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Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the
interactions between neutrons and protons and quantum many-body methods still poses formidable challenges.
The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate
calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we
focus on the 239Pu(n,f ) reaction and employ nuclear density functional theory with Skyrme energy densities.
Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective
variables. We find that the triaxial degree of freedom plays an important role, both near the fission barrier and at
scission. The impact of the parametrization of the Skyrme energy density and the role of pairing correlations on
deformation properties from the ground state up to scission are also quantified. We introduce a general template
for the quantitative description of fission fragment properties. It is based on the careful analysis of scission
configurations, using both advanced topological methods and recently proposed quantum many-body techniques.
We conclude that an accurate prediction of fission fragment properties at low incident neutron energies, although
technologically demanding, should be within the reach of current nuclear density functional theory.
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I. INTRODUCTION

The accurate description of neutron-induced fission is
particularly important to address present challenges in the
areas of energy production, nuclear waste disposal, or national
security applications. Many of these applications require a
detailed knowledge of fission fragment properties such as their
charge, mass, and relative yields, their total kinetic energy,
their total excitation energy, etc. The fission spectrum, i.e.,
the number and characteristics of both pre- and post-scission
neutrons and gammas, often needs to be known within a
few percent accuracy. In many fissile or fissionable nuclei
of interest, experimental measurements are not possible, and
theoretical simulations of the fission process are therefore
necessary.

The central idea in the theoretical description of induced
fission remains that of Bohr and Wheeler [1]: fission is
modeled as a two-step process where the incident neutron
first fuses with the target to form a compound nucleus (in an
excited state), which then breaks into two or more fragments.
These fragments will themselves decay to their respective
ground states. Based on this hypothesis, powerful toolkits
have been developed over the years to reproduce fission data:
Monte Carlo schemes are used to simulate the deexcitation of
fission fragments after scission [2–8]; reaction models focus
on explaining the characteristic features of the fission spectrum
such as fission isomers, collective structures, resonances, etc.
[9]; nuclear structure models provide basic information on the
fission fragments and the fission process itself, such as fission
barrier heights, charge, mass, and energy distributions. Many
results have been obtained using the macroscopic-microscopic
approach to nuclear structure [10,11] and its dynamical
extensions using either the general Langevin equations [12,13]
or their restriction to Brownian motion [14,15]. This approach

is complemented by various scission point models, the goal of
which is to simulate the actual breakup of the nucleus at large
elongations [16].

This semiphenomenological framework has been very
successful in explaining and reproducing numerous features
of the fission process; see, e.g., Refs. [14,15,17–20] for
recent applications. Nevertheless, a truly predictive theory of
fission should ultimately be based on a detailed account of
the nuclear forces between protons and neutrons combined
with the use of standard many-body methods of quantum
physics. In principle, several approaches can meet these
requirements. For example, functional integral methods are
fully quantum-mechanical approaches that include quantum
dissipation and fluctuations [21,22]. Their implementation,
however, requires computing resources that far exceed those
available to the current generation of supercomputers. On
paper, nuclear density functional theory (DFT) represents an
excellent compromise between microscopic content and actual
feasibility. In particular, DFT lends itself particularly well
to separating nuclear excitations into fast intrinsic and slow
collective excitations [23,24]. This distinction is especially
useful in the context of low-energy nuclear fission, which has
timescales of the order of 10−19–10−20 seconds, i.e. two to
three orders of magnitude slower than typical single-particle
excitations. Such a separation is the central assumption of
the time-dependent generator coordinate method (TDGCM),
which provides an effective, quantum-mechanical method to
compute fission fragment yields [25–28].

In spite of its advantages, the proper application of nuclear
DFT to the problem of nuclear fission still requires tremendous
computational resources, especially in the determination of
accurate multidimensional potential energy surfaces. In the
past, computer limitations imposed artificial constraints on
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the theory, such as the use of small model spaces, schematic
interactions, or a reduced number of collective variables. It is
only recently that the first systematic, large-scale, and accurate
simulations of nuclear fission have been made possible. Most
recent efforts have focused on spontaneous fission in actinide
and superheavy nuclei, and quantities such as barriers and
lifetimes; see, e.g., Refs. [29–36] for a selection of recent
results. In contrast, there have been comparatively fewer
publications on the topic of induced fission [27,28,37–39].

This paper focuses on the microscopic description of
induced fission within the framework of nuclear density
functional theory with Skyrme energy densities. As such, it
should be considered as an intermediate step in the long-term
effort to achieve a predictive theory of fission. The specific
goals of this paper are (i) to provide a comprehensive mapping
of deformation properties of 240Pu, (ii) to give a detailed
and quantitative analysis of the role of triaxiality in fission
calculations, (iii) to assess the dependence of calculations on
the parametrization of the functional, and (iv) to establish a
template for the calculation of fission fragment properties. In
several aspects, this study is both a continuation and an exten-
sion of the general description of induced fission developed
over the years at the Commissariat à l’Energie Atomique in
France and Lawrence Livermore National Laboratory in the
USA; cf., for example, Refs. [25–28,37–45].

Section II contains a brief reminder of the nuclear density
functional approach to induced fission, Skyrme functionals,
and the practical implementation of DFT. Section III focuses
on the static potential energy surfaces in 240Pu, which is
the compound nucleus formed in 239Pu(n,f ), and their
dependence on the parametrization of the Skyrme and pairing
functionals. Section III D presents a detailed analysis of the
identification of the scission point based both on topological
methods and the concept of quantum localization, and
provides estimates of fission fragment properties for the most
probable fission.

II. THEORETICAL FRAMEWORK

Our theoretical approach is based on the local density
approximation of the energy density functional (EDF) theory
of nuclear structure. The next few sections review the basic
ingredients of the EDF theory pertaining to the description of
nuclear fission.

A. Density functional theory approach to induced fission

In the context of nuclear fission, the ultimate goal of nuclear
density functional theory is to provide a comprehensive and
accurate description of both the fissioning nucleus (half-lives,
fission probability) and the fission fragments (mass and charge
distributions, excitation energy, yields, etc.) based on the
best knowledge of nuclear forces and quantum many-body
techniques.

Density functional theory of nuclei is a mature field with
numerous applications in low-energy nuclear physics and
nuclear astrophysics [24,46]. The central assumption of the
approach is that atomic nuclei can be described accurately by
an effective energy density H, which is a functional of the

one-body density matrix and the pairing tensor—since pairing
correlations play an essential role in low-energy nuclear
structure. This energy density may or may not be derived from
an effective pseudopotential V̂eff. In practice, most applications
of DFT so far have used either the Skyrme or Gogny energy
density, which are indeed derived from an effective two-body
pseudopotential, of zero range for Skyrme and finite range for
Gogny. The coupling constants of the energy density are free
parameters to be determined, usually on global observables
such as atomic masses, r.m.s. radii, nuclear matter properties,
etc.; See, e.g., Refs. [47–49] for recent applications.

For the specific case of induced fission, two additional
hypotheses underpin the DFT approach:

(1) One can identify a set of collective degrees of freedom
q that drive the dynamics of the fission process. The
most important of these collective degrees of freedom
are related to the nuclear shape, although additional
collective variables related, e.g., to the pairing channel,
could be introduced [29]. The collective degrees of
freedom might be considered as free parameters of the
theory, although the variational nature of DFT ensures
that the more collective variables there are, the better
the accuracy is.

(2) The transition between the compound nucleus and fully
independent fission fragments can be controlled by the
introduction of scission configurations. Without this
additional constraint, the short range of nuclear forces
combined with the variational nature of DFT would
always yield fission fragments in their ground-state
configurations, so that the total energy of the system be
minimal. This is contrary to experimental data, which
shows that fission fragments can be excited.

We note that these two assumptions are reminiscent
of semiphenomenological approaches to fission, in partic-
ular scission point models using inputs from macroscopic-
microscopic potential energy surfaces [16]. The main dif-
ference is that DFT is built onto a unique energy density
that simultaneously determines bulk and shell effects, the
collective inertia, and the dynamics of the problem in a
unifying quantum-mechanical framework.

Based on the aforementioned hypotheses, the full DFT
description of induced fission relies on the following multi-step
approach:

(1) Static properties of the fissioning nucleus are computed
as a function of the collective degrees of freedom
q. These potential energy surfaces are obtained by
solving the DFT equations, which most often take the
form of the Hartree-Fock-Bogoliubov equations with
constraints. This step can be viewed as the construction
of an adequate basis made of those nuclear many-body
states that are the most relevant for the fission process.

(2) Scission configurations are then identified on the
potential energy surface, based on some criteria. It is
precisely the purpose of this paper to discuss in details
some of these criteria.

