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Design of a Miniature Permanent-Magnet Generator
and Energy Storage System

Jiabin Wang, Senior Member, IEEE, Weiya Wang, Geraint W. Jewell, and David Howe

Abstract—The paper describes a methodology for optimizing the
design and performance of a miniature permanent-magnet gener-
ator and its associated energy storage system. It combines an an-
alytical field model, a lumped reluctance equivalent magnetic cir-
cuit, and an equivalent electrical circuit. Its utility is demonstrated
by means of a case study on a 15-mW, 6000-r/min generator, and
the analysis techniques are validated by measurements on a proto-
type system.

Index Terms—Design optimization, energy storage system,
miniature permanent-magnet generator.

NOMENCLATURE

Radial flux density (T).

Remanence of permanent magnets (T).

Emf (V).

Electrical frequency (Hz).

Airgap length (m).

Stator current (A).

Stator current density ( A m ).

, Empirical specific hysteresis loss constants.

Specific excess iron loss constant.

Inductance of stator coil (H).

Thickness of stator core.(m).

Axial length of stator coil (m).

Effective axial length of generator (m).

Number of turns on stator coil.

Number of pole pairs.

Stator coil packing factor.

Output power (W).

Resistance of stator coil ( ).

Outer radius of rotor magnets (m).

Inner radius of rotor magnets (m).

Inner radius of stator core (m).

Outer radius of stator coil (m).

Equivalent reluctance for inter-pole leakage in

stator ( H ).

Equivalent reluctance of stator tooth body (H ).

Equivalent reluctance of assembly gaps in stator

(H ).

Equivalent reluctance of stator yoke (H ).

Time (s).

Electrical period (s).
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DC Output voltage (V).

Magnet pole-arc to pole-pitch ratio.

Angular airgap between adjacent stator teeth ( ).

Flux at the stator bore (Wb).

Permeability in free space (H/m).

Relative recoil permeability of magnets.

Relative permeability of stator core.

Flux linkage per turn of stator coil (Wb).

Resistivity of copper ( m).

Efficiency.

Rotor angular velocity (rad s ).

Electrical conductivity of stator core laminations

(S m ).

Density of stator core (Kg m ).

I. INTRODUCTION

W
ITH THE proliferation of portable electronic consumer

products and electronic security devices, there is an ever

increasing need for relatively low power supplies (typically

W). In many applications, on-board power generation would

be preferable to the use of batteries, which have a limited ca-

pacity and lifetime and contain toxic materials [1], [2]. One

means of generating electrical power is to directly convert me-

chanical energy to electrical energy by incorporating a minia-

ture permanent-magnet generator. The mechanical input power

could be derived from intermittent movements, which might be

associated with the random motion of a limb, such as the arm,

or due to a specific action, such as inserting a key. Linear per-

manent-magnet generators systems which are capable of ex-

tracting and storing energy from both reciprocating and inter-

mittent motion have been reported previously [2], [3]. How-

ever, in common with many other direct-drive electromagnetic

devices, these tend to have a relatively poor specific power ca-

pability since the input speed is limited. Hence, rather than di-

rectly converting the kinetic energy to stored electrical energy,

it is often advantageous, in terms of both efficiency and spe-

cific power capability to initially accumulate the mechanical

input energy in a spring. The stored energy can then be dis-

charged at a prespecified rate to drive a high-speed miniature

rotating generator [4]. Such an approach is employed in kinetic

"self-winding" quartz analog watches, which utilize kinetic en-

ergy associated with wrist movements [5], [6]. By way of ex-

ample, Fig. 1 shows a generator topology which is widely em-

ployed in such watches [5]. However, although being conducive

to low-cost manufacture, it has a relatively low power density

(typically kW m ) due to a number of factors, including

the inefficiency of the magnetic circuit. In order to satisfy po-

tential application requirements for miniature generators, there

0278-0046/$20.00 © 2005 IEEE



1384 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 5, OCTOBER 2005

Fig. 1. Schematic of two-pole generator of the type which is currently
employed in quartz analog watches.

is a need to improve their design and performance, particularly

with regard to power density. This requires the adoption of an

alternative topology to that shown in Fig. 1.

