
This is a repository copy of Asymmetric quantum hypothesis testing with Gaussian states.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/81539/

Version: Published Version

Article:

Spedalieri, Gaetana and Braunstein, Samuel Leon orcid.org/0000-0003-4790-136X (2014) 
Asymmetric quantum hypothesis testing with Gaussian states. Physical Review A. 052307.
ISSN 1094-1622 

https://doi.org/10.1103/PhysRevA.90.052307

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



PHYSICAL REVIEW A 90, 052307 (2014)
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We consider the asymmetric formulation of quantum hypothesis testing, where two quantum hypotheses have

different associated costs. In this problem, the aim is to minimize the probability of false negatives and the

optimal performance is provided by the quantum Hoeffding bound. After a brief review of these notions, we

show how this bound can be simplified for pure states. We then provide a general recipe for its computation in

the case of multimode Gaussian states, also showing its connection with other easier-to-compute lower bounds.

In particular, we provide analytical formulas and numerical results for important classes of one- and two-mode

Gaussian states.
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I. INTRODUCTION

Quantum hypothesis testing (QHT) is a fundamental topic

in quantum information theory [1,2], playing a nontrivial

role in protocols of quantum communication and quantum

cryptography [3,4]. The typical formulation of QHT is given

in terms of quantum state discrimination [5–8], where a

certain number of generally nonorthogonal quantum states

(the quantum hypotheses) have to be discriminated by means

of a quantum measurement. In particular, the simplest scenario

regards the statistical discrimination between two nonorthog-

onal quantum states, corresponding to the “null” and the

“alternative” quantum hypotheses, occurring with some a

priori probabilities. In symmetric testing, these hypotheses

have the same cost [6–8] and the goal is to minimize the mean

error probability of confusing them by suitably optimizing the

quantum measurement.

For such a basic problem, we know closed analytical

formulas identifying both the minimum error probability, given

by the Helstrom bound [6], and the optimal quantum detection,

expressed in terms of the Helstrom matrix [6]. Furthermore,

we can also use an easier-to-compute bound which becomes

tight in asymptotic conditions. This is the recently introduced

quantum Chernoff bound [9], for which we know simple

formulas in the case of multimode Gaussian states [10] (i.e.,

those states with Gaussian Wigner function [5]).

In this paper, we consider asymmetric QHT, where two

quantum hypotheses have different associated costs [6–8]. In

this approach, we aim to minimize the probability that the

alternative hypothesis is confused for the null hypothesis, an

error which is known as “false negative.” This minimization

has to be done by suitably constraining the probability of

another possible error, known as a “false positive,” where

the null hypothesis is confused for the alternative hypothesis.

This is clearly the best approach, for instance, in medical-type

testing, where the null hypothesis typically represents absence

of a disease, while the alternative corresponds to the presence

of a disease.

Asymmetric QHT is typically formulated as a multicopy

discrimination problem, where a large number of copies of the

two possible states are prepared and subjected to a collective

quantum measurement. From this point of view, the aim is to

maximize the error exponent describing the exponential decay

of the false negatives, while placing a reasonable constraint

on the false positives. For this calculation, we can rely on

two mathematical tools. The first is the quantum relative

entropy [5] between the two states, while the other is the

recently introduced quantum Hoeffding bound (QHB) [11],

which performs the optimization of the error exponent while

providing a better control on the false positives.

In this work, we start by giving some basic notions

on asymmetric QHT and briefly reviewing the QHB, also

showing how its computation simply reduces to the quantum

fidelity [12] in the presence of pure states. Then, we provide

a general recipe for computing this bound in the case of

multimode Gaussian states, for which it can be expressed in

terms of their first- and second-order statistical moments. In

the general multimode case, we derive a relation between

the QHB and other easier-to-compute bounds, which are

based on well-known mathematical inequalities. Finally, we

derive analytical formulas and numerical results for the most

important classes of one-mode and two-mode Gaussian states.

By developing the theory of asymmetric QHT for Gaussian

states, our work could be useful in tasks and protocols

involving Gaussian quantum information [5], including tech-

nological applications of quantum channel discrimination

(e.g., quantum illumination [13,14] or quantum reading

[15–18]) where we are interested in increasing our ability to

accept one specific quantum hypothesis.

