brief introduction to Finite Set Statistics is given in Section

II. The necessary interval methodology is explained in Section
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III. Section IV contains a general description of the PHD

filter with a basic SMC implementation. The following Section

V-A describes the steps needed to get from point particles to

box-particles. The Box-PHD filter is derived and described

in Section V. A numerical study is presented in Section VI.

Conclusions are drawn in the final Section VII.

II. FINITE SET STATISTICS

In a single-object system, the state and measurement at time

k are represented as two random vectors of possibly different

dimensions. These vectors evolve in time, but maintain their

initial dimension. However, this is not the case in a multi-

object system. Here the multi-object state and multi-object

measurement are two collections of individual objects and

measurements. The number of these may change over time and

lead to another dimensions of the multi-object state and multi-

object measurement. Furthermore, there exist no ordering

for the elements of the multi-object state and measurement.

Using the theory proposed in [22], the multi-object state and

measurement are naturally represented as finite subsets Xk

and Zk defined as follows:

Let N(k) be a random number of objects, which are located

at xk,1, ...,xk,N(k) in the single-object state space ES , e.g. Rd

then,

Xk =
{

xk,1, ...,xk,N(k)

}

∈ F(ES) (1)

is the multi-object state, where F(ES) denotes the collection

of all finite subsets of the space ES . Analogous to this, we

define the multi-object measurement

Zk =
{

zk,1, ..., zk,M(k)

}

∈ F(EO), (2)

assuming that at the time step k we have M(k) measurements

zk,1, ..., zk,M(k) in the single-object space EO, which corre-

spond to real targets and clutter. The sets Xk and Zk are

also called random finite sets. In analogy to the expectation

for a random vector, a first-order moment of the posterior

distribution for a random set is of interest here, which is the so

called probability hypothesis density. The integral value of the

PHD over a given region in state space leads to the expected

number of objects within this region. Denote fk|k(xk) as the

PHD associated with the multi-object posterior p(Xk|Z
k) at a

time step k, with Zk denoting the accumulated measurements

from the time steps 1 to k. The PHD filter consists of two

steps: prediction and update [4].

The prediction can be realized through the following equa-

tion1:

fk|k−1(xk) =

b(xk) +

∫

ps(xk−1)p(xk|xk−1)fk−1|k−1(xk−1)dxk−1,

(3)

where b(xk) denotes the intensity function of spontaneous

birth of new objects, xk−1. ps(xk−1) is the probability that

the object still exists at the time step k given its previous state

1Target spawning is not considered in this paper.

xk−1, and p(xk|xk−1) is the transition probability density of

the individual objects. The update equation can be written as

fk|k(xk) ∼= F (Zk|xk)fk|k−1(xk), (4)

F (Zk|xk) = 1− pD(xk)

+
∑

z∈Zk

pD(xk)p(z|xk)

λc(z) +
∫

pD(xk)p(z|xk)fk|k−1(xk)dxk

,

(5)

with pD(xk) denotes the probability that an object in state

xk will be detected at time step k. Furthermore, p(z|xk) is

the measurement likelihood, c(z) the probability distribution

for every clutter point and λ is the average number of clutter

points per scan.

III. INTERVAL ANALYSIS

This section gives a short introduction to the field of

interval analysis, which will be used in this article. For more

informations see [23]. The original idea of interval analysis

was to deal with intervals instead of real numbers for exact

computation in the presence of rounding errors. However, this

field has strongly increased its potential applications. We will

use the main concepts to represent particles not as delta-peaks

but as boxes in the state space. An interval [x] = [x, x] ∈ IR

is a closed and connected subset of the real numbers R, with

x ∈ R representing its lower bound and x ∈ R its upper

bound. In multiple dimensions d this interval becomes a box

[x] ∈ IR
d defined as a Cartesian product of d intervals:

[x] = [x1] × ... × [xd]. Here the operator |[.]| denotes the

volume of a box [x]. The function mid([x]) returns the center

of a box. Elementary arithmetic operations, basic functions

and operations between sets have been naturally extended to

the interval analysis context.

For general functions the concept of inclusion functions has

been developed. An inclusion function [g] for a given function

g is defined such that the image of any box [x] by [g] is a

box [g]([x]) containing g([x]). An inclusion function which

leads to the smallest box area is needed. Hence, the size of

the box [g]([x]) should be minimal but at the same time has

to cover the whole image of a box [x]. An important class in

the context of tracking are the natural inclusion functions.

Definition 1. Assume g : R
d → R, (x1, ..., xd) 7→

g(x1, ..., xd) is a function expressed as a finite composition of

the operators +,−, ∗, / and standard mathematical functions

(sin, cos, exp, ...). A natural inclusion function is obtained

by replacing each real variable and each operator or function

by its interval counterpart.

In general, natural inclusion functions are not minimal,

but many functions can be modified in order to satisfy the

conditions in the following theorem and then their natural

inclusion functions are minimal. Proofs and examples can be

found in [23].

