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“in the Frequency Domain

LMLt and S.ABillings
Department of Automatic Control and Systems Engineering,
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Abstract

A new algorithm, for identifying linear and nonlinear differential equation models, is
introduced. The algorithm avoids the computation of derivatives by using the generalised
frequency response functions to reconstruct the model. It is shown that the model can be
constructed sequentially by building in first the linear terms, then the quadratic terms and so on
in a manner that determines the significant model terms at each step and provides unbiased
estimates in the presence of noise. Simulated examples and the identification of a model

relating the action of waveforces to an offshore structure are included to demonstrate the
procedure.

1 Introduction

Parameter estimation of discrete-time systems has attracted much more attention than that
of continuous-time systems even though most physical systems are naturally continuous. This
1s because the former is better suited for digital computer implementation. However, in many
situations, a continuous time model is desired, for example in control applications or to
provide a more direct link to the physical properties and operation of the underlying
system.(Young, 1981; Gawthrop, 1982; Unbehanen and Rao, 1987).

Parameter estimation of the linear transter function in the frequency domain can be traced
back to Levi(1959), who first considered the synthesis of s-transfer function models from
complex frequency response data. Levi’s method, however, gave biased estimates. To
overcome this drawback, Sanathanan and Koerner(1963) introduced an iterative weighted
least square approach to asymptotically eliminate the bias introduced in Levi's scheme.
Lawrence and Roger(1979) derived a recursive form of the Sanathanan and Koerner
algorithm in order to obtain a faster convergence. Whitfield(1986) introduced a unified
structure of the existing least-square based algorithms and an alternative formulation in the
time domain. Recently, Pintelon etc.(1994) surveved estimators of the linear transfer function
in the frequency domain.

Parameter estimation of nonlinear svstems in the frequency domain has received i Increasing
attention. The use of modulating functions to convert differential equations into an algebraic
form in the frequency domain has been considered by numerous authors (Pearson and Lee.
1985a. 1985b: Patra and Unbehauen, 1994). But this approach is limited to specified classes of
nonlinear systems, namely. linear. integrable and convolvable terms and does not work well in
the presence of noise(Patra and Unbehauen. 1994) These disadvantages limit the practical
application of these methods.

Alternatively, the generalised frequency response functions(GFRF) can be used to identity
continuous time nonlinear systems in the frequency domain. The generalised frequency

response functions represent extensions of the linear frequency response function to nonlinear

systems and are defined as the multidimensional Fourier transforms of the Volterra kernels. In




practical applications. the GFRF’s can be estimated either bv extending the traditional FFT
spectral estimation methods to multidimensions(Kim and Powers.1988). or bv fitting a
parametric NARMAX model and then mapping this into the frequency domain(Pevton Jones
and Billings. 1989). The first approach can involve the use of special input signals and large
data sets. The second approach was used by Tsang and Billings(1992) and Swain and
Billings(1995) to estimate nonlinear differential equations models. However, the basic idea of
using the veneralised frequency response functions as a basis to reconstruct a nonlinear model
of the svstem can be emploved irrespectively ot the computation method for the GERE's. The
+ great advantage of this approach is that the direct calculation of the derivatives of the input-
output signals is avoided. However only the noise-free case was considered in previous
studies and as a consequence the results were heavily dependent on the frequency range that
could be analvsed. v

[n the present study the reconstruction of both linear and nonlinear differential equation
models based on the GFRF's is studied. A new algorithm is introduced which produces
unbiased estimates in the presence of noise. One of the properties of the algorithm is that the
nonlinear model can be constructed sequentiallv by building in the linear model terms.
followed by the quadratic terms and so on. At each stage the significance of each candidate
model term is assessed and only relevant model terms are included. This enables the nonlinear
differential equation model to be constructed componentwise to produce a parsimonious
svstem description.

2, Generalised Frequency Response Functions

The traditional description of nonlinear systems is the Volterra functional
series(Schetzen. 1980)
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where 1 (7) is the ‘n-th order output™ of the system
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h(t,.--.t,) is called ‘nth-order Kernel" or ‘nth-order impulse response function™. If n=1.
this reduces to the tamiliar linear convolution integral.
The multi-dimensional Fourier transtorm of the nth-order impulse response function vields

the "nth-order frequency response function™ or the Generalised Frequency Response Function
(GFRF)

H,(jo, - jo,) =J:A--J;h”(‘{,.---I,_,}exp(—_j((z),t, +siabD, T, T 8T, (3)
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Taking the inverse Fourier transform of (3) . substituting into (2) and carrying out the
multiple integration on T, -+ T gives
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The trequency domain representation ot ( 1) using (4) is given by (Liu and Vinh. 1991)
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where Y'(jw).07(jw) are the Fourier Transtorms of v(t) and u(t) and H. ( f@ o, Jog )

i1s referred to as the n'th order Generalised Frequency Response Function(GFRF).