II. BRIEF REVIEW OF ASYMMETRIC TESTING

A. Basic formulation

In binary QHT we consider a quantum system which is

prepared in some unknown quantum state ρ, which can be ρ0

or ρ1. For instance, we can imagine one party, say Alice, who

prepares such a system. This system is then passed to Bob,

who does not know which choice Alice has made. Thus, Bob

must decide between the following two hypotheses:

Null hypothesis H0 : ρ = ρ0, (1)

Alternative hypothesis H1 : ρ = ρ1. (2)

In order to discriminate between these two hypotheses, i.e.,

distinguish between the two states, Bob applies a quantum

measurement, generally described by a positive operator

valued measure (POVM). Without loss of generality, Bob can
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always reduce his measurement to be a dichotomic POVM

{�k} with k = 0,1 [6]. The outcome k = 0, with POVM

operator �0, is associated with the null hypotheses H0, while

the other outcome k = 1, with POVM operator �1 = I − �0,

is associated with the alternative hypothesis H1.

Since the two quantum states ρ0 and ρ1 are generally

nonorthogonal, there is a nonzero error probability to confuse

the two hypotheses. We can identify two different types of

error: Type-I and type-II errors, with associated conditional

error probabilities. By definition, the type-I error, also known

as a “false-positive,” is where Bob accepts the alternative

hypothesis H1 when the null hypothesis H0 holds. We have

a corresponding error probability expressed by

α := p(H1|H0) = Tr(�1ρ0). (3)

Then, the type-II error or “false negative” is where Bob

accepts the null hypothesis H0 when the true hypothesis is the

alternative H1. This error occurs with conditional probability,

β := p(H0|H1) = Tr(�0ρ1). (4)

Note that we can introduce other probabilities, but they

are fully determined by α and β. For instance, we may also

consider the “specificity” or “true negativity” of the test which

is the success probability of identifying the null hypothesis,

i.e., p(H0|H0) which is simply given by 1 − α. Similarly,

we may also consider the “sensitivity” or “true positivity”

of the test which is the success probability of identifying the

alternative hypothesis, i.e., p(H1|H1) = 1 − β.

The costs associated with the two types of error can be very

different especially in the medical and histological settings.

For instance, in a medical test, H0 is typically associated with

no illness, while H1 with the presence of the disease. It is

therefore clear that we would like to have tests where the

false-negative probability (or rate) β is the lowest possible,

so that ill patients are not diagnosed as healthy. For this

reason, in a medical setting, hypothesis testing is almost always

asymmetric, meaning that we aim to minimize one of the two

conditional error probabilities.

B. Multicopy formulation

In general we can formulate the problem of QHT as an

M-copy discrimination problem [7,8]. This means that Alice

has M quantum systems which are prepared in two possible

multicopy states,

H0 : ρ = ρ⊗M
0 = ρ0 ⊗ · · · ⊗ ρ0,

(5)
H1 : ρ = ρ⊗M

1 = ρ1 ⊗ · · · ⊗ ρ1.

These systems are passed to Bob who performs a collective

measurement on them. As before, this general POVM can be

chosen to be dichotomic {�0,�1} with �1 = I − �0.

The error probabilities now depend on the number of copies

M . In particular, the probability of false positives is given by

αM := p(H1|H0) = Tr
(

�1ρ
⊗M
0

)

, (6)

and the probability of false negatives is

βM := p(H0|H1) = Tr
(

�0ρ
⊗M
1

)

. (7)

In the limit of a large number of copies (M ≫ 1), these

probabilities go to zero exponentially, i.e., we have

αM ≃ 1
2
e−αRM , βM ≃ 1

2
e−βRM , (8)

where the coefficients,

αR = − lim
M→+∞

1

M
ln αM , (9)

βR = − lim
M→+∞

1

M
ln βM , (10)

are called the “error exponents” or “rate limits” [11].