Definition 2. An inclusion function [g] for g is convergent if,

for any sequence of boxes [x](k),

lim
k→∞

|[x](k)| = 0 ⇒ lim
k→∞

[g]([x](k)) = 0, (6)
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with |[x](k)| being the volume of the box [x](k).

Theorem 1. If g involves only continuous operators and

continuous elementary functions then [g] is convergent. If,

furthermore, each of the variables x1, ..., x2 occurs at most

once in the formal expression of g, then [g] is minimal.

The next important concept is contraction, which is needed

for the definition of likelihood functions and the update step

of the proposed filters. The contraction operation actually

represents an optimization procedure which finds the small-

est box which satisfies certain constraints. One elegant way

of performing this optimization is by formulating it as a

Constraint Satisfaction Problem. The Constraint Satisfaction

Problem (CSP) [23], often denoted by H, can be written as:

H : (g(x) = 0, x ∈ [x]) . (7)

A common interpretation of (7) is: find the box enclosure of

the set of vectors x belonging to a given prior domain [x]
satisfying a set of m contraints g = (g1, ...., gm)T , with gi a

real valued function. The solution consists of all x, that satisfy

g(x) = 0 or written as a set:

S = {x ∈ [x] | g(x) = 0}. (8)

A contraction of H means replacing [x] by a smaller box

[x]′ under the constraint S ⊆ [x]′ ⊆ [x]. There are several

methods to build a contractor for H, e.g. by the Gauss

elimination, Gauss-Seidel algorithm and linear programming.

In this work, however, we will use Constraint Propagation

(CP), or sometimes referred as forward-backward propagation,

for its suitability in the context of tracking problems. An

example of a CP algorithm is given in Appendix A.

IV. THE SMC–PHD FILTER

Inspired by the works of Vo et al. [10] and Ristic et al. [12]

on efficient sequential Monte Carlo methods for the PHD

filter, an improved SMC-PHD filter [12] is briefly presented

in this paper to make it self-contained. The main improvement

is a measurement steered particle placement for target birth.

In addition, a target state and covariance matrix estimation

without the need of clustering is introduced. The state of

an individual object is represented by xk ∈ R
nx and each

measurement as zk ∈ R
nz . Assume that the transitional

density p(xk|xk−1) is known through an evolution model fk,

nonlinear in general, that is

xk = fk(xk−1) +wk, (9)

with wk a zero mean Gaussian white process noise .

The SMC-PHD filter consists in 6 steps, which are sum-

marized in what follows. Here the particle set represents the

target intensity fk|k(x) of the PHD filter, which corresponds

to the multi-target state. Given from the previous time step we

have the particle set:

{(xi, wi)}
Nk

i=1, (10)

with xi ∈ R
nx , wi the corresponding weight and Nk denoting

the number of particles, estimated at time step tk−1. Recall that

the integral over this intensity (or sum, if using particles) is the

estimated expected number of targets and it is not necessary

equal to one. The implementation details using a particle PHD

representation is presented below.

1) Predict target intensity

The resampled particle set gained from the previous

step is denoted by {xi, wi}
Nk

i=1. These particles represent

the intensity over the state space. Another interpretation

is, that every particle represents a possible target state

(called microstates in the language of thermodynamics),

so that the prediction of the whole set can be modeled

by applying a transition model to every particle and

adding some noise to it. The weights remain unchanged

at this step. In practical implementations this has the

same effect as predicting the intensity distribution over

the state space with a closed formula.

In order to avoid sampling a high number Nk,new of

newborn particles, the authors in [12] propose to sample

new born particles according to the measurement set

Zk−1 =
{

zk,1, ..., zk,Mk−1

}

from the previous time step

tk−1. For each measurement zk−1,j , j = 1, ...,Mk−1,

N j
k,new = Nk,new/Mk−1 new particles x̃i are drawn

from a distribution βk(x|zk−1,j). In [12] , βk(.|zk−1,j)
is constructed with the assumption that the state vector

can be separated into directly measured component

vector and unmeasured component vector. The measured

component of the newborn particles can be sampled by

inverting the measurement function while the unmea-

sured component are sampled uniformly (see [12] for

more details).

The weights of the new born particles are set to

wi =
νk

Nk,new

, i = Nk + 1, ..., Nk +Nk,new, (11)

with νk, as in [12] is a prior expected number of

target births at time k. The predicted particle set

contains the new born and persistent particles and is

{x̃i, wi}
Nk+Nk,new

i=1 .