Bendat and Piersol(1986). Chua and Liao(1989), Kim and Powers(1988). and Nam and
Powers(1994) discussed nonparametric estimation of the H,() based on FFT type

procedures. The method of Nam and Powers will be used to illustrate the basic principle of
these approaches. By assuming that only terms up to third order are present in (1) and

replacing integral operations by summations. a simplified discrete version of (1) and (4) is
obtained:
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Although (6) is nonlinear in terms of the input. it is linear in terms of the unknown transfer
functions. Therefore, by considering all permutations of the frequency distribution within the
interested frequency region, a set of overdetermined linear equations can be derived, and the
standard linear least squares estimator can be applied to determine H,, M. and i,

Peyton Jones and Billings(1989) proposed an alternative approach to get the H  from
sampled input-output data. They first fit a nonlinear autoregressive moving average with
exogenous input(NARMAX) model to the system and then map this model into the frequency i
domain. The advantage of this method is that it significantly reduces the computational !
requirements, a much smaller data set is required, and there is no a prior assumption that the
system only contains terms up to A, all the H,’s can be readily determined.

3 Mapping Nonlinear Differential Equations Into the GFRF’s

Given an ordinary nonlinear differential equation(NDE) several methods are available which
can be used to map this into the frequency domain. Here we briefly introduce the method
proposed by Billings and Peyton Jones(1990).

Consider a continuous system characterised by the differential equation
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A polynomial form of (7) for a wide class of nonlinear system can be expressed as
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where M is the order of the nonlinearity, L is the order of the derivatives in terms of the
input and output , p+¢ =um, and the operator D is defined by
d'x(1)
ot!
Assume (7, =0 ,and arrange (8) to give
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For example. the NDE model
VHuDy+a D7 v+ ay +a Dyt =ho+ b Du+boar
can be expressed in the form of model (8) as
CLO)=LC. (=0 ()=a..C. (00) = .., (1.0.0) = u,,
(apll) =40,,0, (D= 5.0, [001=5
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By adopting the method of Billings and Peyton Jones(1990), (8) can be mapped into the
frequency domain as
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where the recursive relation is given by
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The recursion finishes with p=1 and H,,(jo,, - jw,) has the property
Hn.l(jo)]’.-.i.jmn) = Hn(.jmh'”’jmn)(.ja)l + -”+.j0‘)n)f= (1’))

The n-th order transfer function of eqn (10) is not necessarily unique in that changing the
order of any two arguments generates a new function without changing the value of y (7) in
eqn (4). The symmetric version of #, (-) is normally used because it is unique and has values

that are independent of the order of the arguments. This is given as

S T Rl (13)

n

* all permutatrons
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Without loss of generality, we assume Ca(0)y=-1;

4. Parameter Estimation

Inspection of (10)—(12) reveals that H, contains only the terms and coefficients which relate
to the linear terms and coefficients in the model of equation (8). Similarly A, only involves
the terms and coefficients of the linear and quadratic nonlinearity of (8), and so on. This

implies that parameters corresponding to each order of nonlinearity starting with the linear
terms can be estimated sequentially and independently.

4.1 Synthesis of the Linear Transfer Functions
Setting n=1 in (10) yields
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With the assumption (', .(0)=—1 then
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In practice the estimates of H, (jwo) will usually involve some noise so that




H(jo) =H(jo) +N (jo)
=Dy (o) - W
I+ A( jo)
where fﬂ (o) is the estimate of H,(jw), and N, (jw) is assumed to be independent, zero

mean complex white noise. (See Appendix A for the definition of complex noise).
If A, is to be modelled. the error criterion to be minimized will be

M IV -
J=2IN.Go ) = YA jo.) - H (o) (16)
i=1 =]

Because the parameters in  B(jw) occur nonlinearly within the modulus. this problem

belongs to the nonlinear least squares family.-and optimization techniques would be required
to yield a solution .

Levi(1959) suggested a modified error criterion by multiplying both sides of (15)
with[1+ A(j©)] and re-arranging as

[1+ ACj@)]H,(jo) = B(jo)+[1+ A(jo)IN, (jo) (17)
Let
N, (jo)=[1+ A(jo)IV,(jo) (18)
For estimation purpose. (17) can be représented as ' ,
i
(jw) = Y.8,P(jo)+N,(jo) (19)
i=1
where
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It ‘N’ measurements of z(jw) and P(jw) are available, at w(7), i=1,...,N. then (19) can
be expressed in form as

7= PO -%-é (20)
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Finally (20) should be partitioned into real and imaginary parts as
R b
Re(Z) _ Re(P) &+ e(i:) 31
Im(Z) Im(P) Im(q)
Linear least squares can now be applied to estimate the parameters, However, the estimates
will be biased because N, (/) is no longer white.