(3) Fission fragment properties are obtained by solving
the many-body time-dependent Schrödinger equation
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under the general assumptions of DFT, namely that
the ground state takes the form of a Slater determi-
nant (HF) or, when pairing correlations are included,
of a quasiparticle vacuum (HFB). This could be
done “directly” with the time-dependent Hartree-Fock
(TDHF) theory, and its extension with pairing, the
time-dependent Hartree-Fock-Bogoliubov (TDHFB)
theory [50,51]. Alternatively, one may use the basis
of many-body states generated in step 1 to formulate a
collective, time-dependent, Schrödinger-like equation:
this is the essence of the time-dependent generator
coordinate method (TDGCM) [40–42]. In practice,
only the TDGCM has been applied to the study of
fission fragment distributions so far [25–28,45].

One should emphasize that, strictly speaking, the DFT
description of fission requires all of the aforementioned steps.
In particular, while potential energy surfaces can provide
valuable inputs to reaction models, or even be used to compute
pseudoexperimental quantities such as fission barriers, they
are, in reality, only an auxiliary basis used to compute the
fission fragment properties in the TDGCM. In this paper, the
focus is on selected topics pertaining to the static aspects of
fission. We leave the calculation of fission fragment properties,
yields, and distributions to a forthcoming paper.

B. Skyrme energy functional

In the local density approximation of the EDF theory, the
energy of the nucleus is given as the integral over space of
the Hamiltonian density H(r), which is itself a functional of
the one-body density matrix ρ and pairing tensor κ ,

E =
∫

d3r H(r). (1)

The Hamiltonian density is built out of a kinetic energy density
term, a potential energy density χt , and a pairing energy density
χ̃t :

H[ρ,κ] = �
2

2m
τ (r) +

∑
t=0,1

χt (r) +
∑
t=0,1

χ̃t (r), (2)

where τ (r) is the kinetic energy density, and the index t refers
to the isoscalar (t = 0) or isovector (t = 1) component of the
potential energy density; see Ref. [52] and references therein.
In this work, the potential energy density is obtained from the
zero-range Skyrme pseudopotential [53]. We employed three
different parametrizations of the Skyrme EDF: (i) The SkM*
parametrization [54] remains a standard in fission calculations
with Skyrme EDFs; see, e.g., Refs. [30,31,35,36,55–58]
for some recent applications. Since the parameters of the
pseudopotential were explicitly adjusted to fission barrier
heights, it is believed to have good deformation properties. (ii)
The UNEDF0 EDF is a recent parametrization of the Skyrme
energy density that gives a very good agreement with nuclear
masses [47] but was shown to have unrealistic deformation
properties [48,59]; we use it only to study the impact of
model parameters on fission observables. (iii) The UNEDF1
EDF was obtained by extending the optimization protocol of
UNEDF0 to include selected data on fission isomers [48].

It offers an excellent compromise between predictive power
(limited amount of data used in the fit) and overall quality.

In this work, pairing correlations are treated at the Hartree-
Fock-Bogoliubov (HFB) approximation [60]. The pairing
energy density χ̃ is a functional of the pairing tensor κ , or
equivalently of the pairing density ρ̃ [24]. It is derived from
a density-dependent contact pairing interaction with mixed
volume-surface character [61],

V̂pair(r,r ′) = V
(n,p)

0

[
1 − 1

2

ρ(r)

ρc

]
δ(r − r ′), (3)

with V
(n,p)

0 the pairing strength for neutrons (n) and protons
(p), and ρc = 0.16 fm−3 the saturation density. The energy
cutoff was set at Ecut = 60 MeV. For our calculations with
the SkM* EDF, we adjusted V

(n)
0 and V

(p)
0 locally on the

three-point odd-even mass difference in 240Pu. This gave
V

(n)
0 = −265.25 MeV and V

(p)
0 = −340.06 MeV. In the case

of UNEDF0 and UNEDF1, the value of the pairing strengths
V

(n,p)
0 is fixed by the parametrization; in addition, calculations

with these two functionals are performed using an approximate
formulation of the Lipkin-Nogami prescription [46,62].

The nuclear shape is characterized by the expectation value
qλμ of the multipole moment operators Q̂λμ on the HFB
vacuum. We will also employ the expectation value of the
so-called Gaussian neck operator,

Q̂N = e
−( z−zN

aN
)2

, (4)

which gives an estimate of the number of particles in the region
centered around the point zN [38,63,64]. We chose the range
aN = 1.0 fm. The collective space of nuclear fission is defined
as the ensemble of constraints imposed on the HFB solution.
In this work, we will consider the following constraints,
either alone or in combinations: elongation Q̂20, degree of
triaxiality Q̂22, mass asymmetry Q̂30, neck thickness Q̂40,
and neck size Q̂N . These collective variables will be denoted
generically by q = (q1, . . . ,qN ). Constrained HFB solutions
are obtained by using a variant of the linear constraint method,
in which Lagrange parameters are updated based on the
cranking approximation of the random phase approximation
(RPA) matrix [38,65,66].

C. DFT solver and numerical precision

All calculations were performed with the DFT solvers
HFODD [66] and HFBTHO [67]. Both solvers implement the HFB
equations with Skyrme functionals in the one-center harmonic
oscillator (HO) basis. The program HFBTHO assumes axial and
time-reversal symmetry, while HFODD breaks all symmetries.

In Cartesian coordinates, the three-dimensional HO basis
is characterized by its frequency ω3

0 = ωxωyωz, the maximum
oscillator number Nmax, the total number of basis states Nstates,
and the deformation β2, which accounts for the different
frequencies in each Cartesian direction.

The largest driver of basis truncation errors is the size of
the basis [68]. In this work, we fixed Nmax = 31 and Nstates =
1100. The large Nmax value ensures that high-lying intruder
orbitals that drive deformation are included up to the largest
deformation; the cutoff in the number of states is essentially
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imposed by the physical limits on the memory available and
CPU time taken by the calculations.

At the large elongations encountered in the description of
fission, the truncation of the HO model space results in a strong
dependence of the HFB calculations on the basis frequency and
deformation. Based on several experiments, we assume the
oscillator frequency ω0 and basis deformation β2 vary with
the requested expectation value q20 of the axial quadrupole
moment Q̂20 according to

ω0 =
{

0.1 × q20e
−0.02q20 + 6.5 MeV if |q20| � 30 b,

18.14 MeV if |q20| > 30 b,
(5)

and

β = 0.05
√

q20. (6)

This choice largely mitigates basis truncation effects up to the
scission point, where we empirically estimate the error on the
total energy to be of the order of 2–3 MeV [68].

From the estimates given above, it should be clear that
accurately capturing the physics of fission with one-center
bases is extremely challenging. Recent studies of convergence
properties in the HO basis have pointed to the existence of
more reliable extrapolation methods [69,70]. Translating these
results in the context of DFT may not be straightforward:
contrary to the ab initio approach, the effective Hamiltonian
of Skyrme EDFs depends on the density, hence on the model
space. The alternatives to the one-center HO basis all have
limitations of their own. Codes using the two-center HO basis
[27,39,40], where basis functions must be reorthogonalized,
or the coordinate-space representation of quasiparticle wave-
functions [71] do not currently include triaxiality. Lattice rep-
resentations generate large amounts of data [72]. A promising
alternative based on multi-resolution wavelet representation of
HFB wave-functions [73] remains in its infancy and may incur
a high cost of a single HFB calculation. As we progress in our
understanding of fission mechanisms, however, it will become
more and more necessary to improve the numerical precision
of DFT solvers.

III. STATIC DEFORMATION PROPERTIES OF 240Pu

In this section, we discuss the features of the static potential
energy landscape of 240Pu. In particular, our goals are to
(i) discuss and highlight the role of several shape collective
variables, (ii) assess more specifically the effect of triaxiality
on the barriers and beyond scission, and (iii) quantify the effect
of the parametrization of the energy density on predictions of
static fission pathways.

A. Overview of the potential energy surface of 240Pu

We begin by presenting a set of two-dimensional potential
energy surfaces (PESs) that provide useful information on the
local topography of the total energy in the four-dimensional
collective space introduced at the end of Sec. III C 1. In Fig. 1,
we plot the total HFB energy as a function of the quadrupole
degrees of freedom in the vicinity of the ground state (g.s.)
and the fission barriers. In this calculation, the octupole
moment was set to 0 (symmetric path), and the hexadecapole
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FIG. 1. (Color online) Two-dimensional potential energy surface
of 240Pu in the (q20,q22) plane for the SkM* EDF. The energy is relative
to the ground-state value. The dashed line represents the symmetric,
triaxial least-energy pathway.

moment was left unconstrained. The ground state, (q20,q22) ≈
(35 b, 0 b), and fission isomer, (q20,q22) ≈ (80 b, 0 b), are
clearly visible, as well as the lowering of the first fission barrier
owing to triaxiality. Although less visible in the contour map,
the second barrier is also slightly triaxial. We will quantify the
effect of triaxiality on the least-energy fission pathway in more
detail in Sec. III B.