2) Compute Correction Term

For all new measurements zj , with j = 1, ...,mk

compute:

λk|k−1(zj) = λc(zj) +

Nk+Nk,new
∑

i=1

pk(zj | x̃i)p
D
k (x̃i)wi

(12)

3) Update

Given mk new measurements the update of the state

intensity is realized through a correction of the individ-

ual particle weights. For every particle (xi, wi), with

i = 1, .., Nk +Nk,new set:

ŵi =



(1− pDk (x̃i)) +

mk
∑

j=1

pk(zj | x̃i)p
D
k (x̃i)

λk|k−1(zj)



 · wi

(13)

4) Estimate target states

To avoid a clustering step we use the methodology

presented in [24]. First, compute the following weights
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for all new measurements zj , j = 1, ...,mk and all

persistent particles, i.e. not the new born particles x̃i, i =
1, ..., Nk.

wj,i =
pk(zj | x̃i)p

D
k (x̃i)

λk|k−1(zj)
· wi (14)

Then compute the following sum

Wj =

Nk
∑

i=1

wj,i, (15)

which can be seen as a probability of existence for target

j, similarly to the multi-target multi-Bernoulli filter [25].

For further analysis, only those j for which Wj is above

a specified threshold τ are considered, i.e.

J = {j|Wj > τ, j = 1, ...,mk} (16)

For all j ∈ J the estimated point states are then:

ŷj =

Nk
∑

i=1

x̃i · wj,i. (17)

Note that only targets that have been detected at time

step tk can be reported as present. This follows the lack

of “memory” of a PHD filter. The full characteristics

are discussed in [26], [27]. In practice τ is usually set

as τ = 0.75.

5) Estimate covariance matrices

For each estimated state ŷj compute its covariance

matrix:

Pj=

Nk
∑

i=1

wj,i

[

(x̃i−ŷj)(x̃i−ŷj)
T
]

, (18)

The matrix Pj is not an error covariance matrix in the

sense of single target Bayes filtering, but it characterizes

the particle distribution of state ŷj .

6) Resampling

Compute first the estimated expected number of targets

ηk =

Nk+Nk,new
∑

i=1

ŵi. (19)

Let Nk+1 be the number of resampled particles, then

any standard resampling technique for particle filtering

can be used. Rescale the weights by ηk to get a new

particle set {xi, ηk/Nk+1}
Nk+1

i=1 .

V. DERIVATION OF THE BOX PARTICLE PHD FILTER

A. From Particle to Box

Recall that applying particle filters to the PHD filter leads to

a particle approximation of the intensity fk|k(x) by a set of Nk

weighted random samples {(xi, wi)}
Nk

i=1. The approximation

can be written as:

fk|k(x) ≈

Nk
∑

i=1

wiδxi
(x), (20)

with δxi
(x) the Dirac delta function concentrated at xi. The

sum (20) converges to fk|k(x), with Nk → ∞ [28]. The

number of particles used is a key issue to the overall filter

performance. In general, the higher the number of particles,

the better the approximation and with it the performance.

However, a high number of particles leads often to a compu-

tationally demanding scenario. In [18] the authors presented

a natural way to deal with the decrease of Nk by using

boxes instead of point particles and combining particle filter

techniques with interval analysis methods. Moreover, in [19]

the authors propose to interpret box-particles as supports of

uniform PDFs, so that (20) changes to:

fk|k(x) ≈

Nk
∑

i=1

wiU[xi](x), (21)

with U[xi](x) denoting the uniform PDF over the box [xi].
Similarly to the scheme of the SMC-PHD filter the box-

PHD filter can be summarized in 7 steps that are derived and

presented in the following sections. Step 1 corresponds to the

time update, steps 2-5 to the measurement update and steps

6 and 7 to the resampling. A brief summary is also provided

later in Algorithm 1.

B. Time update step

Assume that from the previous time step we have the

weighted box particle set2, {([xi], wi)}
Nk

i=1 approximating the

intensity (21). With [xi] ∈ IR
nx , wi the corresponding

weight and Nk denoting the number of particles. The Box-PF

approximation of the PHD prediction equation (3) requires

to approximate two terms: the birth intensity b(xk) and the

persistent intensity.

1) Predict target intensity

As for the SMC-PHD filter, the approach in [12] is used

here to approximate the newborn particles. Denote by

Nk,new the number of newborn particles to be sam-

pled. For each measurement zk−1,j , j = 1, ...,Mk−1,

N j
k,new = Nk,new/Mk−1 new box particles [x̃i] are

drawn from a distribution βk(x|zk−1,j) that is,

b(x) ≈

Mk
∑

j=1

βk(x|zk−1,j) with (22)

βk(x|zk−1,j) ≈
1

N j
k,new

N
j

k,new
∑

i=1

U[x̃i](x) (23)

As described previously for the PF in section IV,

βk(.|zk−1,j) is constructed by separating the state into

directly measured component and unmeasured compo-

nent. The measured components of the newborn box [x̃i]
in (23) are chosen by inverting each measurement box

[zk−1,j ] while the unmeasured component are chosen

according to a prior support. The weights of the new

born box particles are set to

wi =
νk

Nk,new

, i = Nk + 1, ..., Nk +Nk,new, (24)

2For simplicity of notation, we skip the time index k for the particle in the
rest of the paper when it is not needed.
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with νk, as in [12] is a prior expected number of target

births at time k.