Bob’s aim is to maximize the error exponent βR , so that

the error probability of false negatives βM has the fastest

exponential decay to zero. This must be done while controlling

the rate of false positives. Here a well-known result is the

“quantum Stein lemma” [11] which connects βR with the

quantum relative entropy between the single-copy states ρ0 and

ρ1. For a large number of copies M ≫ 1, there is a dichotomic

POVM such that the error probability of the false positives is

bounded,

αM � ε for any 0 < ε < 1, (11)

and the error probability of false negatives goes to zero with

the error exponent,

βR = S(ρ0||ρ1) = Trρ0(ln ρ0 − ln ρ1). (12)

More powerfully, we may use the notion of the QHB [11].

For M ≫ 1, there is a dichotomic POVM such that the error

exponent of false positives is lower bounded by a positive

parameter,

αR � r for any r > 0, (13)

and the error exponent of false negatives satisfies

βR = H (r), (14)

where H (r) � 0 is the QHB defined by

H (r) := sup
0�s<1

P (r,s), P (r,s) :=
−rs − ln Cs

1 − s
, (15)

where

Cs := Tr
(

ρs
0ρ

1−s
1

)

(16)

is the “s overlap” between the single-copy states ρ0 and ρ1.

Note that the quantum Hoeffding bound enforces a stronger

constraint on false positives, since these are bounded at the

level of the error exponent and not at the level of the error

probability as happens for the quantum relative entropy bound.

III. ASYMMETRIC TESTING WITH PURE STATES

Asymmetric testing becomes very simple when one of the

states (or both) is pure. In this case, we can in fact relate the

QHB to the quantum fidelity between the two states.

Let us start by considering the case where only one of the

states is pure, e.g., ρ0 = |ψ0〉〈ψ0|. We can write [19]

inf
s

Cs = F (|ψ0〉, ρ1), (17)

where F is the fidelity between |ψ0〉 and ρ1. Equation (17)

implies Cs � F . By using the latter inequality in Eq. (15), we
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derive the fidelity bound,

H (r) � HF (r) := sup
0�s<1

−rs − ln F

1 − s
. (18)

This bound can be further simplified by explicitly perform-

ing the maximization with regard to the parameter s. After a

simple calculation we find

HF (r) =

{

ln 1
F
, for r � ln 1

F
,

+∞, for r < ln 1
F
,

(19)

which depends on the comparison between the parameter r

and the fidelity F of the two states.

More specifically, in the discrimination of two pure states,

we find that the previous fidelity bound becomes tight,

H (r) = HF (r). (20)

In fact, for pure states ρ0 = |ψ0〉〈ψ0| and ρ1 = |ψ1〉〈ψ1|, and

for any 0 < s < 1, we can write

Cs = Tr(|ψ0〉〈ψ0|s |ψ1〉〈ψ1|1−s) = Tr(|ψ0〉〈ψ0|ψ1〉〈ψ1|)
= |〈ψ0|ψ1〉|2 = F (|ψ0〉,|ψ1〉). (21)

Therefore we can replace ln Cs = ln F in the QHB of Eq. (15),

which implies Eq. (20) [20].

IV. ASYMMETRIC TESTING WITH GAUSSIAN STATES

A. Basics of bosonic systems and Gaussian states

A bosonic system of n modes is a quantum system described

by a tensor product Hilbert space H⊗n and a vector of

quadrature operators [21,22]:

x̂T := (q̂1,p̂1, . . . ,q̂n,p̂n). (22)

These operators satisfy the vectorial commutation rela-

tions [23],

[x̂,x̂T ] := x̂x̂T − (x̂x̂T )T = 2i�, (23)

where � is the symplectic form, defined as

� :=
n

⊕

k=1

(

0 1

−1 0

)

. (24)

Correspondingly, a real matrix S is called “symplectic” when

it preserves � by congruence, i.e., S�ST = �.

By definition, we say that a bosonic state ρ is “Gaussian”

when its phase-space Wigner representation is Gaussian [5].