Alternatively, postulate a filter /(jw) onto (17) so that
[+ ACo)]F(jo)H,(ju) = F(jo)B(jo)+ | F(jo)[l+ ACJo)IN,(jo) (22)

1
If /(jw)selected as F(jon)=———— and
1+ 4(jo)

Hf (jo)=F(jo)H,(jo) . B (jo)=F(jo)B( jo)
then (22) becomes
[1+ A(jo)]H] (jo)= B (jo)+ N, (jo) (23)
The least squares estimate will therefore be unbiased if this operates on the filtered
frequency response data f;’f(.jm) and B"(jw).

This is essentially a complex generalised least square (GLS) framework(Clarke.1967).

The steps are summarized below:

(1) Form ZandP of (20), then find the least square estimates of <I> ie,

fl(_jm) and B(jm).

(2). Form F(jw)= T‘Tjﬂ))
(3). Compute the filtered data

H (jo) = F(jo)H,(jo)

BF(jw)=F(jo)B( jo)
(4). Form Zand P of (20) using the filtered data A (jo) and B"(jo), then find the

least square estimates of @ .
(5). Go to (2) and repeat until convergence.

4.2 Estimation of the Second Order Nonlinearities
Setting r1—7 in (10) yields

—[Z(m(/)(lm + jo, ) THS (oo, jo,) = ZC., (L. L)) (jo,)"

=0 hf=

+ Y Culh X0, H, (o, (24)
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With the recursive relation
H  (jo)=H,(jw.)(jo,)
HZT (o, jos) = H (jo ) H,, (jo.)(jo.)" =H (o) H (jo.) jo,) (jo,):
In which H,(-) is the noise-free part in eqn (13). In practice A, (-) would be formed by the
coetticients (", () and (", () estimated in the linear term identification described in 4 1.

The corresponding noisy case is
HEN‘:H (/'(D . ju): ) —

dxvm

(Jo.. jo )+ V. (jo,.jo.) (2X)
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where H;"“"‘(_,im,,_jm:) is obtained from section 3 and N.(jo.. jo,) is independent, zero
mean white noise over two frequency axes.

The coefficients (', (/) (/, =1,...,L) have been estimated at the previous stage. Therefore
setting

£,

=Y, Lo, + jo.)t = 4 (jo,,jo,) (26)
L=t
allows eqn (24) to be rewritten as
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+z( (1L L) jw. )" H. . jo. ) (27)
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Substituting (27) into (23) vields
|
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So that (25) can be expressed as
2(jo,, jo.)= ZBP Jo,. jo)+ N.(jo,. jo.) (29)

If *2N’ measurements of -(;co,,_;w:) and P(jw,,j0.) over two frequency dimensions are
available, at 0, (/),0.(/), i=l..., NN, then (29) can be expressed in form as
Z=Pd +& (30)
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Standard linear least squares s can now be apphed to estimate & in eqn (30).
In fact, eqn (27) only holds when H. and A. are both symmetric. It is therefore essential to

L4y

symmetrisise 4™ and H™ by applying eqn (13).

4.3 Estimation of the Third Order Nonlinearities
Setting n=3 in (10) yields
L
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With the recursive relation
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My 6 ZH (o Jo ) H, o (O JO, )0, ++jo ), n,p=23

and the property
By (oo jo,) = H,(jo, o, jo,)(jo,++jo,), n=123

Using the parameters estimated in previous steps allows specifies the terms
= CL)jo,+ jo, + jo.) = 4,(jo,. jo.. jo,) (32)

So that from (3 1)
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Analogouslv the noisy case is
H( jm, . Jo., jo)=H"(jo,.jo. jo,) +N(jo, jo,, jo,) (34)
where H:™" '(jo,.jw., jw,) is obtained from section 3 and N (jo,, jo.,j0;) Iis
independent. zero mean white noise over three frequency axes.

Note that the parameters in the first pair of square bracketson the RHS of (34) have been
estimated in previous stages, so this part can be moved to the LHS.

Analogously to the quadratic case, the H™" and H™" should be symmetrised to obtain a
unique representation by applying eqn (13).

Extending the approach in the quadratic case, if ‘3N’ frequency response data can be
obtained symmetrically over ®,,®,,®;, unbiased estimates of the unknown coefficients in
(33) can be expected.

This procedure can be continued to higher order nonlinearities.

N Model Structure Determination

The sequential construction of the model starting with the linear terms, followed by the
quadratic terms. and so on as described in the previous sections forms the basis of the
solution. But in practice only a few of the numerous possible candidate linear, quadratic, cubic
etc. terms will be relevant. It is therefore important , when no a prior information is available
regarding the continuous time model, to be able to select significant model terms at each stage
in the model reconstruction. This can be achieved using a modification of the orthogonal least
squares method (OLS) (Billings, et al. 1988).