Next, it remains to propagate the persistent box par-

ticles, and hence to approximate the integral in (3)
∫

ps p(xk|xk−1)fk−1|k−1(xk−1)dxk−1 can be approxi-

mated. Recall that the transitional density p(xk|xk−1) is

known through an evolution model fk (cf. equation (9)).

It is assumed furthermore that wk is a bounded noise3

in a box [wk]. According to [19] the following approxi-

mations are made with uniform PDFs (similarly to what

is commonly used in the SMC-PHD time update step

with dirac functions):
∫

p(xk|xk−1)fk−1|k−1(xk−1)dxk−1 ≈

wi

Nk
∑

i=1

U[fk]([xi])+[wk](xk) (25)

Equation (25) means that the persistent box particles

are propagated using a transition function’s inclusion

function [f ]. Since the image of a box particle fk([xi])
is not necessarily a box, an inclusion function has to be

used.

The new set of predicted box particles is the union of the

newborn box particles and the predicted persistent parti-

cle, that we denote {[x̃i], wi}
Nk+Nk,new

i=1 . The predicted

PHD has the expression:

fk|k−1(xk) ≈

Nk+Nk,new
∑

i=1

wiU[x̃i](xk). (26)

C. Generalized likelihood

In the measurement update step, an important challenge

is how to implement the likelihood for the set of

box-particles representing the PHD. For the Mk new

measurements zk,j , in the context of this article, box

measurements [zk,j ] are associated to them to model the

noise. The sensor noise statistic is not modelled using

a density (that in practice is often unknown). Instead,

the only assumption that is made is that the sensor

error range is known (in practice this information is

known a priori). The likelihood terms p([z] | x), we are

interested in, are called generalized likelihood . In [29],

the generalized likelihood expression is derived and can

be written:

p([z] | x) = Pr
{

h(x) + v ∈ [z]}, (27)

with h denoting the measurement model and v the

stochastic noise associated to it (note that, without loss

of generality, here we consider an additive noise). If we

assume that the measurement model is deterministic and

we neglect the effect of v (in [30] the expression of the

generalized likelihood with the stochastic noise can be

found), p([z] | x) has the form:

3Without loss of generality, for simplicity noise wk is restricted to be
additive and bounded. In [19], the general case is considered with noise wk

approximated using a mixture of uniform PDFs.

p([z] | x) = Pr
{

h(x) ∈ [z]} = U[z](h(x)), (28)

Note that, in equation (28), for a more general problem,

each measurement can be characterized using a weighted

mixture of boxes (see [19]) to account for measurement

noises with known statistics (e.g. Gaussian noise for

instance). In that case, the generalized likelihood can

be also written as a weighted mixture of uniform PDFs.

D. Measurement update Step

Using the set of box particles {[x̃i], wi}
Nk+Nk,new

i=1

approximating the predicted intensity fk|k−1(xk) and

using the expression of the generalized likelihood (28),

the terms in the correction step (5) are to be calculated.

2) Compute Correction Term

First, the denominator terms in the right-hand side of

equation (5), denoted here λk|k−1([zj ]) have the form:

λk|k−1([zj ]) = λc([zj ])+
∫

pD p([zj ]|xk)fk|k−1(xk)dxk. (29)

Here, pD is assumed constant. Using (26) and (28), the

term p([zj ]|xk)fk|k−1(xk) in (29) can be written as:

p([zj ]|xk)fk|k−1(xk) ≈
∑Nk+Nk,new

i=1 wiU[zj ](h(xk))U[x̃i](xk). (30)

The term U[zj ](h(xk))U[x̃i](xk) in (30) is also a con-

stant function with a support being the following set

Si ⊂ ES , where

Si = {x̃ ∈ [x̃i] | h(x̃i) ∈ [zj ]} . (31)

Equation (31) defines the solution set of a CSP and

from its expression, we can deduce that predicted

box particles [x̃i], have to be contracted with respect

to the measurement [zj ]. Let us define the function

[hCP]([x], [z]) that returns the contracted version of [x]
under the constraints given by the measurement function

h. In this paper, [hCP] is obtained via the CP algorithm

(see [23]). An example of this contraction step is also

given in the appendix (c.f. Appendix A). Following this

notation:

U[zj ](h(xk))U[x̃i](xk) ≈
|[x̂i,j ]|

|[x̃i]||[zj ]|
U[x̂i,j ](xk), (32)

where we denote [x̂i,j ] = [hCP]([x̃i], [zj ]).
Consequently, equation (30) can be further developed

into:

p([zj ]|xk)fk|k−1(xk) ≈
∑Nk+Nk,new

i=1 wi
|[x̂i,j ]|

|[x̃i]||[zj ]|
U[x̂i,j ](xk). (33)

Note that this result (33) is always true for box particle

filter implementations and can be interpreted as: the

likelihood calculation requires i) contraction for the box
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particles and ii) a likelihood value proportional to the

ratio between the volume of the newly contracted box

particle and the original one.

