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Abstract. We introduce a pricing mechanism for Grid computing, with

the aim of showing how a broker can accept the most appropriate jobs

to be computed on time and on budget. We analyse the mechanism’s

performance via discrete event simulation, and illustrate its viability, the

benefits of a new admission policy and to how slack relates to machine

heterogeneity.
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1 Introduction

Grids [8, 7] enable the execution of large and complex programs in a distributed
fashion. It is however, common that resources are provisioned in a best effort
approach only, with no guarantees placed upon service quality. It has also been
known for some time that guaranteed provision of reliable, transparent and qual-
ity of service (QoS) oriented resources is an important step for successful com-
mercial use of Grid systems [2, 24, 15, 20].

The idea of introducing QoS to aid the uptake of Grids is not new and there
is a significant trend towards the provision of QoS. This is because of a widely
held belief that QoS is the major issue that keeps Grids from substantial uptake
outside academia [15, 16, 22, 9, 21].

In real world commercial and time-critical scientific settings guarantee that
computation is going to be completed on time are required. Best-effort service
limits the economic importance of Grids because users will be reluctant to pay or
contribute resources if the service they receive is not going to return computed
results at the time they are required [16].

We present two motivational scenarios that illustrate this need for time guar-
antees. The first is a commercial scenario where computation is required to
generate results which are relied upon as part of the business process, such as
animation, where it is useful to have all frames computed overnight before the
animation team arrive, where partial completion of the work delays or stops the
team starting the next days work [1]. The second scenario is in an academic envi-
ronment where it is common before conferences for Grids to become overloaded
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[10]. It therefore makes sense to prioritise particular compute jobs based upon
when the results are required. In order that prioritisation is provided correctly
an economic approach is used to ensure users truthfully indicate their priorities
[4, 17].

To provide QoS the nature of the work that is being performed upon Grids
has to be understood. A substantial part of Grid workloads are formed from Bag
of Task/Parameter sweep based applications [13, 10]. These are formed by sets
of tasks that execute independently of one another without communication and
are typically considered to be ”embarrassingly parallel” [19]. Parameter sweeps
are formed by the same application been executed, while having either different
parameters or datasets to process.

In [15] it is made clear that uncharacterised, unguaranteed resources have no
value and that if poor QoS is provided that can be precisely characterized then
the value of the service may be defined. We therefore introduce an economic
model for brokering that ensures jobs/a bag of tasks only hold value to the
broker if they are completed in a timely fashion. Discrete event simulation is
performed to ensure we can characterise how the pricing model behaves, thus
ensuring that time and budget guarantees made by the broker can be achieved.

This paper’s main contributions are:

– A viable pricing mechanism that binds time and economic requirements of
a job together.

– Recommendations upon how to use slack, in relation to the reference proces-
sors speed to mitigate machine heterogeneity within the proposed economic
model.

– a new job admission control mechanism, that deals with due date and dead-
line based job requirements.

The remaining structure of the paper is as follows: The next section discusses
the pricing mechanism that has been formulated. The third section covers exper-
imental setup. The fourth discusses the simulation results. The fifth discusses the
related work and finally the last section discusses future work and conclusions.

2 The Pricing Mechanism

In this section we introduce the pricing mechanism that is intended to be used
in a broker aiming for temporal and budgetary guarantees. We first describe the
sequence of events that occur in this brokering service (see Figure 1).

1. Job requirements are sent to the broker. This includes the job’s resource

requirements, a budget that the user has assigned for the completion of a
job, a notion of priority that the broker will use to define its markup for the
service and finally its temporal requirements. These will be shown as a due

date by which the job should be completed by and a deadline by when it
must be completed.
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Guaranteed Time Service
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Fig. 1: The pricing mechanism

2. The broker then contacts the various resource providers that are available
to the user. It requests a cost and time estimate for completing the work.

3. The resource providers perform initial scheduling of the tasks within a job
so they can derive an estimate for completion time and price. This is based
upon their local resource markets.

4. The resource providers then present offers to complete the work to the broker.

5. The broker from the offers that have been returned, ranks them and filters
out poor offers i.e. sort by earliest and filter out unprofitable offers.

