

This is a repository copy of *The development and applications of terahertz quantum cascade lasers*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/81580/</u>

Version: Accepted Version

Proceedings Paper:

Linfield, E, Li, L, Dean, P et al. (1 more author) (2014) The development and applications of terahertz quantum cascade lasers. In: Optics InfoBase Conference Papers. CLEO: Science and Innovations, 08-13 Jun 2014, San Jose, California United States. Optical Society of American (OSA). ISBN 9781557529992

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

The Development and Applications of Terahertz Quantum Cascade Lasers

E H Linfield, L H Li, P Dean, and A G Davies

School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK Author email address: e.h.linfield@leeds.ac.uk

Abstract: This paper will review the development of terahertz frequency quantum cascade lasers, including the achievement of >1W output powers. It will also discuss self-mixing imaging, where the laser cavity is used as a coherent detector. **OCIS codes:** 250.0250 Optoelectronics; 110.0110 Imaging systems

1. Introduction

Over recent years, researchers have made rapid progress in developing systems to exploit the so-called 'Terahertz Gap', with potential application areas including non-destructive testing of pharmaceuticals, and the detection of drugs-of-abuse and explosives [1]. Much of this research has made use of broadband terahertz (THz) frequency time-domain spectroscopy systems based on pulsed, femtosecond, Ti:sapphire laser technology.

Quantum cascade lasers (QCLs) offer the prospect of a compact, high power, spectrally-pure source for the THz range, opening up new application areas for THz technology. In this paper we will review how these sophisticated opto-electronic devices have recently been demonstrated to be capable of emitting output powers > 1W [2].

Developments in QCL technology have also allowed novel THz systems to be designed and constructed. We will outline the development of self-mixing imaging systems, which use the QCL both as the source and as a coherent detector [3], and have allowed reflection imaging at distances exceeding 10 m (>20 m round-trip) [4]. Furthermore, we will discuss the demonstration of swept-frequency interferometry [5], and coherent three-dimensional imaging systems [6] using the self-mixing approach.

2. High power THz QCLs

Our development of high power THz QCLs is based on the active region reported in [7]. The GaAs and AlAs growth rates were calibrated precisely *in situ* using a kSA BandiT spectrometer, with self-compensation of the growth rate being used to ensure that the structure thicknesses were controlled to within 0.5% of their design thicknesses throughout the 10 μ m active region [3]. Typical results, showing emission from a single facet of a THz QCL operated in pulsed mode are shown in Fig. 1, for a pulse repetition rate of 10 kHz and a duty cycle of 2%. Output powers exceeding 1 W were achieved at a 10 K heat sink temperature, with >400 μ W still achieved at 77 K.

Fig. 1 Output power as a function of current from a rear facet-coated QCL of dimensions 4.2 mm x 425 µm [2]. The laser was measured in pulsed mode with a 10 kHz repetition rate, and a 2 % duty cycle (Inset: Typical lasing spectra for different device current densities at 10 K).

3. Current-modulated self-mixing imaging

Figure 2 shows apparatus used to demonstrate a current-modulated self-mixing (SM) imaging scheme. THz radiation from a QCL is reflected from a target back into the laser cavity, and the QCL terminal voltage is monitored as a frequency-chirp is applied to the laser via a modulation of the driving current.

Fig. 2 Schematic diagram (from [5]) of the experimental apparatus used for current-modulated SM imaging: (a) Current stimulus signal; (b) Corresponding voltage signal measured across the laser terminals; (c) Voltage variations in the QCL acquired using a PC-based data acquisition card (PC DAQ). Parabolic mirrors focus the beam onto a remote target, mounted on a computer-controlled translation stage.

Fig. 3(a) shows three exemplar target materials (polyoxymethylene (POM), polyvinyl chloride (PVC), and nylon 6 (PA6)). Through fitting the detected SM voltage signal in response to the modulated current, both amplitude- and phase-like images can be extracted (Figs. 3(b) and 3(c), respectively). Good agreement between the resulting refractive indices and absorption coefficients are obtained for each material [5].

Fig. 3 (a) Photograph of the front surfaces of the target. The three circular regions are materials embedded in an aluminium holder: Yellow – PA6; Green – PVC: Red – POM. (b) Image based on the amplitude of the SM signal. (c) Image based on the phase of the SM signal [5].

3. Conclusions

We have presented results from THz QCLs emitting >1 W peak power, and also discussed how THz QCLs can be used in a current-modulated SM imaging system, leading to the extraction of amplitude and phase data from a target.

4. References

[1] A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. Cunningham, "Terahertz spectroscopy of explosives and drugs," Materials Today 11, 18–26 (2008).

[2] L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with >1 W output powers," Electronics Letters 50, 309 (2014).

[3] P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić,
E. H. Linfield, and A. G. Davies, "Terahertz imaging through self-mixing in a quantum cascade laser," Optics Letters 36, 2587–2589 (2011).

[4] A. Valavanis, P. Dean, Y. L. Lim, R. Alhathlool, M. Nikolić, R. Kliese, S. P. Khanna, D. Indjin, S. J. Wilson, A. D. Rakić, E. H. Linfield, and A. G Davies, "Self-Mixing Interferometry With Terahertz Quantum Cascade Lasers," IEEE Sensors Journal, 13, 37-43 (2012).

[5] A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, "Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis," *Optics Express* 21, 22194–22205 (2013).

[6] P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Leng Lim, R. Alhathlool, S. Chowdhury, T. Taimre, L. H. Li, D. Indjin, S. J. Wilson, A. D. Rakić, E. H. Linfield, and A. G. Davies, "Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser," Applied Physics Letters **103**, 181112 (2013).

[7] M. I. Amanti, G. Scalari, R. Terazzi. M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, "Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage," New Journal of Physics **11**, 125022 (2011).