Next, we show in Fig. 2 the potential energy surface in
the (q20,q40) plane. The well-known fusion (in the right-hand
side of the figure) and fission (in the left-hand side) valleys are
clearly visible. We note that the barrier between the two valleys
is smaller in our Skyrme SkM* calculations than, e.g., for the
Gogny D1S functional [38]. For the hot fission process, the
least-energy fission pathway starts from the g.s. and follows
the fission valley until the barrier between the fission and fusion
valleys vanishes.

Finally, we probe the mass asymmetry degree of freedom.
In Fig. 3, we show the potential energy surface in the (q20,q30)
plane. Since the fission fragment mass distribution of 240Pu
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FIG. 2. (Color online) Two-dimensional potential energy surface
of 240Pu in the (q20,q40) plane for the SkM* functional. The energy is
relative to −1830 MeV. The dashed line represents the least-energy
pathway.
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FIG. 3. (Color online) Two-dimensional potential energy surface
of 240Pu in the (q20,q30) plane for the SkM* functional. The energy
is given relative to −1840 MeV. The dashed line represents the least-
energy pathway.

is known to be asymmetric, this degree of freedom is among
the most important for a quantitative description of induced
fission. This calculation is by far the largest, as we have to cover
all the collective space from symmetric fission (up to q20 ≈
550 b to highly asymmetric fission (up to q30 ≈ 70 b3/2). In
addition, accurate prediction of the fission fragment properties
(charge and mass distributions, kinetic energies, etc.) requires
the good identification of the scission region, hence a relatively
dense mesh.

The figure shows the least-energy fission pathway, which
goes from about q20 ≈ 100 b and q30 = 0 b3/2 and exits near
q20 ≈ 345 b and q30 = 40 b3/2. We note that there is another
fission valley that starts directly from the ground state and
exits at small elongation but a very large asymmetry of about
q30 > 60 b3/2. This exotic, very asymmetric, fission channel
corresponds to cluster radioactivity and was discussed recently
in Ref. [33].

We also emphasize that the PES of Fig. 3 exhibits clear
signs of discontinuities, especially (but not exclusively) in the
region 300 < q20 < 550 b and q30 ≈ 20 b3/2. As discussed in
detail in Ref. [44], these discontinuities are the consequence
of using the self-consistent procedure in a truncated collective
space of finite size: only a limited number of collective
variables are explicitly constrained, which produces these
numerical artifacts. Such discontinuities, however, provide
also great physical insight since they “automatically” signal
where collective degrees of freedom are missing for the proper
description of the process.

B. Fission pathway of least energy

From this section on, we will focus exclusively on the least-
energy fission pathway. It is defined as the pathway connecting
the ground state to the point of scission, along which the energy
remains a local minimum in the full collective space. It was
shown recently that the dynamic fission pathway, as obtained
from the minimization of the collective action together with
the proper treatment of the collective inertia, is very close to
the least-energy pathway [74]. The latter is, therefore, a good
approximation of the most probable fission path.
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FIG. 4. (Color online) Energy along the least-energy fission path-
way in 240Pu for the SkM* EDF: axial symmetric path (black squares),
triaxial symmetric path (red circles), and triaxial asymmetric path
(blue triangles). Energy curves are given relative to the ground state.
The value of the octupole and hexadecapole moments are also shown
along the symmetric and asymmetric paths.

In Fig. 4, we superimpose the energy along the least-
energy energy fission pathway in three different scenarios:
(i) symmetric (q30 = 0 b3/2) fission with no triaxiality (q22 =
0 b, or γ = 0o), (ii) symmetric fission with triaxiality, and
(iii) asymmetric fission with triaxiality. In scenario (ii), we
introduced a constraint on the expectation value of Q̂22 during
the first few iterations of the self-consistent procedure, before
completely releasing this constraint: this enabled the nucleus
to jump into a triaxial region in the case there would have been
a small barrier between the axial and triaxial solutions; finally,
in scenario (iii), the same methodology was repeated for the
octupole degree of freedom Q̂30.

It is well known that including triaxiality lowers the first
barrier [75–77]. It also lowers the second barrier, but only along
the symmetric fission path. We find that the degree of triaxiality
is large at the first barrier, γ ≈ 32o and remains significant in
the second barrier, γ ≈ 15o. As seen from Fig. 4, the first
barrier is lowered by approximately 2 MeV when triaxiality
is included. We note that both the octupole and hexadecapole
moments vary relatively smoothly along the path.

A clear deficiency of the SkM* functional is that the
first fission barrier height is EA ≈ 7.64 MeV, which is
about 1.6 MeV higher than the empirical barrier [78,79].
However, predictions of SkM* are in the same region as
those of competing models [30]. In addition, the experimental
uncertainty for the fission barrier (which is not an observable)
is usually estimated to be of the order of 1 MeV. One should,
therefore, be satisfied with an overall reproduction of barriers
within 1–2 MeV of the empirical value. Similarly, the fact
that the one-neutron separation energy of 240Pu computed
with SkM* is Sn = 7.04 MeV, which is lower than the top
of the barrier and (unrealistically) implies that 239Pu is not
fissile, should not be a cause of special concern because of the
uncertainties on the fission barriers.

Because of the risk of discontinuities, we have employed
various methods to ensure that the one-dimensional fission
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FIG. 5. (Color online) Variation of the total HFB energy as a
function of the hexadecapole moment q40 along the least-energy
fission pathway in 240Pu.

pathway is truly the lowest-energy path connecting the ground
state to the scission point, at least within the numerical
accuracy of the calculations. In particular, we verify a
posteriori in Fig. 5 the correctness of the calculation in the
scission region by showing cross sections of the energy as a
function of the hexadecapole moment at several points along
the path. Together with the two-dimensional PES of Fig. 2, it
confirms that our least-energy fission pathway stays within the
fission valley, and, therefore, corresponds as expected to the
hot fission process.

C. Dependence on the energy functional

Previous studies carried out with the finite-range Gogny
pseudopotential and the D1S parametrization showed that
symmetric fission occurs at very large values of the quadrupole
moment, around q20 ≈ 590 b [38]. We report qualitatively
similar results with the Skyrme SkM* parametrization, al-
though the actual value of the quadrupole moment is signifi-
cantly lower, around q20 ≈ 550 b. Similarly, the hot scission
point for asymmetric fission is located around (q30,q40) ≈
(64 b3/2, 187 b2) for the Gogny D1S, while it is (q30,q40) ≈
(40 b3/2, 136 b2) for the SkM* parametrization. Since we have
verified that the one-dimensional fission pathways reported
earlier are truly at the bottom of the fission valley (see
previous section), it is highly unlikely that the differences
observed between D1S and SkM* originate from numerical
or algorithmic errors. Instead, they should be attributed to the
intrinsically different deformation properties of each EDF. In
this section, we explore the sensitivity of both the full fission
pathway and the position of the scission configurations on the
form of the energy density used.

1. Dependence on the Skryme energy density

To investigate further the dependence of the scission point
on the parametrization of the energy functional, we have
computed the least-energy fission pathway with the UNEDF0
[47] and UNEDF1 functionals [48]. Benchmarks of fission
barriers and fission isomer excitation energies were already
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FIG. 6. (Color online) Energy along the least-energy fission path-
way in 240Pu for three parametrizations of the Skyrme functional:
SkM* [54], UNEDF0 [47] and UNEDF1 [48]. All curves are given
relative to their ground-state value.

reported and discussed in Refs. [30,48]. Here, we push the
calculation up to the scission point and beyond. In this
section, scission is simply defined as the occurrence of a
sharp discontinuity in the PES before which the nucleus is
whole (qN � 1), and after which it is made of two fragments
(qN � 1). The energy along the least-energy fission path is
shown in Fig. 6, and the position of the scission point is
summarized in Table I.

Interestingly, the position of the scission point is nearly
the same for UNEDF0 and UNEDF1, even though the pre-
scission energy (difference between the potential energy at
the top of the second barrier and at scission) is remarkably
different, with approximately 12.5 MeV for UNEDF1 and
only 3.4 MeV for UNEDF0. These differences in deformation
energy are especially striking since these two functionals give
very similar results across a broad range of nuclear observables
including atomic masses, radii, odd-even mass differences,
neutron droplets, etc.. They are most likely caused by the
large difference in the surface-symmetry energy between the
two functionals, assym = −44 MeV for UNEDF0 and assym =
−29 MeV for UNEDF1, which decreases significantly surface
tension effects [59].