When assessing the merits of different generator topologies,

it should be borne in mind that, although aspects of machine

design are scalable over a wide range of power ratings, there

are practical constraints that can compromise various topolo-

gies as the machine dimensions are reduced. For example, ul-

timately, the number of stator coils is limited by the need for

terminations and interconnections, which poses practical prob-

lems with extremely fine gauge conductors. Furthermore, since

an increased proportion of the slot area becomes occupied by

insulation, the winding packing factor (i.e., the proportion of

the slot which is occupied by copper) can be rather low. An

inevitable consequence is that conventional permanent-magnet

machine topologies, such a radial-field machines which have a

multiphase slotted stator, become inappropriate.

Fig. 2 shows an alternative topology of a single-phase gen-

erator which has the potential for a considerably higher power

density ( kW m ) than the topology shown in Fig. 1, while

at the same time retaining much of the simplicity in that it em-

ploys a single coil. It comprises a four-pole-pair rotor with par-

allel magnetized surface-mounted, sintered NdFeB magnet seg-

ments and an imbricated-pole stator (also commonly known as

a "claw-pole" stator) which is made up of two halves which en-

circle a single coil. The output power of the generator is rectified

by a Schottky-diode bridge, and the electrical energy is stored

in a super-capacitor. The paper describes the analysis, design

optimization, and testing of such a generator and its associated

power conditioning electronics, which are capable of producing

15 mW at 3 V at a nominal rotational speed of 6000 r/min.

II. MAGNETIC FIELD DISTRIBUTION AND EMF PREDICTION

A simple first-order consideration of the performance capa-

bility of an imbricated-pole machine suggests that its torque ca-

pability increases in direct proportion to the number of stator

poles. However, the rate of increase in torque capability with

pole number diminishes, due to the increased inter-pole flux

leakage in both the rotor magnet/airgap region and between the

two sections of the stator core [7]. Indeed, there is an upper limit

on the pole number, beyond which the torque capability reduces

due to excessive flux leakage.

As a consequence of the relative complexity of the stator ge-

ometry, the field distribution is highly three-dimensional (3-D),

and although 3-D finite element analysis has been employed for

such a machine topology [8], this is inappropriate during the

initial stages of design. However, the geometry of the stator is

too complex to enable a full analytical field model to be de-

rived. Thus, a method is employed which couples a two-dimen-

sional (2-D) analytical model of a simplified representation of

the airgap region to a lumped-parameter equivalent magnetic

circuit model of the stator core, in order to derive estimates of

the winding flux linkage and impedance and, hence, facilitate

initial dimensioning and optimization of the winding, the power

conditioning electronics, and the energy storage supercapacitor.

An expression for the airgap field is first derived based on

the 2-D model shown in Fig. 3. Although it neglects the axial

variation of the field and a number of significant features of the

stator geometry, it provides a useful starting point for estimating

the magnitude of the flux at the stator bore while accounting for

inter-pole flux leakage and flux de-focusing within the magnets,

which can be significant when the magnet thickness is compa-

rable with the pole pitch (as is often the case in small machines

for which the minimum magnet thickness is usually limited by

mechanical considerations). In the simplified model of Fig. 3,

the radial component of flux density at any point in the

airgap can be shown to be [9]:

(1)

where is given as shown at the bottom of the page, and

The flux which links the stator, , can be estimated by inte-

grating around a circumferential path located at the stator

bore radius over an angular displacement , where

and is the angular airgap between ad-

jacent stator teeth. Thus

(2)
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Fig. 2. Schematic of miniature imbricated-pole permanent-magnet generator.

Fig. 3. Analytical field model.

Fig. 4. Lumped-parameter magnetic equivalent circuit.

where

Having established the magnitude of the flux at the stator bore,

the flux which links the stator coil can be estimated using the

lumped-parameter magnetic equivalent circuit shown in Fig. 4,

which accounts for flux leakage between the stator teeth, satu-

ration within the stator core, and the presence of any assembly

gaps between the two halves of the stator (which may have a

significant influence given the small dimensions). The magni-

tude of the flux source in the equivalent circuit is derived from

(2). With reference to the flux paths in Fig. 5(a), the reluctances

, , and represent the reluctance of the leakage flux

Fig. 5. (a) Open-circuit flux paths. (b) Cross section through stator.

path between adjacent stator teeth, the reluctance of the stator

teeth, the reluctance of the assembly gap between the two havles

of the stator, and the reluctance of the stator yoke, respectively,

and can be calculated as follows:

(3)

(4)
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(5)

(6)

where is the relative permeability of the stator core, is

the length of the assembly gap, and , , and are given

by

Note that the reluctance due to the stator claws is relatively small

compared to the other components and therefore is neglected.