Furthermore, using the expression (33), equation (29)

can now be written in the form

λk|k−1([zj ]) ≈ λc([zj ]) +

pD
∑Nk+Nk,new

i=1 wi

∫ |[x̂i,j ]|
|[x̃i]||[zj ]|

U[x̂i,j ](xk)dxk

= λc([zj ]) + pD
∑Nk+Nk,new

i=1 wi
|[x̂i,j ]|

|[x̃i]||[zj ]|
(34)

3) Update

By inserting the expression (30) inside the PHD update

equations (4) and (5) the updated intensity can be

approximated with box particles according to

fk|k(xk) ≈ (1− pD)
∑Nk+Nk,new

i=1 wiU[x̃i](xk) +

M(k)
∑

j=1

∑Nk+Nk,new

i=1 wi

pD U[zj ]
(h(xk))U[x̃i]

(xk)

λk|k−1([zj ])

≈ (1− pD)
∑Nk+Nk,new

i=1 wiU[x̃i](xk) +

pD
M(k)
∑

j=1

∑Nk+Nk,new

i=1 wi
|[x̂i,j ]|

|[x̃i]||[zj ]|λk|k−1([zj ])
U[x̂i,j ](xk)

(35)

Equation (35), means that, given Mk new measure-

ments the update of the state intensity is realized

through contraction step of the box particles and (Nk +
Nk,new).(M(k)+1) new box particles approximate the

updated intensity. The box particle weights are updated

according to two groups that reflect the two terms

summed in equation (35) :

ŵi = [(1− pD)] · wi, (36)

ŵi =

[

pD
M(k)
∑

j=1

|[x̂i,j ]|
|[x̃i]||[zj ]|λk|k−1([zj ])

]

· wi. (37)

To avoid this approximation with a potentially huge

quantity of box particles, a strategy scoring each mea-

surement is introduced later in this paper in step 6.

4) Estimate target states

To avoid a clustering step we use the methodology

in [24] also presented in section IV for the SMC-PHD

implementation. First, using equation (37) we compute

the following weights for all the new measurements

[zj ], j = 1, ...,mk and all the persistent box particles

[x̃i] or uniform PDF U[x̃i], i = 1, ..., Nk (the new born

box particles are not used in this calculation).

wj,i =
pD |[x̂i,j ]|

|[x̃i]||[zj ]|λk|k−1([zj ])
· wi (38)

Then compute the following sum

Wj =

Nk
∑

i=1

wj,i, (39)

which can be seen as a probability of existence for target

j, similarly to the multi-target multi-Bernoulli filter. For

further analysis only those j are considered for which

Wj is above a specified threshold τ , i.e.

J = {j|Wj > τ, j = 1, ...,mk} (40)

For all j ∈ J the estimated point states are then:

ŷj =
1

Wj

Nk
∑

i=1

mid([x̃i]) · wj,i. (41)

For all j ∈ J the estimated box states are then:

[ŷj ] =
1

Wj

Nk
∑

i=1

[x̃i] · wj,i. (42)

In Equations (41) and (42) we added, in contrast to [12],

the normalization term 1
Wj

to receive more accurate state

estimates when Wj is not practically one.

5) Estimate covariance matrices

Using the interpretation of box-particles as a mixture of

uniform PDFs, the covariance matrix for each state is

computed as

Pj=

Nk
∑

i=1

wj,i

Wj

[

(mid([x̃i])−ŷj)(mid([x̃i])−ŷj)
T+ΣUi

]

,

(43)

with ΣUi
a diagonal matrix of the form

ΣUi
=







|([xi])1|
2/12 0

. . .

0 |([xi])nx
|2/12






(44)

containing the standard derivations for the individual

uniform PDFs. In Equation (43) we added, in contrast

to [12], the normalization term 1
Wj

to receive more

accurate covariance matrix estimates when Wj is not

practically one. The matrix Pj is not an error covariance

matrix in the sense of single target Bayes filtering, but

it characterizes the particle distribution of state ŷj .

6) Contract particles

It has been shown in (35) that each box particle has to

be duplicated and contracted by each measurement. To

avoid this non-desirable number of paper we propose to

contract each box particles [x̃i], i = 1, ..., Nk +Nk,new

with its corresponding measurement. The corresponding

measurement is defined through:

[zi] = argmax
wj,i

{[zj ], wj,i > 0}. (45)

If no [zi] is found, the box particle [x̃i] is not contracted,

else [x̃i] is set to

[x̂i] = [hCP]([x̃i], [z
i]). (46)

More formally, denote by S1 the set of box particles

[x̃i], i = 1, ..., Nk + Nk,new for which [zi] exists and

denote by S2 the remaining box particles. The posterior

intensity fk|k(xk) given in equation (35), can be further

approximated into the following mixture of Nk+Nk,new

PDFs:

fk|k(xk) ≈ (1− pD)
∑

[x̃i]∈S2
wiU[x̃i](xk) +

pD
∑

[x̃i]∈S1
wi

|[x̂i]|
|[x̃i]||[zi]|λk|k−1([zi])U[x̂i](xk) (47)
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7) Resampling

Compute first the estimated expected number of targets

ηk =

Nk+Nk,new
∑

i=1

ŵi. (48)

Let Nk+1 be the number of resampled particles. As

explained in [19], instead of replicating box-particles

which have been selected more than once in the resam-

pling step, we divide them into smaller box-particles

as many times as they were selected. Several strate-

gies of subdivision can be used (e.g. according to the

largest box face). In this paper we randomly pick a

dimension to be divided for the selected box-particle.