6. The broker then asks the user if it acceptable to proceed with the job at a
given price.

7. If the offer made to the user is acceptable the broker then submits the bag
of tasks that make up the job to the winning provider.

It is eventually expected that negotiations will occur between the end user
and the broker, given the current market conditions and properties of the job to
be submitted.

The resource providers generate offers to complete jobs from resource mar-
kets. These offers are evaluated by the broker which generates a service market,
this market structure was previously seen in SORMA [21]. In this paper we
focus upon the broker’s service market and the evaluation of offers made by
the resource providers. After the broker has received the offers, it is required to
evaluate them, which is illustrated in Figure 2.

From the resource providers a cost for running the job upon their resources
is provided. This is illustrated as a single line that is used as a reference point
in the service market. The broker needs to establish a markup which ensures
the broker has incentive for participating in the market (individual rationality)
while also lending itself towards budget balance.

Individual rationality requires the utility caused by participation in the Grid
market has to increase and budget balance means that participants have to
ensure that the income and expenditure balance as long term deficits must be
subsidised making them unfeasible [25, 26].
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Fig. 2: The fiscal and temporal nature of an offer

The broker has a service charge that it will get paid by a user, which is
denoted by the z-shaped line. This intersects the resource cost which ensures the
broker will aim to complete the work on time.

In the initial stage before the due date the broker will make a profit. This
will be equal to the markup Öresource cost. The next point of interest is that
of the deadline, at this point a cap upon the penalty fee is set. This lends itself
to budget balance as it limits the maximum possible loss. The rate at which the
service charge is reduced is defined to be a linear decent from the due date and
the maximum/original value to the deadline and the cap upon the penalty fee.

The penalty fee will be set to zero as this generates further useful properties.
If it is set to zero, the point where the broker breaks even is independent of
the resource cost and is a fixed percent of the due date to deadline period. The
breakeven point is located at: markup

100+markup
Ö100 percentage through the due date

to deadline period i.e. if the markup was 50% then 50

100+50
Ö100 = 33%. If this is

not the case then the profit at this same position, where any given resource cost
will have the same profit is further defined as markup

100+markup
Öcap-on-penalty-fee.

The markup in this pricing mechanism will also be used to differentiate be-
tween jobs in terms of priority. The higher the priority/markup the faster the
budget is consumed upon a given resource, but the more likely the broker is to
accept the job due to higher profits. Higher markups also lead to a greater time
before the breakeven point when the due date and deadline are not equal i.e.
when not using a hard deadline.

In Figure 2a the final two concepts indicated are the budget resilience and the
potential loss for accepting work given no rescheduling. These are both numeric
figures relating to risk. The budget resilience indicates the gap between the
budget and the resource cost. If this is small the broker is more likely to make
a loss or use money it would have reserved for profit. The potential loss for



A Grid Economic Broker for Time and Budget Guarantees 5

accepting the work is the economic risk the broker accepts when scheduling
work and asserting guarantees to the end user about its completion.

In Figure 2b there are two important temporal factors marked. The first is
the difference between the estimated completion time and the breakeven point.
This takes into account the markup assigned to a job. This is because the higher
the markup the larger this gap becomes, which leads to the broker having a
greater preference for accepting higher markup jobs. Hence this value relates to
both temporal and budgetary risk factors i.e. if this gap is small there is little
spare time before a loss is made. The second factor is the slack, which is the
difference between the due date and the estimate of completion time. This is a
purely temporal interpretation of the spare time available to complete the job.

Pricing mechanisms also need admission policies to ensure they are not
swamped. We propose the following admission policy:

FOR EACH (Offer) {
Sort the offers based upon the ranking mechanism chosen

IF Completion Time <= Due Date AND

Service Price <= Budget {
Accept Offer;

BREAK;

} ELSE {
Take the last n accepted offers and find the average rate

at which profit accumulates and establish the going rate.