2. Dependence on the pairing strength

One trademark of the UNEDF family of Skyrme functionals
is that the two pairing strengths of the functional (3) are

TABLE I. Approximate position of the scission point in the
(q20,q30,q40) plane for the three parametrizations of the Skyrme
functionals: SkM*, UNEDF0 and UNEDF1.

Functional 〈Q̂20〉 (b) 〈Q̂30〉 (b3/2) 〈Q̂40〉 (b2)

SkM* 345 43 136
UNEDF0 354 44 144
UNEDF1 354 45 146
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FIG. 7. (Color online) Energy along the least-energy fission path-
way in 240Pu for five parametrizations of the pairing force and the
SkM* parametrization of the Skyrme functional. All curves are given
relative to their ground-state value.

fitted simultaneously with the coupling constants of the
Skyrme functional, i.e., the particle-hole and particle-particle
channels of the EDF are treated on the same footing. In
addition, these functionals are used with an approximate
formulation of the Lipkin-Nogami prescription to limit the
fluctuations in particle number. The different fission pathways
and scission configurations reported in the previous section
could, therefore, be attributed either to the Skyrme functional
itself, to the pairing channel, or to a complex interplay between
the two. In this section, we briefly analyze the role of pairing
correlations alone.

In Fig. 7, we have performed additional calculations of the
fission pathway in 240Pu by varying both pairing strengths
V

(n)
0 and V

(p)
0 by −10%, −5%, +5%, and +10%. Variations

of ±5% of the pairing strength lead to variations of about
250 keV of the pairing gaps computed in the g.s. This value is
often taken as an estimate of the predictive power of surface-
volume pairing interaction combined with Skyrme functionals
to reproduce odd-even mass differences [80].

The effect of pairing correlations on fission barrier and
collective inertia is well known; see, e.g., [81] and references
therein. Less known is the impact of pairing correlations on
the scission point. We find that increasing pairing decreases
the value of the quadrupole moment where scission occurs.
Conversely, decreasing pairing moves the scission configura-
tions to larger quadrupole moments. The effect is particularly
pronounced if pairing correlations vanish: for pairing strengths
decreased by both 5% and 10%, neutron pairing correlations
are 0 beyond q20 > 238 b, resulting in a shift of the scission
point by nearly 50 b compared to the original calculation. This
result suggests that a predictive theory of nuclear fission based
on DFT will require a very accurate description of pairing
correlations.

D. Scission region

By contrast to current theories of spontaneous fission,
which rely on the detailed knowledge of the potential energy

FIG. 8. (Color online) Two-dimensional potential energy surface
of 240Pu in the (q20,q22) plane for the SkM* functional around the
least-energy fission pathway. The energy is normalized arbitrarily at
−1820 MeV.

surface only in the vicinity of the ground state and the two
fission barriers, models of induced fission need to describe
the collective space up to, and beyond, the point of scission.
Below, we discuss some of the features of the PES in the
scission region for 240Pu.

1. Triaxiality at and beyond scission

While the impact of triaxiality on fission barriers has been
established for over forty years, little else is known about
the role of this degree of freedom in the fission process.
The additional cost of breaking axial symmetry is significant,
both computationally and physically (loss of the K quantum
number). The purpose of this section is to highlight the role of
triaxial shapes at scission and beyond.

We show in Fig. 8 the potential energy of 240Pu for the SkM*
functional in the (q20,q22) plane near scission. Calculations are
based on the least-energy fission pathway of Fig. 4. For each
point in the (q20,q22) mesh of Fig. 8, the HFB calculation
is initialized with the nearest HFB solution along the least-
energy fission pathway, with the additional condition that the
initial solution satisfies q20 < 300 b. The purpose of this last
condition is to ensure that the initial guess for the HFB solution
corresponds to a whole nucleus and not two fragments. The
resulting map can be interpreted as a local two-dimensional
cross section in the (q20,q22) along the least-energy fission
pathway.

Figure 8 suggests that the least-energy fission pathway
corresponds to a relatively flat valley in the (q20,q22) plane.
We note that scission has also occurred in the region with
q22 > 40 b (with γ ≈ 10◦), but the 40 MeV barrier should
in practice hinder this scenario for the range of excitation
energy considered here. We show in Fig. 9 one-dimensional
cross-sections of the surface for selected values of q20 in the
range 0 � q22 � 10 b. At q20 = 310 b, the scission barrier is
about 6 MeV high, and only 1.5 MeV high at q20 = 340 b.
Note that the values of q20 and q22 correspond to very small
triaxiality of at most γ ≈ 1◦: from a computational point of
view, therefore, there is very little Kadmixture in HFB states.
However, even such tiny effects can have a sizable impact on
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FIG. 9. (Color online) One-dimensional potential energy surface
of 240Pu along the q22 direction for the SkM* functional around the
least-energy fission pathway.

fission fragment properties as they shift the scission point to
lower elongations: Table II lists the average proton and neutron
numbers of the fission fragments at the triaxial scission points.
There is a variation of about 0.5 proton and 1 neutron across
this region.

The modification of the fission fragment properties induced
by triaxiality should be visible in a dynamical description
of fission such as the time-dependent generator coordinate
method [27,28]. The relative flatness of the collective space
in the (q20,q22) plane should indeed divert a fraction of the
collective flux, which will impact the relative charge and mass
distributions of the fragments. In addition, we may expect
a nonzero dissipation in energy in the transverse collective
modes, here characterized by the q22 collective variable, which
should reduce the available pre-scission energy [26].

2. Continuous evolution across the scission point

As discussed extensively in Ref. [38], an accurate prediction
of fission fragment properties is not possible if the collective
space is restricted to the (q20,q30,q40) variables; see also
Sec. IV E below. Including the triaxial degree of freedom does
not fundamentally alter these conclusions: in such restricted
collective spaces, scission still manifests itself by a sharp
discontinuity of the potential energy surface. Just before
this discontinuity, the pre-fragments are heavily entangled
with the consequence that the calculated total kinetic energy

TABLE II. Variation of the light (L) and heavy (H) fragment
proton and neutron numbers as a function of triaxiality near the
least-energy fission pathway.

q20 (b) q22 (b) ZH NH ZL NL

310.0 7.0 53.6 84.5 40.4 61.4
320.0 6.0 53.7 84.8 40.3 61.2
330.0 5.0 53.9 85.2 40.1 60.8
340.0 4.3 54.0 85.5 40.0 60.6

FIG. 10. (Color online) Potential energy surface in the (q30,qN )
plane just before scission for the SkM* functional. The axial
quadrupole moment Q̂20 is fixed at q20 = 345 b, the triaxial
quadrupole Q̂22 and hexadecapole moments Q̂40 are unconstrained.
The energy is normalized arbitrarily at −1827 MeV.

is totally unrealistic. Just after the discontinuity, however,
the fragments are neatly separated but in their ground-state:
this is a consequence of the variational principle behind the
HFB approach, and is in contradiction with the experimental
evidence that fission fragments are excited after scission.

It is, in fact, quite simple to introduce additional collective
variables that will transform the discontinuity at scission into a
continuous pathway. Among the possible choices, a constraint
Q̂N on the density of particles in the neck between the two
pre-fragments has often been used, both in the context of
spontaneous fission [64], and induced fission [38]. We show
in Fig. 10 a close-up of the local potential energy surface of
240Pu near the scission point for the SkM* functional. The
axial quadrupole moment is fixed at q20 = 345 b while the
triaxial quadrupole Q̂22 and hexadecapole moments Q̂40 are
unconstrained. Only the range [0,1] of qN is represented, as it
is in this area that the scission process seems to take place (see
discussion in Sec. IV B). At qN = 1, the least-energy fission
pathway emerges at q30 ≈ 30 b3/2. It broadens up to form a
wide “estuary” in the (q30,qN ) subspace: the energy surface is
very shallow across a large range of octupole moments. This
should manifest itself by a sizable broadening of the yields.

In order to better visualize the variations in energy when
following this continuous path, we show in Fig. 11 the
one-dimensional profile of the total energy as a function of
qN for the three functionals used in this work. For each curve,
the value of the axial quadrupole moment is fixed at the
value just before scission as listed in Table I, and calculations
are performed with a constraint on Q̂N . All other multipole
moments are unconstrained. The curves are normalized at the
value of qN = 4.5. It is worth noticing that the energy gain
along this extra dimension in the collective space is very similar
for all three functionals, even though the potential energy
surface in the q20 direction can be dramatically different; see
Fig. 4. On average, variations of qN lower the energy by up to
12–15 MeV.