Next, rescale the weights by ηk to get a new particle set

{[xi], ηk/Nk+1}
Nk+1

i=1 .

The box-PHD filter is summarized as Algorithm 1.

Algorithm 1 The box-PHD filter

In: {([xi], wi)}
Nk

i=1,Zk,Zk−1

Out: {([xi], wi)}
Nk+1

i=1 , {[ŷj ], P̂j}

1) Predict target intensity

• For i = 1, ..., Nk apply (50) to get x̃i.

• Sample Nk,new many new particles according to

Zk−1

• Weights for new particles are wi (24)

2) Compute correction term

• λk|k−1([zj ]), according to (29)

3) Update target intensity

• For every particle ([x̃i], wi), with i = 1, .., Nk +
Nk,new set the new weight according to (35).

4) Compute target states

• Compute the set J (40)

• For all j ∈ J :

[ŷj ] =
1

Wj

∑Nk

i=1 wj,i[x̃i] (42)

5) Compute covariance matrices

• For all j ∈ J compute Pj according to (43).

6) Contract boxes

• [x̂i] = [hCP]([x̃i], [z]) (46)

7) Resample

• Use a resampling strategy with subdivision of boxes

to get {([xi], wi)}
Nk+1
i=1

VI. NUMERICAL STUDIES

This section gives numerical studies for the proposed Box-

particle PHD filter algorithm. For comparison with traditional

particle filter techniques we use a point particle sequential

Monte Carlo PHD (SMC-PHD) filter. As performance measure

the optimum subpattern assignment (OSPA) metric [21] is

used for performance measure, together with the criteria for

measuring the inclusion of the true state and the volume of

the posterior PDF. The later two were introduced in [20], [30].

Both filters have been implemented in C++ in a similar way. In

addition the Boost Interval Arithmetic Library [31] was used

to handle interval datatypes.

A. Testing Scenario

Fig. 1. Linear scenario used for performance evaluation. Six targets move
inertially. The individual starting points of each target correspond to the
denoted target ID number. Targets 1 - 3 are present for all time steps. Target 4
is presented between time step 15 and 90. Targets 5 and 6 are present between
time step 30 and 75.

We analyze the behavior of both filters in a demanding

linear scenario. Herein six inertial moved targets are placed

in an area A = [−500, 500]m × [−500, 500]m. The unit is

assumed to be meters. The state space is S ⊂ R
4, where the

first two components correspond to the x and y coordinates

and the third and fourth their velocities. The measurement

space consists of [x] and [y] measurements, so Z ⊂ IR
2.

New measurements occur for the sake of simplicity every

second. The measurement noise is white Gaussian noise with

a standard deviation σx = σy = 15m. The probability of

detection is set equal for all states to pDk ([x]) = 0.95. Target

placement and direction of movement is visualized in Figure

1. Targets 1 – 3 are present for all time steps. Target 4 is

presented between time step 15 and 90. Targets 5 and 6 are

present between time step 30 and 75. The whole scenario has

a length of 100 time steps (seconds). The number of clutter

measurements is estimated following a Poisson distribution

with the mean value |A| · ρA:

p(nc) =
1

nc!
(A · ρA)

nc exp(−|A| · ρA), (49)

with |A| denoting the volume of a observed area and ρA a

parameter describing the clutter rate. For this scenario we used

ρA = 4 ·10−6. Clutter measurements are generated by an i.i.d.

process.

To initialize the particle cloud at time step tk = 0, N0 ∈ N
+

particles are distributed uniformly across the state space S , e.g.

N0 = 1000. The weights are set to wi = 1/N0.
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Assuming a constant velocity model in two dimensions the

prediction of the persistent particles can be modeled by:

[x̃i] =









1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1









[xi] + [ν], (50)

with ∆t = tk−tk−1 and ν a 3σ interval of some white process

noise, defined by a covariance matrix Σ. Hidden in equation

(50) are inclusion functions for the individual dimension of

the state space. A close look reveals that every variable only

appears once (for each dimension) and that all operations are

continuous, so these natural inclusion functions are minimal

and the propagated boxes have minimal size. This fact holds

for constant velocity models with arbitrary dimensions.

