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Influence of Soft Magnetic Materials on the
Design and Performance of Tubular
Permanent Magnet Machines

Jiabin Wang and David Howe

Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.

This paper investigates the influence of the choice of soft magnetic material on the performance of a tubular permanent magnet ma-
chine, and quantifies the relative merits of silicon iron laminations and soft magnetic composites (SMCs). The machine is equipped with
a modular stator winding and employs a quasi-Halbach magnetized moving-magnet armature. It is shown that, despite its poorer space
utilization, a machine whose stator is fabricated from silicon iron laminations has the highest force capability, efficiency and power factor.
A machine with a SMC stator, on the other hand, has potential advantages in terms of ease of manufacture and lower cost.

Index Terms—Linear machine, permanent magnet (PM) machines, tubular machines.

1. INTRODUCTION

UE TO their high power density and high efficiency, and

the fact that they have no end-windings and zero net at-
tractive force between the stator and armature [1], [2], tubular
designs of linear permanent magnet (PM) machine are being
used in an ever-increasing variety of applications, ranging from
free-piston energy converters [3] to reciprocating compressors
[4]. A general framework and comprehensive analysis and de-
sign methodologies for both slotless and slotted topologies of
tubular PM machine have been reported [2], [5], [6]. It has also
been shown that the force capability of a tubular PM machine
can be improved significantly by employing a slotted stator,
which may be fabricated from either silicon iron laminations
or die-pressed soft magnetic composite (SMC) components, as
illustrated in Fig. 1.

When silicon iron laminations are used, the flux is effectively
constrained to flow in the two-dimensional plane of the lami-
nations, and regardless of how the laminated tubular stator is
constructed, the total cross-sectional areas of the teeth and yoke
are equal to the circumference of the inner stator bore times the
tooth width and yoke thickness, respectively, since voids exist,
as highlighted in Fig. 1(a). An SMC material, on the other hand,
enables all the available space to be fully utilized, as shown in
Fig. 1(b). However, SMCs have a relatively high core loss at
typical operational frequencies, as well as a lower permeability
and saturation flux density. Although both design and experi-
mental studies on tubular machines which employ silicon iron
laminations and SMCs [7], [8] have been reported, to date, no
comprehensive comparison has been made as regards their rel-
ative merits.

Utilizing the analytical framework established in [2] and [6],
that takes account of core saturation, and employing a validated
iron loss model [7], this paper investigates the influence of the
choice of soft magnetic material on the performance of a tubular
PM machine.
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Fig. 1. Slotted stator core for tubular machine. (a) Fabricated from I-shaped
silicon iron laminations. (b) Fabricated from SMC segments.

II. DESIGN STUDY

The study is based on the tubular machine whose design and
operational parameters are given in Table 1. Three soft magnetic
materials, viz, Transil300, (a 3.5% silicon iron lamination mate-
rial), and the SMC materials Somaloy 500 and Somaloy 700! are
considered. Fig. 2 and Table II compare their BH (flux density
B, field stength H) curves and iron loss constants [7], respec-
tively. Clearly, the silicon iron lamination material has a signifi-
cantly higher permeability and saturation flux density, while its
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TABLE 1
DESIGN AND OPERATIONAL PARAMETERS FOR COMPARATIVE STUDY

Outer stator radius (m) 0.05
Pole-pitch (m) 0.01
Number of pole-pairs 5
Magnet thickness (m) 0.005
Air-gap length (m) 0.001
Magnet remanence (T) 1.049
Ambient temperature (OC) 40
Temperature rise &) 100
Surface convection coefficient (W/“C/mz) 20
Rated velocity (m/s) 4.0
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Fig. 2. Comparison of BH curves.

TABLE 1I
COMPARISON OF IRON LOSS CONSTANTS
Somaloy500 Somaloy700 Transil300
K 0.1236 0.08 1.55x1072
a 1.84 1.75 245
K. 1.88x107 1.60x10™* 1.0x10*
o (1/mQ) 0 0 1.33x10°

specific iron loss at low frequencies is much lower than that of
the SMC materials.