Most importantly, this new degree of freedom provides a
mechanism to pass continuously from a single whole nucleus
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FIG. 11. (Color online) Total energy as a function of the density
of particles in the neck qN along the least-energy fission pathway
for the SkM*, UNEDF0, and UNEDF1 functionals. All curves are
normalized relative to their respective values at qN = 4.5. Inset
contour plots show the density profile at qN = 4.0 and qN = 0.3.

to two distinct fragments. The qN degree of freedom can,
therefore, be viewed as a kind of control parameter. It can
be used in several ways. The scission configurations can
be chosen along the qN axis arbitrarily, on the sole basis
of phenomenological comparisons with experimental data,
e.g., on charge and mass distribution of fission fragments.
Alternatively, additional criteria can be invoked to pin down
the scission configuration at a given value of qN , or in a given
interval of qN values. This is the approach that we chose and
that we discuss in more detail in the next section.

IV. NUCLEAR SCISSION AND FISSION FRAGMENT
PROPERTIES

The purpose of any theory of induced fission is to predict
fragment properties such as charge and mass distribution,
kinetic energy, excitation energy of each fragment, fission
spectrum, etc., as these correspond to measurable quantities. In
the nuclear DFT approach, computing these properties require
introducing scission configurations in the compound nucleus.
After a brief historical reminder, we present below the methods
that we used to define the scission configurations, as well as
its application in the calculation of fission fragment properties
for the least-energy fission pathway of 240Pu.

A. Definition of scission

The concept of a scission point has its origin in the liquid
drop (LD) picture of the nucleus and reflects the fact that for
very large deformations, the LD potential energy is a mul-
tivalued function of the deformation parameters [11,82,83].
These multivalues generate discontinuities in potential energy
landscapes, which are still widely used as a criterion to define
the scission configurations [28,35,38,39]. However, as we
have recalled in the previous section, these discontinuities

are entirely spurious since locally enlarging the collective
space can easily restore the continuity of the full PES [44]. In
addition, continuous PESs give additional flexibility to define
the scission configurations and improve the predictive power
of the theory.

As mentioned above, rather than use the qN degree of
freedom as a simple control parameter that we could tune
to data, we would like to find general criteria, based either
on mathematics and/or on physics, to define the scission
configurations, and let the theory take care of the comparison
with the data without further empirical adjustments. The
simplest criterion one could invoke to define scission is to set
a minimum value for the size of the neck, q

(min)
N , below which

one assumes the neck is small enough that the two fragments
can be considered fully formed [38,39]. Such an approach has
the advantage of being easy to automate, but the choice of q

(min)
N

remains entirely arbitrary. A possible extension would be to
set up a range in qN values, say Iq = [q(min)

N ,q
(max)
N ], where

scission configurations are chosen, and use the boundaries
of this interval as estimates of theoretical errors. Ideally, this
interval should be as narrow as possible. Since at scission
one connected nucleus becomes two unconnected fragments,
tools based on detecting connectivity features in datasets (here
the nuclear density) should be applicable, and may help in
making the determination of Iq less arbitrary. We will explore
this option in detail in Sec.IV B.

For the sake of completeness, we also mention an alternative
strategy to identify scission configurations. It was recognized
early on that the competition between the repulsive Coulomb
and the attractive nuclear forces may induce the scission of the
nucleus even when there still remains a sizable neck between
the two nascent fragments; the ratio of the Coulomb energy
over the nuclear interaction energy can, therefore, provide
a complementary, dynamical, criterion for scission [84,85].
Recently, a similar approach was formalized in the context of
nuclear density functional theory [37]. Two major ingredients
are required: (i) the calculation of the Coulomb and nuclear
interaction energies and (ii) a procedure to “localize” the
fragments, since both the Coulomb and nuclear interaction
energy are representation dependent; see Sec. IV D below.
These approaches can of course be combined with the method
we describe below.

B. Topological identification of the scission point

As mentioned above, one possible way to define scission
configurations is to use computational tools that detect
connectivity features in datasets. The problem we are posing
is thus the following: given a set of neutron and proton
densities {ρn(r),ρp(r)}qN

computed at each point along some
trajectory—here parametrized by the expectation value qN

of the neck operator—is it possible to identify changes in
the densities that could be interpreted as the transition from
a single nucleus to two fragments? It is one instance of a
wider problem in computational science: that of identifying,
within data, combinatorial changes that are assumed to be
markers for a physical phenomena. In fact, it is possible to
characterize such combinatorial changes using a vocabulary
that is independent of assumptions about numerical thresholds
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FIG. 12. Two small functions f (x,y) and g(x,y) on a triangular
mesh (dashed lines) shown as contour plots and their respective
contour trees. Circled (a) and squared (b) points represent the values
of the function on the mesh.

in the physical system. In place of geometric properties,
our approach draws on the mathematics of topology to
derive global properties (invariants) of space. Topological
analysis of data sets results in structural abstractions that
can be used to answer questions of whether two spaces have
fundamentally the same shape, and to articulate the types of
differences that appear. In the physical sciences, topological
feature analysis is well known in the study of flow (e.g.,
vortices, separatrices) [86–88] and in the analysis of scalar
fields (e.g., critical points) [89–91]. Its main advantage is
that it moves identification of phenomena from assessment
against empirical, possibly subjective, thresholds into binary
decisions based on change to the discrete structures that
express fundamental topological properties. This leaves two
questions: Which (if any) topological change in data correlate
with the physical phenomena of interest, and can topological
structure be computed “effectively”?

Recent work in scientific visualization and computational
topology has shown how to analyze features in functions of
the form f : R3 → R, such as the local nuclear density ρ(r).
In these functions, the connectivity of isovalued contours can
be analyzed using the contour tree [92], which captures the
relationships of all possible contours in a data set. Figure 12
gives a pedagogical illustration of the technique: maxima and
minima of the contour map are leaves of the tree, while
critical points (saddles) are interior nodes. Moreover, one
characterization of critical points is that they are the highest
points at which two peaks are connected. As a result, the critical
points naturally define features corresponding to branches of
the tree. Subsequent work showed that these features can then
be tracked over time (or any other relevant parameter) [93].

While this approach works for single-valued functions, it
needs modification for bivariate functions of the form (f,g) :
R3 → R2. For such a function, contours do not naturally divide
it into features, and a generalization of the contour tree is
required, as shown in Fig. 13. Here, the domain is divided
along contours of both f and g, resulting in a set of regions,
or “slabs,” as shown. To understand how the abstract graph of
panel (b) is obtained from the original contours of panel (a),
consider for instance the lower left corner of panel (a): the slab
marked (3,2) is adjacent to the slabs (3,1) and (4,2). Hence,
the node (3,2) is connected to the two nodes (4,2) and (3,1).
Systematically analyzing the connectivity of these slabs thus
gives the joint contour net (JCN) shown in panel (b) of Fig. 13:
an abstract representation of the joint variation of f and g [94].

(3,1)
(3,2) (4,2) (5,2) (6,2)

(4,3)
(5,3)

(6,3)
(7,3)

(8,3)

(4,4)
(5,4)

(6,4)
(7,4)

(5,5)
(3,6) (2,6)

(4,6)
(6,6)

(7,6)

(8,7)
(7,7)

(6,7)
(3,7) (2,7)

(7,8)

(2,8)

(3,1)

(3,2)

(4,1)

(4,2)

(5,2) (6,2) (7,2)

(4,3) (5,3)
(6,3)

(7,3)

(8,3)
(9,3)

(4,4)
(5,4)

(6,4)
(7,4)

(5,4)

(5,5)

(8,4)

(6,5)

(4,5)
(6,5)

(3,5)

(3,6)

(2,6)
(4,6)

(5,6)(6,6)

(7,6)

(8,7)
(7,7)

(6,7)
(5,7)(4,7)

(3,7) (2,7)

(6,8) (5,8)

(4,8) (3,8)
(2,8) (1,8)

(4,9) (3,9)(2,9)(1,9)(7,8)

(a) (b)

FIG. 13. Joint contour slabs found by intersecting the slabs of
functions f and g of Fig. 12 (a). Joint contour net obtained by
analyzing the connectivity of the slabs; see text for details (b).

The case of nuclear fission lends itself perfectly to such an
analysis. Indeed, within nuclear DFT the nucleus is entirely
characterized by the neutron (ρn) and proton (ρp) densities,
which will play the role of the two distinct yet correlated
scalar fields f and g in the example of Figs. 12 and 13. Any
special feature of the JCN graph associated with the bivariate
function (ρp,ρn) : R3 → R2 could therefore, in principle, be
given a physical interpretation. In fact, we have recently shown
that the sudden division of the compound nucleus in two
separate fragments at the discontinuity of one-dimensional
fission pathways E(q20) is clearly associated with a fork
in the JCN [95]. Here, we extend the method to the more
difficult problem of detecting features along a continuous
fission pathway characterized by the qN constraint.