Consider a system expressed by

X
== 8+ (39
=1
where 6 ,/=1...,M are unknown parameters.

Reformulating eqn (35) in the form of an auxiliary model yields
A

z=Y g, +E (36)
=1
where ¢ ./i=1...,M are auxiliary parameters and w ./ =1..... M are constructed to be
orthogzonal over the data record such that
Do (w, =0, =01k (37)

2=
where N is the length of the data record.

Multiplving the auxiliary model (36) by itselt. using the orthogonal property (37) and taking
the time average gives

0




b, | i [ 2 n | . s
T;:—(,'):Tg'{;‘g:w“)}JFT_Z,’E (1) (38)
Detine

Z,L’.:H‘.: (1)
KRR = - - % 100 (39)
(1) = [,{Z:m}
r=] \ i=]
for i=12.....0. The quantity LRR is called the Error Reduction Ratio and provides an
indication of which terms should be included in the model in accordance with their
contribution to the energy of the dependent variable. Terms whose /ZRR values are less than
a pre-detined threshold value (e.z.. 0.01) can be considered to be insignificant and negligible.
However. this idea cannot be applied directlv in the iterative linear transfer funcrion
identification. Since Levi's approach places too much emphasis on hizh frequency response
data. in which the SNR is relatively small. generally the result of the first iteration would be
biased and this will not give the correct indication of the significance of each term. Some
modification therefore must be made when implementing OLS. mainly in the linear term
reconstruction. Simulations suggest that the best solution to this problem is to begin with an
overparameterized linear model structure. When the parameters of this model converge.
eliminate those terms where the EZRR values are below the threshold. Finally re-estimate the
parameters for this reduced linear model structure and hence obtain the final coefficients.
The reconstruction algorithm including the OLS term-selection criterion is summarised
below:
[). Linear term identification
I Construct the Bode plot of the linear transter function using the frequency. response
data. and determine an overestimate of the possible model order.
Assume an overparameterized model structure, and apply the orthogonal least
squares(OLS) estimator using the GLS criterion described in 4.1 until the parameters
converge. .
3. Check each ERR, and eliminate terms with an ERR value below the threshold.

4.Re-pass the frequency response data through the iterative algorithm using the structure
obtained in step 3 to obtain estimates of the final linear model.
[I).Quadratic nonlinear term identification
Build a new H,( jw) using the results obtained in step 4.

19
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Assume an overparameterized quadratic model structure and apply the OLS estimator
to eqn (25)-(28).
7. Select the terms according to a pre-defined threshold value and re-apply the OLS
estimator to eqn (25)-(28) to obtain the final quadratic model.
II). n-th order nonlinear term identitication (n>2)
7. Build the new H.().H.(-)....H, () using the results obtained in previous
identification steps.

8. Assume an overparameterized n-th order nonlinear model structure and apply the OLS
estimator to eqn ( 10).
9. Select the terms according to a pre-defined threshold value and re-apply OLS
estimator to eqn ( 10) to obtain the final model.
6. Simulation and Real Examples
6.1 A Linear system

Consider a 4-th order linear svstem detined by

10




0, .0,

H(\) - . -m . - _ (40)
(5" +28,0,5+®; )(s"+2C.0, 5+, )
where
&, =004, 0),,]:2*11""13
- =08, W, =2*t*30

and the two resonant peaks appear at 13HZ and 30HZ respectively.

Two methods of obtaining the frequency response data which is the input to the
identification procedure will be investigated. Initially the ideal case of generating the data
directly from eqn (40) will be used. Then the more realistic approach of generating data from a
simulation of eqn (40), identifving a discrete time domain model and using this to generate the
frequency response data will be considered.

6.1.1. Generating the frequency response data directly from #,

A total of 380 frequency data points were generated using eqn (40) over 0~50 HZ and
independent, zero mean complex white noise was added with a standard deviation of 0.20.
6.1.1.1. Structure detection

The OLS estimator failed to detect the correct structure based on Levi’s method according
to the ERR values when an overparameterized structure was initialized with 6 linear input
terms and 3 linear output terms. The results are given in Table 1(a). Inspection of Table 1(a)
shows that the ERR values of the terms du/dt . " ufdt” and o*y/dr* which should not be in

the model are slightly greater than the ERR value for the correct model terms «/*y/dr* and

dy/dt. This is a direct result of the bias associated with Levi's method noted in the
introduction.