IF Current offer profit rate >=
(going rate − acceptable deviation below going rate) {

Accept Offer;

BREAK;

}
}

If the due date or budget does not effect the service price then the first most
profitable offer is accepted as it must be close to the best possible to accept. If
the service price has been affected by the due date or the jobs budget then the
broker must determine how much this has affected the job. The offer is therefore
only accepted if it is within a lower bound/threshold of the going rate. This
ensures that if a job was completed just after the due date that it still may be
acceptable if enough profit is gained. This ensures each job that has its service
price affected by the constraints is evaluated with respect to the competition
for resources within the job’s given lifespan i.e. had the job been competitive
it would be completed before the due date with money to spare. If it is not
competitive then there may still be room to accept the job so long as it does not
affect the next job’s chance of returning full profit to the broker.
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3 Experimental Setup

The simulation was performed in a bespoke simulator that was written in Java
and tested using static code analysis1 and JUnit testing. The simulator works
in the following fashion. At the start of the simulation a bucket of jobs is con-
structed. These are then released at a set rate determined by the simulator’s
core. The broker submits jobs to the local schedulers/providers, which in turn
calculate the machine to task allocations that they will make in their offer. The
broker then receives offers from the providers. These offers are then ranked and
filtered. If a winning offer exists it is accepted and the work is scheduled. Once
the initial bucket is empty the simulation is then allowed to finish the remaining
scheduled work after which the simulation ends.

The simulator used is highly configurable, the parameters that remain fixed
throughout the experiment are hence going to be discussed in the remainder of
this section. The duration of the experimentation was not capped but 1,000 jobs
were to be processed.

A simple local scheduler was used for the experimentation, it was setup to
assign work based upon the machines workload, it took the least loaded first and
assigned tasks in order of workload (largest task first).

8 providers were used, each with 144 machines. A range of both machine
speed and cost values was chosen. The machine cost was set such that the faster
the machine the more it costs, though there will be no set distribution shape for
this and values will be set by hand.

The task workload will be placed into three categories: small, medium and
large. The categories will denote the average task length. They will be set at
the equivalent of 2hrs, 4hrs and 8hrs worth of work on the average machine of a
provider. The average speed of the machines is 16,333 units of work per second.
Thus the amount of work for a medium sized task is 240,000,000 operations.
Similarly this has been done for the small (120,000,000) and large (480,000,000)
categories. The workload for a task will have a normal distribution with a mean of
2.73 and a standard deviation of 6.1 following the average task runtime indicated
in [13]. The durations were chosen because [11] gives the average time to run
a task in a group submission/job as 14,181s and [12, 10] indicates that most
runtimes are shown to between a fraction of a minute and 1,000 min (1,000min
= 16.6hrs). The runtime variability between tasks belonging to the same BoT
[13] is indicated to follow a Weibull distribution with a shape of 2.05 and a scale
parameter of 12.25 hence this variability will also be accounted for.

The task per job will be separated into three categories: small, medium and
large. A Weibull distribution will be chosen with a shape parameter set to 1.76
as per [13], the scale parameter will be adjusted in a fashion that creates the
appropriate range desired. Iosup et al. [13] give an average BoT size in their
traces as been between 5 and 50, while the maximum BoT size can be on the
order of thousands. The authors in [10] indicate that the average number of
tasks in a bag in various different Grid traces investigated ranges between 2 and

1 http://findbugs.sourceforge.net/
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Bag Size Min and Max Values Mean

Small 2-10 4.99

Medium 11-39 21.49

Large 40-70 51.23

Table 1: The minimum and maximum tasks per job

70 and that most averages for the traces examined fall between 5 and 20. The
ranges for the amount of tasks in a bag are therefore indicated in table 1.

The inter-arrival time (i.e. the time between arrivals of jobs) will follow the
Weibull distribution and will have a shape parameter of 4.25 as per [13]. The
inter-arrival time for job submissions is indicated to be between 1 and 1,000s in
[10, 12], with most been below 100s.

A selection of inter-arrival times have therefore chosen to reflect this prior
work. Though a wide spread of inter-arrival times has been tested a more select
range which provides high levels of competition for resources will be discussed
in this paper. Inter-arrival rates will be below 334.14s with an inter-arrival time
of 210.14s where it is not otherwise indicated.