Also, the assembly gaps between the stator core pieces are rep-

resented in the interface between the teeth and yoke for conve-

nience of the analysis. The influence of saturation in the stator

core is accounted for by employing the nonlinear magnetization

curve for the ferromagnetic material and calculating the relative

permeability by an iterative approach. Initially, however, the

peak flux and the unsaturated value of the relative permeability

are used to determine the peak flux density in the stator teeth

and yoke. In turn, this allows a revised estimate of to be

determined from the magnetization curve. This process is re-

peated until the change in on successive iterations becomes

smaller than a specified tolerance. The effective th harmonic

of the flux which links the stator coil can hence be calcu-

lated. The total flux which links the stator coil is obtained from

(7)

and the induced emf in each turn of the coil is obtained from

(8)

where

(9)

III. DESIGN OPTIMIZATION

In miniature generators of the type shown in Fig. 2, the max-

imum power capability is generally limited by the impedance of

the stator coil rather than by thermal considerations, particularly

if the duty cycle is intermittent. Hence, in order to optimize the

maximum power capability for a given generator, specifically in

terms of establishing the preferred pole number and "split-ratio"

(i.e., the ratio of to ), it is necessary to determine the

impedance of the stator coil. This can be estimated from the

simplified stator cross section shown in Fig. 5, for which the

coil resistance is deduced as

(10)

Assuming that the flux which will result when the stator coil

carries current essentially flows around a rectangular path via

Fig. 6. Generator output power capability as a function of R =R and
number of pole pairs.

the yoke and teeth, as shown in Fig. 5(b), the coil self-inductance

can be estimated from

(11)

The electrical power which is produced by the generator is given

by

(12)

Thus, the coil current can be related to the leading dimensions

of the generator by

(13)

Further, by substituting (8), (10), and (13) into (12), the elec-

trical output power can be calculated for any given combination

of pole number and generator dimensions as follows:

(14)

Fig. 6 shows the calculated variation of the output power capa-

bility of a generator running at 6000 r/min as a function of the

ratio and the number of pole pairs, with the remaining

design parameters having the values given in Table I. As will be

seen, the power capability increases significantly as the number

of pole pairs is increased from 1 to 4. However, beyond four pole

pairs, the rate of increase in power capability diminishes, since

the influence of inter-pole leakage flux becomes more signifi-

cant. It will also be observed that, for a given pole-pair number,

there is an optimal ratio of which results in maximum

output power.

The number of pole pairs also has an influence on the iron

loss and, hence, on the efficiency. Thus, the open-circuit iron
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TABLE I
SPECIFICATION OF PROTOTYPE GENERATOR

Fig. 7. Variation of open-circuit iron loss as a function of pole-pair number at
optimal ratios of R =R for maximum output power.

loss (i.e., neglecting armature reaction) was estimated using the

equation

(15)

to calculate the hysteresis, eddy current, and excess loss com-

ponents [10]. The total open-circuit iron loss in the stator is ob-

tained by summing the losses in the teeth and stator yoke, in

both of which the flux density waveform is estimated by geo-

metrical scaling of the flux density at the stator bore.

Fig. 7 shows the variation of the predicted open-circuit iron

loss with pole-pair number when the generator is running at

6000 r/min, assuming that the stator teeth and yoke are 49%

cobalt-iron ( , , ,

kg m , S m ). It is worth

noting that the iron loss is relatively small compared to the max-

imum apparent power capability and that the rate of increase

in iron loss with pole number is relatively small (being sig-

nificantly less than proportional to the increase in fundamental

electrical frequency). This is a consequence of an increase in

inter-pole leakage flux with increasing pole number (and, hence,

a lower overall stator flux) and, more particularly, a decrease in

the stator yoke flux density with increasing pole number since

TABLE II
FIXED PARAMETERS EMPLOYED IN THE OPTIMIZATION OF POLE

NUMBER AND SPLIT RATIO

TABLE III
DESIGN PARAMETER OF PROTOTYPE GENERATOR

all of the generator designs assume a fixed outer diameter and

hence a fixed stator yoke and tooth thickness.

On the basis of Fig. 7 and Table II, a generator with four pole

pairs and a ratio of 0.48 was prototyped, with the other

dimensions given in Table III. It should be noted that this ratio

of is slightly smaller than the optimal value of 0.55 in

order to accommodate the required number of turns given the

available conductor gauge, as will be explained.

Having established the leading dimensions of the generator,

it was then necessary to design a coil for maximum power

transfer to the load while maintaining a high system efficiency.