After 5 iterations using the new GLS approach of section 4.1, all the parameters converged.
and the ERR values reflected the correct model terms (Table 1(a)). The LRR values of extra
terms du/dt . d ufdt™ and oy /dr’ were now so small that they are clearly negligible (Table
1(a)). o
6.1.1.2. Parameter estimation

Eliminating terms with ERR values below the threshold. according to the GLS results. and
re-estimating the models provided the results in Table 1(b). The 4, errorin Table 1(b) is the
sum of the absolute difference in the amplitude of the frequency response data between the
identified differential equation and the true system over the range 0~50 HZ .

Normally, without loss of generality, we always assume C,,(0)=~1 in eqn (14), that is the

coefficient of the linear y term is 1. However, in this example in order to easily compare the
form of the final estimated model with the true model eqn (40), the parameters were re-

arranged so that the coefficient of d“‘y/a’f4 was 1. The results in Table 1(b) clearly show that

the GLS based results are excellent but, as expected, the estimates based on Levi’s method are
biased.

6.1.2. Generating the frequency response data via an identified ARMAX model
6.1.2.1. Identification of the ARMAX model

The system defined by eqn (40) was excited by a uniformly distributed white noise sequence
and the input-output data were then sampled at SOOHZ to produce 1000 data points tor
identification. Independent white noise was then added to the output data to give a SNR of 40
dB. After passing all the model validations. a 35 term  ARX model with a 25 term MA noise
model was estimated using the input-output data. Figure 1 illustrates the Bode plot of the true




continuous svstem and the identified ARMAX model and shows that thev overlap almost

pertectly.
Terms Parameter = [.RR of Levi | Parameter | /:RRof GLS

estimates ! estimates

usine Levi 1 using GLS
v | 5.2538e4 | 0.2387% -1.1171e-05 | 4.13e-08%
dvfdit | |25.1192% | | | 1.2813%
Jyvfdi | 68.953 - 0.3706% 52.289 i 0.0365%
Sivfdir | 70543 58.0506% | 42709 | 98.29207%
v/ | 8 740e—3 0.2113% L 1.057e=3 1 (1768%
v e R
i -3 38e—8 C34611% -2 424de+8 L0 2059%
cluf i 8.8259e+5 | 0.9247% 44376e+d | 7.58e-03%
Fufdi | -047959 [ 13761% -344.43 3.76e-05 %
Table I(a). Initial identification results based on noise corrupted A, for the system in
eqn (40)
Terms | True | Parameter Parameter

Parameters 1{ gstimates estimates

| | using Levi using GLS

dyfdrt ] R 1
Jvfdrt | 36.69 122,78 34.74
Jyfde* | 4.2400e+4 | 65792 4.2473e+4
v/t 4 334e+3 308679 4.193e+5
N 2.5705e+8 | '4.78%9e+8 2 36%9e+8
i -2.3703e+8 | -2.885e+8 -2 364e+8
H, error | —=eeeeeeeeeeo | 388.63 | 8.23

Table 1(b). Final parameter estimates based on noise corrupted #, for the system in eqn

(40)

6.1.2.2. Reconstruction of the continuous time model

The OLS estimator again failed to detect the correct structure according to the ERR values
based on Levi's method when an initial overparameterized structure was used (6 linear input
terms and 5 linear output terms as in subsection 6.1.1). The results are listed in Table 2(a).
After 3 iterations of the GLS approach all the parameters converged and as above the LRR

values  of the incorrect model terms dufdr. d ufdi and d7v/drt became verv small.

Deleting these terms and re-estimating the model coetticients produced the final estimates in

Table 2(b).

Figure 2 shows a comparison of the Bode plot of the reconstructed continuous time system
model and the true continuous time model.




Terms - Parameter [-RR of Levi | Parameter © LRR of GLS
| estimates ‘_ ; estimates
L usine Levi L using GLS !
d'l'/u’f" ; -6 4738204 1.0323% } -1 642e-04 [ 2 31e-03%
divfdrt ] | 25491% | | | 10117%
v/t 60,583 | 0.103% | 17,277 | 0.0301%
iyl T L205emd T 66389% 1 4.277ex04 | 08.5789%
v [t S660e=03  0.3484% | 3.282e+05 | 0.1825%
1 | 2 340e+8 o ' 2.399e+8 —
T -2 4873 6 1182% C-2416e+8 0 1968%
] i L 1.318e+05 1 0.0072% 1 0.263e+04 | 1.784e-07%
Sufdis 11108 L 0.128% L -136.32 | 3.72e-06%

Table 2(a). Initial identification results based on /. generated from estimated
ARMAX model