Each simulation will be run 10 times and where shown a confidence interval
of 95.4% will be indicated.

4 Evaluation

In this section we discuss the results of our experimentation. We initially focus
upon the effects of a range of parameters upon jobs accepted and its relationship
to slack. We then focus upon results highlighting the behaviour of the admission
policy introduced in section 2. In examining the profit made over the life of the
simulation we can then assess the long term viability of the broker while ensuring
as many users as possible have their requirements satisfied.

In Figure 3 the due date and deadline are set to be the same time. The
inter-arrival time is set at 210.14s where is not subject to change as part of
the experiment. This arrival rate has been determined to give a high level of
competition between tasks. The markup is fixed at 10% and a medium workload
per task and medium count of tasks per job were chosen. The broker’s selection
policy sorts the offers by earliest first then accepts the topmost offer.

In Figure 3a two markups are shown, it can be seen that there is little dis-
tinguishing difference between them. The profit made which is not shown here
differs in that the higher markup when compared with the lower markup makes
more profit. The lack of difference between markups is placed down to the per-
missive admission policy, used by this first experiment.

A clear transition between 250% and 300% is observed. This is considered to
be an aspect of competition. Firstly this experiment is conducted with due date
and deadline been equal. It can therefore be said that at 100% (i.e. just in time
without any slack provided) there would have to be no start delay present, i.e.
no effective competition is present. Given higher levels of slack we can consider
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that some delay can be tolerated and that this delay will be directly related to
other jobs in the system and hence the competition between them.

The arrival rate influences the amount of jobs accepted, but as shown in Fig-
ure 3b this only occurs after the transition point. It is noted that the 86.14 inter-
arrival time trace is levelling out and is tending towards a maximum permissible
amount of acceptable jobs, while 210.14 and 243.7 observe a much more linear
relationship after this transition period. Finally the 334.14 trace has reached the
maximum amount of jobs submitted after this transition. The effects shown here
are because jobs have a fixed time window in which they must be completed,
so high arrival rates ensure these windows overlap more and once the slack is
increased more freedom of job placement permitted and fewer jobs have to be
rejected.

We now show that the position of the transition point is not related to the
task count (Figure 3c) or task size (Figure 3d).

In Figure 3c it is observed that before 2.5x slack the amount of tasks in a job
distinguishes the traces, which is not seen in the other figures. The differences in
gradients seen after the 3.0x point is also of interest as jobs with a lower amount
of tasks per job are accepted much more readily, though this also relates to their
simply been less work. Argument can still be made that if the slack is small then
it helps if the job contains fewer tasks, especially before the transition point. This
distinction occurs as there is a finite amount of machines over the average speed
of the provider. The average speed was chosen as the mechanism for estimating
completion time. Hence when more tasks are present more competition exists
between the tasks, as there is a finite set of machines that are fast enough to
complete the work in time, especially with low levels of slack.

Figure 3d like Figure 3c changes the amount of workload per job; it must
therefore be asked why Figure 3d before the transition does not distinguish
between the low, medium and high traces. The reason for this is placed down to
the fact the duration a job relates to the amount of work needing completing.
In Figure 3d this therefore makes no difference as the size of the slack is related
to the estimate of completion time and hence task size.

The start delay relative to the task length during the experimentation has
been very limited. The initial slack therefore often limits the issues that compe-
tition and start delay causes. In Figure 3e we see an alternative use for slack and
the reason for the sudden transition. Figure 3e shows that the reference proces-
sor for estimating the duration is responsible. Three separate reference speeds
were chosen, namely the fastest possible machine 25,000, the average 16,333 and
a slow machine 14,000. The choice of reference machine ensures tasks cannot
be placed on machines slower than the reference until the slack is sufficient to
compensate for the extra time taken. If the slack is always chosen to compensate
for the heterogeneity in machines then job acceptance rates will be high given
the temporal constraints. If the end user requests a small amount of slack then
it can be assumed that they will require machines that are at least as fast as the
reference machine.
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Calculation Value

Average/Slowest 2.72

Fastest/Slowest 4.17

Slow/Slowest 2.33

Table 2: The relative speed difference between the reference machine and the
slowest machine

The fastest/average/slowest machines per provider where 25,000/16,333 and
6,000 ops/sec respectively. In table 2 the reference machine’s speed is compared
to the slowest machine and in doing so indicates the location on the x axis of
the transition point.