B. Performance Measures

Let us define d(c)(x,y) := min(c, d(x,y)) as the distance

between x,y cut off at c > 0, and πl the set of permutations

on {1, 2, . . . , l} for any l ∈ N = {1, 2, . . .}. For 1 ≤ p ≤
∞, c > 0, and arbitrary finite subsets X = {x1, . . . ,xm} and

Y = {y1, . . .yn} of S , with m,n ∈ N0, the OSPA metric

[21] is defined as:

d
(c)

p (X,Y):=

(

1

n

(

min
π∈Πn

(

m
∑

i=1

d(c)(xi,yπ(i))
p

)

+cp(n−m)

))
1
p

.

(51)

For the OSPA metric (51) we use directly the state estimates

if using the SMC-PHD filter. To apply the OSPA metric to

the Box-PHD filter we use the point state estimates ŷj gained

in Equation (41) of the proposed algorithm. Alternatively, one

can use the center points of the box states mid([ŷj ]), which

have the same values as ŷj .

The inclusion value ρ measures whether the state vector is

contained in the support of the posterior PDF, or in the case

of the PHD filter the posterior intensity. Given the ground

truth for all targets y∗
l , with l a index over the true number of

targets, the inclusion for the SMC-PHD filter can be computed

by evaluating:

ρSMC
l =

{

1 ∃j : (ŷj − y∗
l )P

−1
j (ŷj − y∗

l )
T < κ

0 otherwise.
(52)

The condition in (52) checks if the ground truth is contained

in the error ellipse defined by covariance matrix Pj . The term

κ defines the size of the error ellipse, e.g., use κ = 11.8 for a

3σ–ellipse in two dimensions [32]. The inclusion for the Box-

PHD filter is much simpler to compute: Check if the ground

truth y∗
l is contained in one of the state boxes [ŷj ]. If this is

true the inclusion value is one, otherwise zero. Then ρl for the

box-PHD filter is given by:

ρbox
l =

{

1 for y∗
l ∈ [ŷj ] and

0 otherwise.
(53)

The volume criteria measures the spread of the particle distri-

bution for a given state. To have a fair comparison between

both filters we compute the volume for the SMC-PHD filter

as:

νSMC
j =

√

6 ·
√

Pj(1, 1) + 6 ·
√

Pj(2, 2). (54)

The volume in Equation (54) is the square root of the widths

of a box containing the 3σ–ellipse of state j. Note that we

only consider here the position information, since the entries

of Pj have different units. For the Box-PHD filter the volume

is computed as the square root of the widths of the box states,

giving:

νbox
j =

√

|[ŷi](1)|+ |[ŷi](2)| (55)

C. Simulations

1) Accuracy Test: In the first simulation we investigate the

accuracy achieved with the Box-PHD filter in comparison with

the SMC-PHD filter. To do so we will use the linear scenario

described earlier. A visualization of the Box-PHD filter for

the linear scenario can be seen in Figure 2. Figure 3 shows

the mean OSPA values achieved with both filters on the given

scenario. We can observe that the OSPA values are in general

very low. This means that the SMC-PHD filter and the Box-

PHD filter behave very good in this scenario. However, we can

also observe that the Box-PHD filter has a little higher values

than the SMC-PHD filter. The authors of [20] already noticed

that point estimates gained from box-particles can have a slight

bias. Therefore they introduced two new measurements criteria

inclusion and volume. The mean results for 1000 Monte Carlo

trials and all targets are shown in Figures 4 and 5, respectively.

It can be easily seen that the inclusion and volume values react

to target appearance and target disappearance. In general we

can say that the Box-PHD filter has a higher volume then

the SMC-PHD filter. This can be seen as a drawback of the

box-particle technique. However, a closer look on the inclusion

values reveals that the higher volume leads to better values for

the inclusion criteria. So we can state that the SMC-PHD filter

converges quickly to the solution and therefore it can happen

sometimes that the true target state is not in the support of

any covariance matrix Pj . From an engineering point of view

both filters reach similar results in this scenario. This fact can

also be seen in Figure 6. Here, the estimated mean number of

states is depicted. The curves of both filters are practically

identical. Nevertheless, the number of particles needed for

the Box-PHD filter is much smaller in comparison with the

SMC-PHD filter, which yields in a better runtime shown in

Table 1. The mean speedup factor for the Box-PHD filter

is 10.9. The number of particles used in this scenario where

1875 for the SMC-PHD filter and only 63 for the Box-PHD

filter. Both filters have been implemented in C++. The Box-

PHD filter uses in addition the Boost Interval Analysis Library.

Experiments were performed on a Intel Core 2 Duo (2.53GHz)

PC with 4GB RAM. Additional performance measures on

the complexity of the approach have been published in [30].

Nevertheless, Fig. 7 shows mean OSPA values for 1000 Monte

Carlo trials on the above scenario, where the number of box-

particles used is varied. It can be seen that as few as 10 box-

particles are only needed in order to reach acceptable OSPA

values. Worth mentioning is also that the maximum accuracy

is already achieved by 50 box-particles for this scenario.
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Fig. 2. Visualization of proposed Box-PHD filter. The green solid lines are
the true target trajectories. The blue solid boxes correspond to a projection of
the estimated box states into 2D. The box-particles are visualized as dashed
black boxes, while red dotted boxes are the measurements.