Terms True ! Parameter | Parameter
Parameters | estimates I estimates
{ using Levi  / using GLS
: . | ?
u’g_lf/u'{” I I |
I
A vfdr’ 36.69 33.978 | 36421
I
dyfdrt | 4.2400e+4 | 41957e+4 | 4235 e+d
dvfdr | 4334e+3 [ 4010e+5 | 4319e+5
T T :
¥ | 23705e+8 | 2.343e+8 | 2.366e=8
T ’ -2.370%e+8 | -2 15]e+8 [ -2.3706e+8
75 S5 o] (N R —— 40.2879 E 3.1347

Table 2(b). Final parameter estimates based on /, generated from estimated
ARMAX model |

A comparison of the results in Tables 1(b) and 2(b) shows that while the GLS estimates are
excellent in both cases, the parameter estimates trom Levi's method are much better based on
the identitied ARN model. This is to be expected because the noise which was added to 4. in

6.1.1 will induce bias in Levi's method whereas the ARX approach accommodates the noise in
a noise model which is then discarded to compute the frequency response estimates.
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6.2. A Nonlinear system

Consider the quadratic nonlinear system

0=1y+004 dy/dr +001 d”y/dr" =1 1+0.18 * (41)

As in the linear case two methods of generating the frequency response data which is the
input to the identification procedure will be investigated. Initially data will be generated from
the exact frequency response functions H,(-) and H,(-) corrupted by additive white noise.
Then the more realistic approach of fitting a NARMAX model to the noisy output data, using
this model to generate /,(jw,) and H.(j®,,j©.) and then reconstructing the nonlinear
differential equation will be studied.

6.2.1. Generating the frequency response data directly from #, and A,

Analogously, mapping (41) into the frequency domain to produce the exact frequency
response functions and then adding independent zero-mean complex white noise with standard
deviation 0.1 to both A, and H, respectively over the uniformly spaced frequency range
Ji €[020]HZ for H,(jo,) and f, and f, €[0,15]HZ for H, (jo,,jo,) produced the
data set for the direct identification of continuous linear and nonlinear terms.
6.2.1.1 Linear term identification

The identification was based on 200 noise-corrupted frequency response data points selected
over the uniformly spaced frequency range f, €[0,201HZ of H (jw,). Analogously to
subsection 6.1.1, an initial overparameterized linear model structure was used with 4 input
terms and 2 output terms. Inspection of the results in Table 3(a) shows that the OLS estimator
fails to detect the correct model terms using ZRR values based on Levi’s method, and the sum
of the LRR values is far less than 100% due to the bias induced by the noise that was added
to the exact values of H,(jw,)and H.(jo,.jw.) . Although the Bode plot based on the
estimates from the GLS approach is a good fit to the true svstem. the ERR values in Table
3(a) suggest that the terms u""y/df" and du/dr should be deleted. Deleting these incorrect
terms and re-estimating produced the tinal results in Table 3(b).
6.2.1.2 Nonlinear term identification

The identification was based on 2626 uniformly spaced points from the noise corrupted
H.(jo,,jo.) tor £ and J- €[0.15] HZ . Initially an overparamerized model structure was
used. The results from the OLS estimator are listed in Table 3(c), which shows that the LRR
values of the incorrect terms are verv small and are negligible. Deleting these incorrect terms

4




and re-estimating produced the results in Table 3(d), together with the results from the Swain
and Billings(1993) procedure.

Terms True | Parameter | ERRof Levi | Parameter LRR of

| Parame | estimates estimates GLS

' ters using Levi using GLS
it e I 4.6836e-08 | 0.0006% -6.6064e-09 | 5.268e-10%
JUvfdit 001 100003644 [ 4.6306% | 0.01 85.8606%
dyfdi 004 100017875 [0.0233% | 0.039967 | 6.9035%
v X | | — | 1 I —
I -] | -0.046388 | 0.5680% -1.0028 | 6.9860%
2 | 0.0001381 | 0.0514% 0.001042 0.0014%

Table 3(a). Initial linear identification results based on noise corrupted /. (jo,) for the
nonlinear system eqn (41)

Terms I True Parameter | Parameter
i Parame | estimates estimates
| ters using Levi | using GLS

Lyfdir | 0.01 [0.0003624 | 0.009946

uj'/a'f 0.04 0.001367 0.03981

) | | 1

" - | -0.04776 -0.9987

Table 3(b). Final linear parameter estimates based on noise corrupted A, (j®,) for the

nonlinear system eqn (41)

Terms ! estimates | ERR

= 101825 | 96.3084%
(dufdry | 0.00002 | 0.0031%
(cfdry’ | -0.00004 | 0.0039%
yu -0.0035 | 0.0015%
»¥(dvfdry| 0.0002 | 0.0004%

Table 3(c). Initial nonlinear terms identification results based on noise corrupted
H.(jo,.jo.) for the nonlinear system eqn (41)

; |
Terms | True By Swain and | By present
Parameter | Billings'salgonthm | o 0 ovion
G lous 0.1822 | KRR 1414% | 0.1811 | ERR 96.308%
Table 3(d). Final nonlinear identification results based on noise corrupted

H.(jo..jw.) for the nonlinear system eqn (41)




Although the estimate from Swain and Billings(1995) is sood. the associated ERR value
is verv small (1.414%). That is because Swain and Billings assumed that there are no noise
terms in (26). Even if the noise is white as in this example. when the model is multiplied out
the term A.(jo.. jo.) results in coloured noise corruption and this will induce bias.