In the experimentation shown by Figure 4 the inter-arrival time is set at
210.14s. The aim of this experimentation it to show the effects of increasing the
gap between the due date and deadline. The offers from providers are ordered
by earliest completion first. In Figure 4a and 4b the results are shown for several
markups. The filter/admission policy being used takes the first offer where a
profit is made, which is similar to related work such as [23], given that faster
processors in our experimentation cost more. In Figure 4c and 4d the proposed
admission policy is used instead. The results shown are for 50% markup which
highlights the benefits of our admission policy the most. The last 50 accepted
jobs are used to establish the going rate.

In Figure 4a the tendency is to follow a straight line equation, 10% and 50%
have been marked on 4a to highlight this. Confidence intervals on 10, 40 and
50% markup runs have been added though for 20% and 30%’s error bars have
been omitted but are broadly similar.

It can be seen in Figure 4a when the deadline is set to be 5x (500%) that
of the due date, that all jobs with 50% markup are accepted. This illustrates
how higher markup encourages job acceptance and exacerbates the effect of the
increased gap between due date and deadline. This occurs because the breakeven
point is later in the 50% markup than it is with the 10% markup and in general
the 50% markup run is more likely to make a profit on a given job.

The detrimental effects of accepting any profitable offers is shown in Figure
4b. The profit drops as the gap between due date and deadline increases. This is
due to more jobs being accepted (Figure 4a) which makes it more likely that the
next job to arrive will overshoot the due date. The increase in gap size effectively
gives more time for job to complete, which generates an increase in competition
for the finite resources available as more jobs can plausibly complete before the
deadline. It can also be noted that when the gap between due date and deadline
is small the rate at which the service price drops quickly, hence providing the
steepness of the curve.

This downward trend in profit is eventually reversed as the gap increases.
This is due to the broker having more time to complete the work before the
breakeven point as the drop in the service price is slower and is aided by the
acceptance of more jobs.
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In the Figure 4c we can see fewer jobs were accepted when the threshold
below the going rate was less than zero i.e. when all jobs after the due date must
have a higher going rate than the average for the last 50 jobs.

The broker’s profit can be seen to increase in Figure 4d as the difference in
rates is set so that jobs after the completion time have to have a higher rate of
return. There remains some loss relative to not allowing any gap, but this has
largely been mitigated. The due date to deadline period may also be used solely
as a recovery mechanism/a way to deal with completion time uncertainty, at the
expense of never accepting work that is expected to complete between the due
date and deadline.

5 Related Work

A good introduction to pricing may be found in [30, 21]. The SORMA project
introduced two pricing schemes namely k-pricing [26, 3] and the GREEDEX [28]
clearing mechanism, though the most similar pricing mechanisms can be found
in [6, 23, 14, 5, 1] where a service charge that diminishes once a job has passed a
specified time is also used.

In [6, 23, 14, 5] the focus is upon the minimum time for completion/slowdown
and not upon the user preference for a completion time. It seems more suitable
when considering user satisfaction to aim for a due date and hence when the user
wants/needs the results rather than the minimum possible runtime for a given
job. The concept of slowdown is also made unclear by various machine speeds
across the Grid, as it removes the clear reference point by which slowdown may
be judged. This therefore reflects the real world better as it simply stops the
need for reference to a dedicated compute resource and focuses on when the
results are needed.

In [6, 23, 14, 5, 1] a completion time and rate of loss of a jobs economic value
is used. Our approach uses a due date and deadline which is seen as more user
friendly than asking for a rate by which a job loses its economic worth.

In [6] currency is provided to users at periodic intervals into accounts with
a finite limit. This acts as a control mechanism to ensure arbitrarily large bids
cannot be made. [17] describes why hording money introduces predictability and
resource starvation issues, which is reasonable justification for using a control
mechanism that has upper limits on the account size.