In such a case, we can completely describe the state by means

of its first- and second-order statistical moments. These are

the mean value or displacement vector x̄ := Tr(x̂ρ), and the

covariance matrix (CM) V with the generic element,

Vij = 1
2
Tr({x̂i,x̂j }ρ) − x̄i x̄j , (25)

where {,} denotes the anticommutator. The CM is a 2n ×
2n real symmetric matrix, which must satisfy the uncertainty

principle [5],

V + i� � 0. (26)

An important tool in the manipulation of Gaussian states is

Williamson’s theorem [5]: For any CM V, there is a symplectic

matrix S such that

V = SWST , (27)

where

W =
n

⊕

k=1

νkI, I :=
(

1 0

0 1

)

. (28)

The matrix W is the “Williamson form” of V, and the set

{ν1, · · · ,νn} is the “symplectic spectrum” of V. According

to the uncertainty principle, each symplectic eigenvalue must

satisfy the condition νk � 1, with νk = 1 for all k if and only

if the Gaussian state is pure.

B. Computation of the quantum Hoeffding bound

Our goal is to find a general recipe for the calculation of the

QHB for Gaussian states. We start from the general formula

in Eq. (15) involving the logarithm of the s overlap Cs defined

in Eq. (16). Given two n-mode Gaussian states, ρ0 and ρ1, we

can write an explicit Gaussian formula for the s overlap in

terms of their statistical moments (x̄0, V0) and (x̄1, V0). This

is given by [10,19]

Cs =
�s√

det �s

exp

[

−
dT

�
−1
s d

2

]

, (29)

where d := x̄0 − x̄1 is the difference between the mean values,

while �s and �s depends on the CMs V0 and V1. In particular,

introducing the two real functions,

Gs(x) :=
2s

(x + 1)s − (x − 1)s
, (30)

	s(x) :=
(x + 1)s + (x − 1)s

(x + 1)s − (x − 1)s
, (31)

we can write the formulas,

�s := 2n�n
k=1Gs

(

ν0
k

)

G1−s(ν
1
k ), (32)

and

�s : = S0

[

⊕n
k=1 	s

(

ν0
k

)

I
]

ST
0

+ S1

[

⊕n
k=1 	1−s

(

ν1
k

)

I
]

ST
1 , (33)

where {ν0
k } and {ν1

k } are the symplectic spectra of the two

states, with S0 and S1 being the symplectic matrices which

diagonalize the two CMs according to Williamson’s theorem,

i.e.,

V0 = S0

(

⊕n
k=1 ν0

k I
)

ST
0 , V1 = S1

(

⊕n
k=1 ν1

k I
)

ST
1 . (34)

Substituting Eq. (29) into Eq. (15) corresponds to explicitly

computing the logarithmic term ln Cs , yielding

ln Cs = ln �s − 1
2

{

ln det 
s + dT
�

−1
s d

}

. (35)

In particular for zero-mean Gaussian states we have d = 0 and

the previous expression simplifies to

ln Cs = ln �s − 1
2

ln det �s . (36)
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C. Other computable bounds

Note that computing the s overlap Cs and its logarithmic

form ln Cs could be difficult due to the presence of the

symplectic matrices, S0 and S1, in the term �s in Eq. (33).

A possible solution is to compute an upper bound, known as

the “Minkowski bound,” which is based on the Minkowski

determinant inequality [24] and depends only on the two

symplectic spectra [10]. Specifically, we have Cs � Ms , where

Ms := 4n

[

n
∏

k=1

�s

(

ν0
k ,ν

1
k

)

+
n

∏

k=1

�1−s

(

ν1
k ,ν

0
k

)

]−n

, (37)

and

�s(x,y) : = {[(x + 1)s + (x − 1)s]

× [(y + 1)1−s − (y − 1)1−s]}1/n. (38)

Another easy-to-compute upper bound is the “Young bound”

Ys , which is based on Young’s inequality [25] and satisfies

Cs � Ms � Ys, (39)

where [10]

Ys := 2n

n
∏

k=1

Ŵs

(

ν0
k

)

Ŵ1−s

(

ν1
k

)

, (40)

and

Ŵs(x) := [(x + 1)2s − (x − 1)2s]−
1
2 . (41)

Taking the negative logarithm of Eq. (39), we can write the

following inequality for the QHB:

H (r) � HM (r) � HY (r), (42)

where

HM (r) := sup
0�s<1

−rs − ln Ms

1 − s
, (43)