The model of eqn (41) was excited by a uniformly distributed white noise sequence and
1.000 input-output data were obtained by sampling the input and output at 400HZ. The

" output data were then corrupted by independent white noise to uive a SNR of 40 dB. The

mput-output data were used to identifv a NARMAX model using the methods described in

Billings and Chen (1989) to produce the final model.

V0= 01479 v - 1) = 00651 v(t-8) =03518v(t-2) —003072 u(t-2)

=0.04197 u(t-4)—0.05406 u(t-6)— 03848 v(t-4) - 0.02821 u(t-3)
=02161 v(t-3) -0.05358 y(t- 2)v(t-2)-0.08622 v(t-9)—0.02748 u(t-8)
02313 v(t-12)+0.01469 u(t-10) +0.02267 u(t-5) +0.01309 u(t-1)
-0.002974 u(t - Sult-6)+0.03092 v(t- Dy(t-1)-0.02547 y(t-13)
-0.1730 y(t-5) +0.01613 u(t-7) +0.01030 u(t-9) -0.01915 y(t - 6)v(t-6)
+0.1184 v(1-7) +0.03260 y(t-6) ~ O, + (/)

where O. represents the noise model terms.

(42)

Following the same procedure as in subsection 6.2.1.1 produced the results in Tables 4(a)
and (b). The Levi parameter estimates in Table 4(b) are much closer to the true values
compared to the results of Table 3(b) because of the improved noise suppression which
occurs with the parameter estimation approach.

Terms True Parameter ERRof Levi | Parameter ERRof
Parame | estimates estimates GLS
ters using Levi using GLS
Ly fdrt | e |.4355¢-06 | 0.0081% | 2.6742e-06 | 7.347¢-07%
5/371.-/“’/: 0.01 0.007236 20.2696% 0.01009 86.0066%
dvfdi (004 [003196 | 7.2366% | 0.040375 | 6.9265%
¥ K N [P |
I | -1 -0.7639 44 73536% -0.994 7.0653%
t/H/t-/f | ------- 0.0005151 0.6901% 0.0004416 53.94e-05%

Table 4(a). Initial linear identification results based on

H,(jo,) generated from the
identified NARMAX model for the nonlinear system eqn (41)

In fact the Swain and Billings method could only detect the correct 1~ term only when the

frequency range was restricted to a narrow region where the SNR was high.

2

0.3,

A Real Application

An accurate and precise prediction of wave torces on offshore structures that are subjected
o random ocean waves is an essential prerequisite for design. Wave forces on structures
composed of slender members are traditionally calculated on the basis of the Morison equation
which was introduced by Morison et al (1930) as a semi-intuitive expression tor predicting the
force exerted on a body in a viscous Huid under unsteadv tlow conditions. The Morison
equation  generally  predicts the main tends in measured data quite well: however some

lo



characteristics of the flow are not well represented. For example in sinusoidal osciliatory flows
the force variation at the fundamental frequency may be well predicted while that at higher
harmonics is not. This implies that peak forces may be poorly predicted. A poor representation
of the high frequency content of the forces is a serious limitation for the determination of the
fatigue life of a structural element. Hence Morison's equation needs to be extended.

A sophisticated system identification technique based on the NARMAX model was used by
Worden et al (1994) to model the wave force dynamics of U-tube, De-Voorst and
Christchurch Bay data. Although the discrete NARMAX models obtained could adequatelv
- represent the dynamics of the input-output data and performed well compared to the Morison
equation so far as the predictive performance was concerned, the parameters of the discrete
models could not be easily related to the physical parameters of the inherently continuous time
system. In addition, the discrete representationof a system varies with the sampling rate but
the continuous time representation is unique. Hence, it is often desirable to fit continuous time
models to the input-output data to obtain physically interpretable parameters. In the present
fluid loading system for example the continuous time model allows the model terms to be
related back to fundamental hydrodynamic effects.