Figure 14 illustrates the application of the JCN method
to the detection of scission in 240Pu. The contour nets are
extracted from the densities of 240Pu at the two values qN = 0.1
and qN = 4.0; see Fig. 11. The principal visual features of
the JCN are forks and circular structures, which we named
starbursts:

(i) As recalled above, a fork at the high-density end of the
JCN (red, upper right part of each graph) shows the
presence of two distinct features meeting at a critical
point, rather than a single peak, i.e., two topologically
distinct regions of space [95]. Here, we interpret the
first occurrence of such a fork at high density values
as the precursor to scission, marking the upper bound
q(max) of the interval Iq defining scission.

(ii) Subsequent development of the “starburst” in each
branch suggests that these two regions acquire indepen-
dent internal structure. That is, the range and variation
in proton and neutron field density levels in the two
distinct regions is commensurate with that present
in the nucleus before the appearance of branching.
Therefore, we interpret the first occurrence of such
starbursts as the signal that the nucleus has split into
two well-formed fragments, which defines the lower
bound q(min) of Iq .

While visual interpretation of the features of the JCN
graph relies on judgements based on calibration experiments,
the underlying graph is mathematically well-defined and its
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FIG. 14. (Color online) JCN graphs near the scission for 240Pu at
qN = 4.0 (a) and at qN = 0.1 (b). The principal feature visible is that
the single branch for high isovalues of the densities (upper right side
of top figure) at qN = 4.0 has forked into two distinct high isovalues
branches (upper right side of bottom figure) at qN = 0.1, each branch
featuring starbursts.

construction is topologically rigorous. The only input to
analysis is the spatial representation of the neutron and proton
densities, and the single output is an estimate of the interval
Iq where scission occurs. When scanning the entire range in
qN value from 0 to 4.5, we have found that the interval Iq was
Iq = [0.2,2.6] for SkM* and UNEDF0, and Iq = [0.2,2.2] for
UNEDF1.

For applications to nuclear fission, joint contour net analysis
depends principally on the level at which the density values
are quantized into slabs. Initial work showed that analysis can
detect scission at different levels of quantization, with finer
levels of quantization narrowing the candidate scission point
to a smaller number of sites [95]. Beyond a certain limit no
further narrowing was observed, suggesting that the analysis
is then constrained by the data, that is, independent of the
quantization level.

C. Fission fragment identification

Topological methods such as the JCN can automate the
identification of a putative scission region in the collective
space. In order to compute fission fragment properties within
this region, the density matrix and pairing tensor of each of the

fragments must be determined. We start from the set of quasi-
particles for the compound nucleus defined by the Bogoliubov
matrices U and V . The coordinate space representation of the
full one-body density matrix (in coordinate⊗spin space) reads

ρ(rσ,r ′σ ′) =
∑
ij

ρijφi(rσ )φ∗
j (r ′σ ′), (7)

with φi(rσ ) the basis functions, and ρij = ∑
ij V ∗

iμVjμ the
configuration space representation of the density matrix. We
can introduce a quasiparticle (q.p.) density ρμ(rσ,r ′σ ′) by

ρμ(rσ,r ′σ ′) =
∑
ij

V ∗
iμVjμ φi(rσ )φ∗

j (r ′σ ′), (8)

such that the occupation Nμ of a single quasiparticle μ is
simply

Nμ =
∑

σ

∫
d3r ρμ(rσ,rσ ). (9)

Since the basis {φi} is orthonormal, this reduces to the well-
known expression Nμ = ∑

ij V ∗
iμVjμ, with the total number

of particles defined as N = ∑
μ Nμ. Let us assume the neck is

located along the z axis of the intrinsic reference frame, and
thus has the coordinates rneck = (0,0,zN ). We can then define
the occupation of the q.p. μ in the fragment (1) as

N1,μ =
∑
ij

V ∗
iμVjμdij (zN ), (10)

where

dij (z) =
∑

σ

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ z

−∞
dz φi(rσ )φ∗

j (rσ ). (11)

The occupation of the q.p. in the fragment (2) is simply N2,μ =
Nμ − N1,μ. We then assign the q.p. μ to fragment (1) if N1,μ �
0.5Nμ, and to fragment (2) if N1,μ < 0.5Nμ. In this way, the
full set of q.p. is partitioned in two subsets, each corresponding
to one of the fragments.

These two sets of q.p.’s allow us to build the analogs of
the density matrix and the pairing tensor for the fragments. In
coordinate⊗spin space, we will thus define

ρf(rσ,r ′σ ′) =
∑
μ∈(f)

∑
ij

V ∗
iμVjμ φi(rσ )φ∗

j (r ′σ ′), (12)

κf(rσ,r ′σ ′) =
∑
μ∈(f)

∑
ij

V ∗
iμUjμ φi(rσ )φ∗

j (r ′σ ′), (13)

with f = 1,2 labeling the fragment. Note that, by constrast to
the full density matrix of the compound nucleus ρ, the objects
ρ(f) are not one-body densities in the strict mathematical sense.
In particular, they are not projectors in Fock space, ρ(f)2 �= ρ(f).
Also, the usual relations ρ2 + κκ† = 0 are not necessarily
satisfied for ρ(f) and κ (f). We should therefore refer to
these objects as pseudodensities, to emphasize their empirical
nature. The diagonal component of these pseudodensities (in
coordinate⊗spin space) ρ(1)(r), ρ(2)(r), κ (1)(r), and κ (2)(r) for
each fragment can be obtained as usual; for example,

ρ(f)(r) =
∑
σσ ′

ρ(f)(rσ,rσ ′) (14)
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defines the local pseudodensity in fragment “f”. Similarly, one
can define the analogue of the kinetic energy density, τ (f), and
the spin current tensor, J (f)

μν , for each fragment, as well as their
time-odd counterparts [24,96].

After the pseudodensity matrix and pairing pseudotensor
of each fragment have been defined, all fragment energies
and interaction energies can be computed in a straightforward
manner at the HFB approximation. The Coulomb interaction
energy between the fragments is

ECou = E1→2
Cou + E2→1

Cou . (15)

For both the direct and exchange term, E1→2
Cou = E2→1

Cou , hence
we find

E
(dir)
Cou = 2e2

∫
d3r

∫
d3r ′ ρ

(1)(r)ρ(2)(r ′)
|r − r ′| , (16)

while the (attractive) exchange Coulomb interaction energy is
defined by

E
(exc)
Cou = 2e2

∫
d3r

∫
d3r ′ ρ

(1)(r,r ′)ρ(2)(r ′,r)

|r − r ′| . (17)

In these expressions, ρ(1) is the pseudodensity in fragment (1),
ρ(2) the isoscalar density in fragment (2), and e2 = �c/α is in
MeV fm. In our calculations, the direct Coulomb energy was
computed using the Green function method as in Ref. [97]
while we used the Slater approximation for the exchange part.
The (attractive) nuclear interaction energy, which, in our case,
is the Skyrme interaction energy, is similarly given by

ESkyrme
nuc = E1→2

nuc + E2→1
nuc (18)

and

E1→2
nuc =

∑
t=0,1

∫
d3r

{
C

ρ
t ρ

(1)
t ρ

(2)
t + C

�ρ
t ρ

(1)
t �ρ

(2)
t

+Cτ
t ρ

(1)
t τ

(2)
t + CJ

t

∑
μν

J
(1)
μν,tJ

(2)
μν,t

+C∇J
t ρ

(1)
t ∇ · J (2)

t

}
. (19)

Permute indices 1 and 2 to obtain the second term in
Eq. (18). Note that, contrary to the Coulomb energy, it
is not symmetric under permutation of the fragments, i.e.,
E1→2

nuc �= E2→1
nuc . Because of the zero range of the Skyrme force,

Eq. (19) contains both direct and exchange contributions.

D. Quantum localization

In this section, we expand on the quantum localization
method first introduced by Younes and Gogny in Ref. [37]. A
consequence of the quantum mechanical nature of the system
is that the coordinate representations ρ(1)(r) and ρ(2)(r) of
the local pseudodensities of each fragment near scission are
not clearly localized within their respective fragment: the
pseudodensity ρ(1)(r) has a tail that extends significantly into
fragment (2) and vice versa; see Fig. 15. In the HFB theory,
this delocalization of the density can be traced back to the
individual quasiparticles, and can be captured by the following

FIG. 15. (Color online) Total, left, and right fragment densities
before (plain lines) and after (dashed lines) the localization of q.p.’s
at the qN = 0.4 point of 240Pu. Calculations for the SkM* functional.

indicator:

�μ = |N1,μ − N2,μ|
Nμ

, (20)

with Nμ defined by Eq. (9) and N1,μ,N2,μ by Eq. (10). If
�μ = 0, the q.p. μ is fully delocalized; if �μ = 1 it is fully
localized either in the left or in the right fragment. The tails
in the pseudodensities are produced by the contributions from
the delocalized q.p. states with relatively large occupation and
0 � �μ � 1.