The output of the generator is connected to a full-wave rectifier

which then charges a supercapacitor to store the generated

electrical energy, as shown in Fig. 8(a). For the purpose of

designing the coil, the generator can be represented as a voltage

source in series with the coil resistance and inductance. If the

rectifier diodes are modeled as having a fixed on-state voltage

drop of in series with a resistor , and the supercapacitor

is modeled by a dc voltage in series with an internal resistor

, the system may be represented by the equivalent circuit of

Fig. 8(b), which consists of an – series circuit excited by

three independent voltage sources and for which typical current

and voltage waveforms are shown in Fig. 9. The output current

of the generator can be calculated from the equivalent

circuit as

(16)



1388 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 5, OCTOBER 2005

Fig. 8. Rectifier and energy storage circuit. (a) Circuit diagram. (b) Equivalent
circuit.

Fig. 9. Typical voltage and current waveforms.

where is given by

(17)

and is the time constant of the circuit.

The conduction period is determined by solving

(18)

The average output power from the generator is, therefore, given

by

(19)

Thus, the average input power to the supercapacitor is given by

(20)

while the power which is dissipated in the equivalent circuit

resistances, , , and is

(21)

Fig. 10. System efficiency as a function of number of turns on coil, with
generator running at 6000 r/min.

Fig. 11. Power stored in capacitor and dissipated in coil resistance and diodes
as functions of number of turns in the stator coil.

The overall efficiency of the system, with due account of the

stator iron loss, is given by

(22)

Figs. 10 and 11 show the variation of , , and as a

function of the number of turns on the coil for a generator

having the parameters given in Table III. As will be seen, the

system attains its maximum efficiency when .

However, the average input power to the supercapacitor is

then only 6.57 mW. When is increased to 760, the average

input power to the supercapacitor increases to 18.85 mW, al-

though the efficiency also decreases. However, any further in-

creases in , although increasing the energy which is stored in

the supercapacitor, significantly decreases the system efficiency.

Therefore, is deemed to be a suitable compromise

between the optimal values for maximum efficiency (520) and

maximum power transfer (1040).
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Fig. 12. Prototype generator.

TABLE IV
MEASURED AND PREDICTED COIL RESISTANCE AND INDUCTANCE

Fig. 13. Variation of measured and predicted emf (rms) as a function of speed.

IV. EXPERIMENTAL RESULTS

In order to validate the design and analysis techniques which

have been developed, a generator having the design parameters

given in Table III was prototyped. Fig. 12 shows the generator,

prior to final assembly. The stator is 49% cobalt-iron which was

heat-treated to optimize its magnetic properties, while the indi-

vidual rotor magnets were wire-eroded from sinetered NdFeB

(34KC1 from UGIMAG, Inc.).

As will be seen in Table IV, the measured and predicted coil

resistance and inductance (measured at the rated fundamental

frequency of 400 Hz) are in good agreement. Fig. 13 shows

Fig. 14. Predicted and measured generator output voltage with a 0.22-F
capacitor. (a) Predicted. (b) Measured.

Fig. 15. Measured and predicted charging current waveforms at 6000 r/min
and 3 V.

the variation of the predicted and measured open-circuit emf

(rms values) with rotor speed, which are also in good agreement.

The full-load performance of the generator was measured by

connecting a 0.22-F, 3.0-V supercapacitor via a Schottky-diode

bridge rectifier, and driving it at 6000 r/min by a dc motor.
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Fig. 14 compares the predicted and measured output voltage

waveforms. Again, there is good agreement in terms of the

amplitudes, although the harmonic content differs slightly.

The measured and predicted super-capacitor charging current

waveforms are compared in Fig. 15, where the corresponding

generator powers are 14.56 and 16.45 mW, respectively.

The fluctuation of the measured current waveform results

from the asymmetrical magnetic poles due largely to the

manufacturing tolerance.

V. CONCLUSION

A miniature eight-pole permanent-magnet generator with an

imbricated multipole stator has been described and analyzed and

its performance experimentally validated. A model of the power

generation system has been presented, and a design method-

ology to achieve maximum output power at a specified oper-

ating voltage has been developed. It has been shown that the

power density is significantly higher than that of two-pole gen-

erators of the type which are currently being used in applications

such as quartz analog watches. The proposed generator topology

may also be employed for multiphase machines and scaled up

or down to suit other specific applications, in the mobile com-

munications sector, for example.
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