In this application, 1000 pairs of the velocity(input) and force(output) time histories with a
fixed cylinder which were obtained from the University of Salford (Baker,1994) were used in
NARMAX model identification. The force was measured on a small cylindrical element and
the mput velocity was the ambient horizontal water particle velocity at the mid point of the
element. These data were sampled at 25HZ. The NAMAX model identified using the data set
is given by

y(t) = 1.4282 v(t-1)-0.21091 y(t-2) -0.26914y(t - 2)
+1.4318 u(t-1)-1.3002 u(t-3)+11.090 u(t-3)u(t-3)u(t-3)
-7.2738 u(t-2)u(t-3)u(t-3)
+8 FE{i)

Since the NARMAX model of (43) does not contain any quadratic term H.(-) will be zero.

(43)

The linear gain and phase plot and the third order gain plot are shown in figure 3 and 4

respectively . The peak magnitude of H,(-) is found to be 41.26dB. This compares with a
maximum linear gain of 20.56dB and shows that the system possesses a very dominant
nonlinear characteristic.

After computing the GFRF’s from (43), 200 equally spaced frequency response function
data were generated in the frequency range of 0-8HZ. A linear model structure with 6 input
terms and 4 output terms was used initially. The results are given in Table 5(a).

Note that although the Bode plots of both results in Table 5(a) fit H,(-) well, the negligible
terms indicated by the ERR values shows that the models are significantly different. Levi’s

result shows that «/*u/di” and o*u/dr’ are negligible terms while the GLS result suggests that

ufdi” Py [di* and o v/di* are negligible which also implies that the initial model structure
Is overparameterized.

Deleting the three negligible terms and re-estimating the data yields the final GLS results in
Table 5(b).

e




Terms | Parameter ° /-RR of'Levi | Parameter | ZRRof GLS
i estimates + (sum=99.92%) | estimates ; (sum=99 99%)
busing Levi ¢ using GLS |

Jvfdit | 1.8761e-07 | 10.4695% 1.690e-07 | 0.0013%

vfdrt | 2.259e-05 | 1.6997% 2.1881e-03 | 0.1645%

dvfdit | 1489603 | 10.6780% | 457e-03 | 2.2145%

dvfdit | 0.04494 : 20.1051% 0.04473 L 17.7140%

dfdr ] 02409 | 23.66096% | 0.239 | 2.5992%

v I P — N —

Py | -2.6107 L 17.5938% | -2.5368 | 64.1513%

cufdr | -2.1396 L 13.4546% 21218 7.1437%

Sufdr” | 0.01434 - 0.0324% 0.01293 L 0.0113%

Sufdrt | LA14e04 1 0.2139% 1.6652e-04 | 0.0001%

Table 3(a). Initial linear identification results for the real system

T I | v/t j d7yfdi” | v ‘ 1 ‘ chif clt ! c!ln/dr:

i
i
Estimate | | | 0.3253 | 0.04022 | 6.58e-4 |-2.4504 | -2 10] | 0.0339

Table 3(b). Final linear identification result for the real system

equally spaced points for each frequency axis were generated over the frequency range
Nh=-2-2HZ f.=0-2HZ. f, =0-2HZ . The first two most significant terms " and u°Du
were detected by the OLS estimator with a sum of £RR values at 99.3124% which suggests

that these two terms are adequate to capture almost all of the nonlinear dvnamics of the
svstem. The final model was civen by

For the reconstruction of the nonlinear third order part frequency response data from 23

=~ 2, . / 2
0=658e-44L 4 004022 Y 4 02053 4 1= 2.45040 — 21014 4 00339 41
ot - et ot -
—76.1733u" +17.9824u° ‘[% (<4)
ot

A comparison of the reconstructed GFRF are shown in tigures 3.4.5. The comparison of the
vutput response of the estimated continuous time model (44) and the original output data ar
double the original sampling rate (S0HZ) is illustrated in figure 6. This further validates the
reconstructed continuous time model which performs well in predicting the output torce.

Conclusions

A new algorithm for reconstructing linear and nonlinear differential equation models from
trequency response data has been introduced. It has been shown that by combining the
procedure ot Generalised Least Squares. developed for purely linear svstems. with the
orthogonal estimator and the error reduction ratio that nonlinear differential equation models
can be identitied without the need to compute higher order derivatives of noisy data which can
tead to numerical problems.




One advantage of the new method is that the continuous time model can be constructed in
stages. Imitially the linear model terms are determined followed by the quadratic terms and so :
on. A second advantage is that no a prior knowledge is required regarding the model structure
or which terms should be included in the model. The significant model terms are selected as
part of the model estimation and this produces a powerful new procedure for identifying
nonlinear differential equation modelsof unknown systems and often leads to concise model
structures that can be related back to the physical components of the underlving system.
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Appendix A

Definition of Complex noise(Pintelon. R. etc.1994)

I =X+ /v is a zero-mean complex random variable if
Ezd=0. 1y } = /:’{_1':} and /7{x1}=0
\Vith the following properties

:’-_'-ﬂ“i' }-: 2y }: 2/:'-{1':} and ]:f{::}: U