The larger the overlap between ρ(1)(r) and ρ(2)(r) is, the
larger (in absolute value) the Coulomb and nuclear interaction
energy, and the lower the fragment intrinsic energies, i.e., the
higher the excitation energy of the fragments, since, in the
HFB approximation,

Etot[ρ
(1) + ρ(2)] = E1[ρ(1)] + E2[ρ(2)] + Eint, (21)

with Eint = Edir
Cou + Eexc

Cou + Enuc. Consequently, we find that
both the fission fragment properties (total excitation energy,
deformation, etc.) and the total kinetic energy of the accel-
erated fragments depend on the overlap between ρ(1)(r) and
ρ(2)(r). Qualitatively, the two fragments are entangled.

This entanglement poses a conceptual problem when
comparing theoretical predictions with experimental data on
fission fragment properties. Indeed, it is well known that the
generalized HFB density R associated with a given set of q.p.
operators (βμ,β†

μ) is invariant under any unitary transformation
of these operators; see, e.g., Refs. [98,99]. While all global
observables such as energy, angular momentum, etc., are
invariant, local properties associated with any subset of the
q.p. states may not be. In other words, the energies E1[ρ(1)],
E2[ρ(2)] and Eint are representation dependent: any unitary
transformation of the generalized density can change their
value. This is clearly a problem, since these quantities are
directly related to experimental observables.

One must, therefore, choose an adequate representation
of the generalized density in order to compute fragment
properties. Obviously, this choice can not be arbitrary but
should instead be guided by physical considerations. The
only unambiguous available experimental data is that fission
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fragments are independent of one another: there is no interac-
tion between the two other than the repulsive Coulomb force.
Therefore, the optimal representation should be the one where
Enuc → 0. In the HFB approach, this is achieved if all q.p.’s
are fully localized in a given fragment. Therefore, for any of
the scission configurations chosen in the Iq interval introduced
earlier, physics arguments dictate that one introduces a unitary
transformation T of the q.p. such that the localization of
each individual q.p. is maximized. This transformation would
localize the fragments by reducing the tails of the densities
while leaving the global properties of the nucleus unchanged,
and would thus ensure that the asymptotic conditions of
the fission process (the fact that the fission fragments are
independent systems) are obeyed.

In fact, this need for localization is reminiscent of electronic
structure theory. Similar ideas were introduced long ago in
quantum chemistry to describe the static bonding structure
of molecules, see, e.g., Ref. [100] and references therein.
Since the concept of localization is built on the fact that the
wave function of the system is a product state (of independent
particles), it is also highly relevant to calculations featuring
electronic DFT [101]; see, e.g., recent developments in ab
initio molecular dynamics [101–103]. In all these cases, the
original, often called canonical, calculations tend to yield
solutions which are delocalized over the entire molecule: while
such functions can reproduce ionization potentials and spectral
transitions, they fail to describe chemical bonding structure,
which is by nature localized near the atoms [104]. By contrast,
localized wave functions preserve global observables and can
also explain chemical bonding properties.

We choose our unitary transformation T as follows: for any
given pair (μ,ν) of q.p.’s, we pose(

U ′
μ

U ′
ν

)
= T

(
Uμ

Uν

)
,

(
V ′

μ

V ′
ν

)
= T

(
Vμ

Vν

)
, (22)

with the matrix T of the transformation T given by

T =
(

cos θμν sin θμν

− sin θμν cos θμν

)
. (23)

The angle of the rotation can be different for every pair of
q.p.’s. It can be chosen so as to maximize the localization of
each q.p. of the pair. In the following, we drop the indexes μ
and ν for simplicity, θ ≡ θμν . Additional details and discussion
can be found in Ref. [37,105].

It is immediate to see that the full density matrix of the
compound nucleus ρ is invariant under such a transformation.
The occupation of any q.p. μ, however, becomes

N ′
μ =

∑
ij

[cos2 θV ∗
iμVjμ + sin2 θV ∗

iνVjν

+ sin θ cos θ (V ∗
iμVjν + V ∗

iνVjμ)]. (24)

We write

N ′
μ = cos2 θNμ + sin2 θNν + sin θ cos θ ωμν(−∞), (25)

with

ωμν(z) =
∑
ij

(V ∗
iμVjν + V ∗

iνVjμ)dij (z). (26)

We note that ωμν(z) = ωνμ(z), and ωμν(−∞) = ∑
i(V

∗
iμViν +

V ∗
iνViμ). For the q.p. ν, the minus sign in front of the sine in

the rotation matrix leads to

N ′
ν = cos2 θNν + sin2 θNμ − sin θ cos θ ωνμ(−∞). (27)

By extension, we find that the occupations of q.p. μ in each
of the fragment then reads

N ′
1,μ = cos2 θN1,μ + sin2 θN1,ν

+ sin θ cos θ [ωμν(−∞) − ωμν(zN )],

N ′
2,μ = cos2 θN2,μ + sin2 θN2,ν + sin θ cos θ ωμν(zN ),

(28)

while for q.p. ν they are

N ′
1,ν = cos2 θN1,ν + sin2 θN1,μ

− sin θ cos θ [ωνμ(−∞) − ωνμ(zN )],

N ′
2,ν = cos2 θN2,ν + sin2 θN2,μ − sin θ cos θ ωνμ(zN ),

(29)

In practice, one determines the optimal angle θ for each pair
by maximizing the quantity �μ + �ν for the pair (μ,ν).

E. Fragment interaction energy and kinetic energy

We apply the topological method described in Sec. IV B
and the quantum localization technique presented in Sec. IV D
to the case of 240Pu. The JCN analysis has identified an interval
Iq for the scission configuration,with qN � 0.2 the most likely
candidates for the actual scission point. For each value of qN ∈
Iq , we then search for the representation of the generalized
density yielding the maximum localization of the fragments
by considering all rotations of pairs of q.p.’s according to
Eq. (23). In practice, not all pairs of q.p.’s need to be rotated:
q.p.’s corresponding to deeply bound states are pretty well
localized; q.p.’s with a small occupation contribute little to
the interaction energy, even if they are very delocalized.
We can thus limit the computational burden by applying the
localization only on a subset of q.p.’s. We chose the following
empirical criteria: (i) the occupation of each q.p. μ is at least
Nμ > 0.005, (ii) the localization indicator �μ is � < 0.75, and
(iii) the q.p. energies of the pair are taken in a 2.0 MeV energy
window, |Eμ − Eν | � 2 MeV. In addition, we impose both
q.p.’s of a given pair to be of the same nature, i.e., either
particle type or hole type. We discuss in the appendices how
results change with respect to the choice of these parameters.

Figure 15 shows the effect of the localization on the
total isoscalar density for the SkM* functional at the point
qN = 0.4. Superimposed on the total density are the fragment
isoscalar densities given by Eq. (13). The plain lines corre-
spond to the densities before localization, the dashed lines after
the localization procedure has been applied. In this example,
the localization decreases by about an order of magnitude the
tails of the densities, which will have a sizable impact on the
interaction energy. Note that, as expected, the total density is
invariant under the unitary transformation (23).

Figure 16 shows the nuclear interaction energy between the
fragments for the three functionals considered in this work as
a function of the number of particles in the neck. The nuclear
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FIG. 16. (Color online) Skyrme interaction energy between the
fission fragments in 240Pu as a function of the number of particles in
the neck for the SkM*, UNEDF0, and UNEDF1 functionals. Plain
curves correspond to the calculation before the localization is applied,
dashed curves to after it has been applied.

interaction energy was computed from Eq. (19), with the
sets (1) and (2) of q.p.’s determined before/after localization.
We notice the dramatic effect of the localization, especially
for larger values of qN ; it is also worth mentioning that the
localization tends to average out the fluctuations of interaction
energy across the range of collective variables. While there
are small differences between the Skyrme parametrizations,
we observe that both the overall scale and the trend of the
interaction energy as a function of qN are similar. The Skyrme
interaction energy is also very similar to results obtained with
the Gogny force [37].