Like our approach Aggregate Utility [23] FirstProfit and FirstOpportunity
[23] takes a bound approach to penalty fees. In First Reward and Risk Reward
[14] it is chosen to be only potentially bound and in LibraSLA [5] there is no
bound at all. This unlimited penalty has issues as pricing mechanisms should
have properties such as budget balance and individual rationality which unbound
penalties preclude [25, 26].

The difference between the due date and the runtime of a job gives a notion
of slack, derived from the user’s preference or willingness to accept delays in a
jobs completion time. This concept of slack is first seen in [1], but a rate of decay
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is still considered, rather than seeing the decay rate as a product of a due date
and deadline.

In LibraSLA [5] a deadline based approach is taken, in which deadlines are
classified as either hard or soft. Soft deadlines cause the price of jobs to diminish
at a given rate. Our approach differs in that it lacks the distinction between
deadline types as hard deadlines merely have the due date and deadline been
equal.

In [1] an aggregate utility function is used so the user may specify their
sensitivity to not having all the tasks in a job been completed. This is seen
by the authors to be beneficial in preventing the service provider from cherry
picking only the most profitable jobs.

In [14] the concept of net present value is used so future work is discounted
with the intent of ensuring that long jobs are penalised. They are seen as being
potentially more risky as profit can only be achieved after they complete. The
long duration also ensures that they may potentially block a more profitable job
in the meantime. This therefore allows the scheduler to be configured to accept
only smaller jobs as the returns are likely to be made earlier and the job is
less likely to block further more profitable jobs. This feature is worthy of note
and may be considered in our own model in the future. It is however not clear
how to continually adjust the discount rate to ensure jobs that will not have an
detrimental effect upon the next job are accepted, especially in low competition
based circumstances.

The admission control was shown during both our own and others experi-
mentation to be key [14, 23] to a good brokering system. In early work such as
First Price [6] no mention is made. In First Reward and Risk Reward [14] the
time before the perceived utility drops below zero is used. This utility derives
from using a discount rate that depreciates the perceived value of a job the
based on the time it takes to complete. The assumption is that short jobs are
less likely to block future more profitable jobs. Our mechanism avoids this and
only penalises jobs that do not reach full profit and are likely to delay the next
job. In [23] profit is used as admission criteria for FirstProfit, FirstOpportunity,
LJF (longest job first) and SJF (shortest job first). For FirstOpportunityRate
The ProfitRate (profit divided by schedule duration) is used. In [1] profit rate
is again used though it is complicated by the aggregate utility function which
allows unprofitable tasks should it ensure the contract mechanism in place for
the amount of tasks to complete provides an appreciable gain. Finally LibraSLA
[5] uses a ”return value” which is derived from the job’s value/runtime/deadline.
This return value is then summed across all nodes and tasks. The new candidate
schedule is then compared with the previous schedule.

6 Conclusion and Future Work

We have illustrated a pricing model that is aimed at ensuring the broker that
is been developed as part of our work will perform work on time and on bud-
get[29]. It ensures the broker aims towards a due date and deadline provided by
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the end user, given their cost constraints/priority for their job. We have made
recommendations upon how slack can be used in relationship to machine het-
erogeneity and a reference machine which is used for estimating job completion
times. We have also shown a admission policy that removes the significant losses
made by accepting too many jobs. This focused upon the due date to deadline
period and ensured the pricing mechanism’s viability by making sure the broker
in accepting additional work still maintains its reason for participating in the
Grid i.e incentive compatibility.

In the future we plan to consider dynamic pricing at the resource provider
level. This ensures resource providers are not going to either undervalue or over-
value resources, which in turn can lead to unrealised profit or utility [17, 21].
The models in [23, 14, 5, 1] all make little attempt to cope with data transfer
requirements, which has been shown by [27, 18] to be a substantial problem for
the scalability of algorithms. We intend to add pricing based on data transfer
to our model and to account for transfer times and costs. We also intend to
investigate the effects of underestimates of task lengths and the effect of events
and slowdowns that require rescheduling.
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Fig. 3: The effects of slack on job acceptance
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Fig. 4: The effects of intelligent filtering