The tubular PM machine under consideration has a mod-
ular stator winding and employs a quasi-Halbach magnetized
moving-magnet armature which comprises one radially mag-
netized magnet and one axially magnetized magnet per pole
(Fig. 3). It has a number of advantages over conventional
tubular PM machines in terms of ease of manufacture, a higher
force capability, a lower mass armature, and a lower force
ripple. The performance of the modular tubular machine can be
predicted either analytically or by finite element analysis. By
way of example, Fig. 4 shows the stator magneto-motive force
(mmf) distribution of the nine-slot/ten-pole modular machine
normalized to the Ampere-turns per slot divided by the width of
the stator slot openings. When the stator winding is excited with
balanced three-phase currents, it produces forward travelling
mmf harmonics of order n = 1,4,7,..., backward travelling
mmf harmonics forn = 2, 5,8, ..., and zero triplen harmonics.
The thrust force is developed by the interaction of the fifth
space harmonic mmf with the ten-pole PM field. The lower
and higher order mmf harmonics travel at different speeds to
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Fig. 3. Schematic of nine-slot/ten-pole tubular modular PM machine.
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Fig. 4. Normalized space harmonic mmf distribution for three-phase,
nine-slot/ten-pole modular tubular PM machine.
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Fig. 5. Comparison of analytically and finite element predicted phase emf
waveforms.

the armature, and will induce eddy current losses in both the
PMs and the support tube (if it is electrically conducting), and
may cause other undesirable effects, such as localized core
saturation and noise and vibration.

Fig. 5 compares analytically and finite element predicted
phase emfs at an armature speed of 4 m/s when the machine
employs I-shaped silicon iron laminations for the stator core. It
will be noted that, at the rated speed of 4 m/s, the fundamental
electrical frequency is 200 Hz.
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Fig. 7. Comparison of force capability (normalized to 250 N), efficiency, and
power factor.

III. RESULTS AND DISCUSSION

Machine designs based on the three different soft magnetic
materials whose loss constants are specified in Table II were
optimized with respect to two dimensional ratios: viz. the ratio
of the outer magnet radius R, to the outer stator radius R, and
the ratio of the axial length of the radially magnetized PMs 7 ;
to the pole-pitch 7 ,, subject to the design conditions specified
in Table I. It can be shown that, irrespective of which soft mag-
netic material is employed, an optimal ratio of 7 ,,, /7, = 0.60
exists for minimum force ripple and maximum force capability.
Fig. 6 shows the variation of the thrust force as a function of
R,/ R, for the three materials. As will be seen, each material
has a different optimal R,, /R, ratio for maximum thrust force.
The optimal ratio is lower for the machines equipped with the
lower permeability SMC stators. It should be noted that this ratio
represents an optimal balance between the electric and mag-
netic loadings of the machine, and that the magnetic loading
will be lower when the permeability of the magnetic material
is reduced. Hence, a higher electric loading and a larger stator
volume are required, which leads to a lower optimal R,,/R.
ratio.

Fig. 7 shows the influence of the soft magnetic material on
the force capability, efficiency, and power factor of the optimal
machine designs in which the full load peak flux density is set to
1.3, 0.9, and 1.0 T for Transil300, Somaloy 500, and Somaloy
700, respectively. As can be seen, the machine design which
employs silicon iron laminations has the highest force capa-
bility and the best performance, despite its poorer space utiliza-
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TABLE III
COMPARISON OF LOSS COMPONENTS OF THE THREE MACHINE DESIGNS
Somaloy500 Somaloy700 Transil300
Iron loss 0.043 0.039 0.021
Copper loss 0.045 0.049 0.067

tion. As is evident from Fig. 2, the permeability of Transil300 at
0.8T is at least 2.5 times greater than that of the SMC materials,
while the space utilization of the laminated tubular stator, due
to the voids, is only ~33% lower. Hence, overall, the laminated
stator provides a more permeable magnetic path while incur-
ring a lower iron loss. Further, for a given volume and magnetic
loading, a higher permeability stator core allows for a greater
coil area and a higher electric loading, which leads to a higher
force capability and a higher efficiency. In addition, since, for a
given allowable temperature rise, the total losses of a machine
are limited by its thermal dissipation capability, a lower iron loss
also permits a higher current density, and, hence, a higher force
capability and efficiency. Table III compares the loss compo-
nents of the three machine designs normalized to their rated
output power of 1 kW. It should be noted, however, that, al-
though having an inferior performance, the SMC machine de-
signs may be easier to manufacture, and, therefore, potentially
be lower cost.

IV. CONCLUSION

The influence of three soft magnetic materials, viz,
Transil300, Somaloy 500, and Somaloy 700, on the design
and performance of a tubular PMic machine has been analyzed,
and their relative merits have been quantified. It has been
shown that a design which employs silicon iron laminations
(Transil300) has the highest force capability, efficiency, and
power factor, despite its stator having a poorer space utiliza-
tion. The SMC machine designs, on the other hand, offer the
potential for lower cost manufacture.
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