In the DFT framework, the total kinetic energy (TKE) of
the fully accelerated fragments is the sum of the Coulomb
energy (direct and exchange), the nuclear interaction energy,
the fragment pre-scission energy, and the dissipation energy:

T KE = E
(dir)
Cou + E

(exc)
Cou + Enuc + Epre + Edis. (30)

In Eq. (30), the leading term is the the direct part of the
Coulomb energy. Figure 17 shows how E

(dir)
Cou changes as a

function of qN . Note that we computed this quantity according
to Eq. (16), i.e., fully taking into account the deformation of
the fragments. At the most likely scission point, qN = 0.2 (see
Sec. IV B), the direct Coulomb term is approximately E

(dir)
Cou =

185 MeV and is relatively independent of the functional. The
exchange contribution E

(exc)
Cou is very small: it ranges from

−4 MeV for large qN values to less than 200 keV around qN =
0.2; it can be neglected at scission. The nuclear interaction part
depends to a large extent on how well the fragments can be
localized. In our calculations at qN = 0.2, we find Enuc ≈
−22.9 MeV for SkM*, Enuc ≈ −18.9 MeV for UNEDF0, and
Enuc ≈ −0.7 MeV for UNEDF1. However, we also observe
large fluctuations as a function of qN and the parameters of the
localization procedure, as seen in Figs. 16–18. Conservatively,
one may estimate that Enuc ranges between −25 and 0 MeV on
average, depending on the functional (both particle-hole and

FIG. 17. (Color online) Direct Coulomb interaction energy be-
tween the fission fragments in 240Pu as a function of the number
of particles in the neck for the SkM*, UNEDF0, and UNEDF1
functionals. Plain curves correspond to the calculation before the
localization is applied, dashed curves after it has been applied.

particle-particle channels), and the quality of the localization.
Finally, the pre-scission energy is also strongly dependent on
the deformation and pairing properties of the functional, as
discussed in Sec. III C; for our small subset of three EDFs, it
ranges between 20 and 30 MeV on average.

Because of internal dissipation, not all the pre-scission
energy is available to the fragments in the form of kinetic
energy. There is a loss equivalent to the amount of dissipated
energy Edis. Estimating this quantity requires to consider the
various forms of dissipation. Collective dissipation represents
the loss of energy due to collective excitations “transverse”
to the fission path; it was estimated to be of the order of
2.1 MeV for Q40 [40] and about 3.1 MeV for Q30 [26].
Additional dissipation in the Q22 collective variable could
also be possible, based on the remarks of Sec. III D 1. Intrinsic
dissipation could be represented by multi-q.p. excitations and
may be estimated in extensions of the GCM framework [106].
It does not seem unreasonable to estimate that between 5 and
15 MeV of energy could be dissipated when combining both
collective and intrinsic sources of dissipation.

Based on this estimated budget of the various terms in
Eq. (30), we can estimate the TKE for the most probable
fission in 240Pu to be TKE ≈ 185+25

−15 MeV. This is comparable
with what Younes and Gogny found using the Gogny force
[37]. Although in decent agreement with the experimental
TKE, which is of the order of 185 MeV for the most
likely fission [107–109], we should point out that it is a
very conservative and rough estimate based on a sample
of only three Skyrme functionals (including one, UNEDF0,
with notoriously poor deformation properties [47]). Better
constraining deformation and pairing properties of functionals
should reduce the theoretical uncertainty on the amount of pre-
scission energy; implementation of the localization method on
a larger scale, i.e., by considering more pairs of q.p.’s, should
reduce the fluctuations of the remaining nuclear interaction
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energy. Obtaining reliable estimates of dissipation energy is
certainly an open question at this time.

We conclude this section by mentioning that at the point of
discontinuity in Fig. 4, the value of Q̂N is qN = 4.55, and the
value of the Coulomb repulsion energy is 274 MeV; this clearly
unphysical value justifies a posteriori the need to include the
Q̂N degree of freedom (or any collective variable that can
fulfill its role).

V. CONCLUSIONS

The description of induced nuclear fission in a microscopic
framework based exclusively on realistic nuclear forces and
advanced many-body methods remains a formidable endeavor.
In this work, we have reported some progress in understanding
several of the key ingredients in a theory of fission based
on the nuclear density functional theory with Skyrme energy
densities. We have focused on the benchmark case of the
neutron-induced fission of 239Pu:

(i) We have provided a nearly complete mapping of the
deformation energy of the compound nucleus 240Pu
in a five-dimensional collective space including all
quadrupole degrees of freedom, mass asymmetry,
hexadecapole moments, and neck size. While these
degrees of freedom are most likely sufficient to cover
the physics of spontaneous fission, where a detailed
knowledge of scission is not really necessary, we
point out that the potential energy surface becomes
increasingly complex near scission. Further studies of
induced fission will most likely require choosing better
sets of collective variables, for example quantities
related to each fragment [25,85].

(ii) We have studied the role of triaxiality in the fission
process. In addition to the well-known effect of
lowering the first fission barrier heights of actinides,
we have shown that this collective variable also plays
a role at scission. We posit that this extra degree of
freedom could contribute to the decrease of the pre-
scission energy by dissipation in transverse collective
modes, and could result in a broadening of the fission
fragment mass yields.

(iii) We have emphasized the importance of both the form
and the parametrization of the energy functional. Dif-
ferent parametrizations of the same Skyrme functional
can lead to huge fluctuations in deformation energies
[59], which are further magnified near scission; pair-
ing correlations also play a crucial role in determining
the region of scission.

(iv) We have presented a general strategy to identify fission
fragments in as automatic a way as possible. This
two-step approach first takes advantage of the joint
contour net topological method to define the scis-
sion configurations, and then localizes the fragment
following the general idea of Ref. [37]. We believe
this approach reduces the uncertainty in determining
the point where fission fragment properties must be
compared with experimental data. The application of
this technique to the calculation of fission fragment

TKE in 239Pu(n,f ) for the most probable fission shows
a decent reproduction of data.

Both the methodology and the results reported in this work
pertain to the static aspects of low-energy fission only. As
the excitation energy of the compound nucleus increases, one
should certainly question the capability of current functionals
to capture the physics of fission at the HFB level. Potential
energy surfaces in general, and fission barriers in particular,
may be quite different. One may also wonder if the two-step
process introduced here to define a scission point remains
applicable. In a future paper, we will address these aspects by
using a finite-temperature formalism.
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APPENDIX A: CHARACTERISTICS OF THE
LOCALIZATION METHOD

A unitary transformation T of the q.p.’s that do not mix an-
nihilation and creation operators transforms the Bobgoliubov
matrix W into W ′ as

W ′ = W
(

T T 0
0 T †

)
, (A1)

with T a unitary matrix, T T † = T †T = 1. Such a unitary
transformation preserves the HFB equations even though the
HFB matrix is not diagonal any longer [99]. This is a simple
consequence of the Bloch-Messiah theorem [110]. Indeed, the
HFB matrix in the transformed q.p. basis reads

H′ =
(

T ∗ 0
0 T

)(
E 0
0 −E

) (
T T 0
0 T †

)
(A2)
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FIG. 18. (Color online) Skyrme interaction energy between fission fragments in 240Pu as a function of the number of particles in the neck
for the SkM* functional. The parameters of reference for the localization procedure were chosen as �E = 2 MeV, �max = 0.75, Nmax = 0.005,
and five iterations. Top left: dependence on �E, all other parameters being fixed to their reference value; top right: dependence on �max; bottom
left: dependence on the number of iterations; bottom right: dependence on Nmax. See text for further details.

that is,

H′ =
(

T ∗ET T 0
0 −T ET †

)
. (A3)

However, it is straightforward to show that the generalized
density R remains invariant under the transformation T , and
that the HFB equations are preserved,

[H′,R′] = 0. (A4)

In the particular case where the unitary transformation is
defined by Eq.(23), a simple calculation shows that the q.p.
energies of the pair (μ,ν) transform as

(
Eμ 0
0 Eν

)
→

(
Eμ 0
0 Eν

)
− �E sin θ

(
sin θ cos θ
cos θ − sin θ

)
,

(A5)
with �E = Eμ − Eν .

APPENDIX B: NUMERICAL IMPLEMENTATION OF THE
LOCALIZATION METHOD

As mentioned in Sec. IV E, the practical implementation of
the localization procedure depends on a number of parameters.
In principle, one could consider all possible pairs of q.p.’s
and rotate the particular arrangement of all those pairs that
minimizes the interaction energy. The computational cost,
however, would be formidable. We thus limit the candidates
to localization by setting various criteria. Figure 18 shows the
dependence of the nuclear interaction energy as a function of
these parameters.

In the reference setting that we have adopted, we explore
all possible pairs of (μ,ν) such that |�E| = |Eμ − Eν | � 2
MeV, the localization of both q.p.’s is �μ,�ν � 0.75 and their
occupation is Nμ,Nν � 0.005. In addition, we perform five
successive iterations of the localization. Note that, after the
first iteration, the HFB matrix is not diagonal anymore, hence
our first criterion cannot be based on the eigenvalues Eμ, Eν

anymore, but is based on the diagonal elements Eμμ and Eνν

of the rotated HFB matrix.
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