Fig. 3. Mean OSPA values for 1000 Monte Carlo trials on linear scenario
for both filters.

Fig. 4. Mean inclusion values for 1000 Monte Carlo trials and all targets
on linear scenario without biased measurements for both filters.

Fig. 5. Mean volume values for 1000 Monte Carlo trials and all targets on
linear scenario without biased measurements for both filters.

processing time (msec) speedup

SMC-PHD filter 10.3428 1.0
Box-PHD filter 0.95167 10.9

TABLE I
MEAN RUNTIMES FOR PROCESSING ONE TIME STEP. VALUES COMPUTED

OVER 1000 MONTE CARLO TRIALS AND FOR ALL TIME STEPS OF THE

LINEAR SCENARIO.

Fig. 6. Mean estimated number of states for 1000 Monte Carlo trials on
linear scenario.

Fig. 7. Mean OSPA values for a varying number of box-particles over time.
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2) Strong Bias: In the next simulation we investigate the

behavior of both filter when the sensor measurements have a

strong bias, i.e., the bias is bigger then the white process noise

of the sensor. The examples are similar to those considered

in [33] and in [30]. The linear scenario is used again and

we added to every measurement a bias of 30[m] for the x
measurement and a bias of 10 for the y measurement. The

volume of both filters does not change, which can be seen

in Figure 9. The inclusion criteria on the other hand changes

dramatically for the SMC-PHD filter the value drops to values

around 0.5[m], c.f. Figure 8. This means that approximately

50% of the time the true target state is not within the posterior

intensity of the filter. This indicates filter divergence, which is

considered a catastrophic event in target tracking. The Box-

PHD filter, on the other hand, reaches values similar to the first

simulation without bias. These results lead to the conclusion

that the box-PHD filter outperforms the point SMC-PHD filter

in scenarios with strongly biased measurements.

Fig. 8. Mean inclusion values for 1000 Monte Carlo trials and all targets
on linear scenario with biased measurements for both filters.

Fig. 9. Mean volume values for 1000 Monte Carlo trials and all targets on
linear scenario with biased measurements for both filters.

VII. CONCLUSION

In this paper we presented a novel technique for non-

linear multi-target tracking with a box-particle based filter,

called the Box-PHD filter. The theoretical backbone of this

is the random finite set theory, which can be used to derive

the general intensity filter equations. For the implementation,

however, methods from interval analysis are used additionally

to get a box-particle representation of the PHD filter. This

representation allows a decrement of the number of particles

needed. In our simulations we could reduce the number of

particles by a factor of approximately thirty and reduce the

computation time by a factor of approximately eleven. On

the other hand, the accuracy of the filter was not remarkably

reduced. Especially in the presence of strong bias we could

show that the Box-PHD filter can outperform the SMC-PHD

filter with point particles.

APPENDIX A

CONTRACTION EXAMPLE

Assume the following scenario: A sensor measures azimuth

α and range r in a local sensor coordinate system. The

objective is to track a target in a global Cartesian coordinate

system with these measurements. A measurement is then

z = (α, r)T , while the state is represented by x = (x, y)T .

The point measurement function is defined as

z = h(x) =







arctan
(

y−y0

x−x0

)

√

(x− x0)2 + (y − y0)2






, (56)

where (x0, y0)
T is the sensor position in a global coordinate

system. Equation (56) defines two constraints that will be

used to contract a state box [x]. Assuming box measurements

[z] = [α] × [r] and box states [x] = [x] × [y] a contractor

[hCP ]([x] | [z]) based on constraint propagation [23] is given

by the following algorithm:

0) Input: [x] = [x]× [y], [z] = [α]× [r]
Output: [x] = [x]× [y]

1) for contraint 1 do:

[x] := [x] ∩
√

[r]2 − ([y]− [y0])2 (57)

[y] := [y] ∩
√

[r]2 − ([x]− [x0])2 (58)

[r] := [r] ∩
√

([x]− [x0])2 − ([y]− [y0])2 (59)

2) for contraint 2 do:

[x] := [x] ∩
[y]− [y0]

[tan]([α])
(60)

[y] := [y] ∩ [x] · [tan]([α]) (61)

[α] := [α] ∩ [arctan]

(

[y]− [y0]

[x]− [x0]

)

(62)

3) if the boxes [x] and [z] are changed return to step 1.

The box [x0] × [y0] represents the sensor position as a

singleton. In practice we found it useful to stop this iteration

after a finite number of loops, e.g. three, without any lack

of performance. The quotient of the contracted box volume

and the original box volume is used is used to calculate the

likelihood. Figure 10 visualizes the idea.
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Fig. 10. Contraction example. The box [x] is contracted by the measurement
box [z]. The result is the green box [x′].
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