HY (r) := sup
0�s<1

−rs − ln Ys

1 − s
. (44)

In the specific case where one of the two Gaussian states is

pure, we can compute their fidelity F and apply the upper

bound given in Eqs. (18) and (19), which becomes tight

when both states are pure [see Eq. (20)]. In particular, for

two multimode Gaussian states ρ0 = |ψ0〉〈ψ0| and ρ1, we

can easily write their fidelity F in terms of the statistical

moments [19]:

F =
2n

√
det L

exp

(

−
dT L−1d

2

)

, (45)

where L := V0 + V1. As a result, we can use Eq. (19) with

ln
1

F
=

1

2

[

ln

(

det L

4n

)

+ dT L−1d

]

. (46)

V. DISCRIMINATION OF ONE-MODE GAUSSIAN STATES

In this section, we examine the case of one-mode Gaussian

states. This means we fix n = 1 in the previous formulas of

Sec. IV, with matrices becoming 2 × 2, vectors becoming

two-dimensional, and symplectic spectra reducing to a single

eigenvalue. For instance, the s overlap can be more simply

computed using the expressions,

�s = 2Gs(ν
0)G1−s(ν

1), (47)

�s = 	s(ν
0)S0ST

0 + 	1−s(ν
1)S1ST

1 . (48)

In particular, here we shall derive the analytic formulas for the

QHB for two important classes: coherent states (in Sec. V A)

and thermal states (in Sec. V B).

A. Asymmetric testing of coherent amplitudes

The expression of the QHB is greatly simplified in the

case of one-mode coherent states ρ0 = |α0〉〈α0| and ρ1 =
|α1〉〈α1|. Since both states are pure, the QHB is equal to the

fidelity bound in Eq. (19), i.e., H (r) = HF (r). Therefore, it

is sufficient to compute the fidelity between the two coherent

states, which is given by

F = |〈α0| α1〉|2 = e−|α0−α1|2 , (49)

so that ln 1
F

= |α0 − α1|2 := σ , and we can write

H (r) =
{

σ, for r � σ,

+∞, for r < σ.
(50)

Assuming that we impose a good control on the rate of false

positives (so that r � σ ), then the error exponent for the false

negatives is simply given by H (r) = σ . More explicitly, this

corresponds to an asymptotic error rate,

βM =
1

2
e−Mσ =

FM

2
. (51)

Note that if we have poor control on the rate of false

positives, i.e., r < σ , then the QHB H (r) is infinite. This

means that the probability of false negatives βM goes to zero

superexponentially, i.e., more quickly than any decreasing

exponential function.

B. Asymmetric testing of thermal noise

In this section we derive the QHB for one-mode thermal

states ρ0 = ρth(ν0) and ρ1 = ρth(ν1), with variances equal to

ν0 and ν1, respectively (in our notation, ν = 2n̄ + 1, where n̄ is

the mean number of thermal photons). These Gaussian states

have zero mean (x̄0 = x̄1 = 0) and CMs in the Williamson

form V0 = ν0I and V1 = ν1I (so that S0 = S1 = I). Thus, we

can write

�s = εsI, εs := 	s(ν
0) + 	1−s(ν

1), (52)

and derive

Cs =
�s

εs

=
2

(ν0 + 1)s(ν1 + 1)1−s − (ν0 − 1)s(ν1 − 1)1−s
.

(53)

This is the s overlap to be used in the QHB of Eq. (15).

Given two arbitrary ν0 � 1 and ν1 � 1, the maximization

in Eq. (15) can be done numerically. The results are shown in

Fig. 1 for thermal states with variances up to 3 vacuum units

(equivalent to 1 mean thermal photon). From the figure we can

see an asymmetry with respect to the bisector ν0 = ν1 which is

a consequence of the asymmetric nature of the hypothesis test.
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FIG. 1. (Color online) We plot the QHB associated with the

discrimination of two thermal states: ρth(ν0) as null hypothesis, and

ρth(ν1) as alternative hypothesis. We consider low thermal variances

1 < ν0,ν1 � 3 and we have set r = 0.1 for the false positives.

The bottom-right part of the figure is related to the minimum

probability of confusing a nearly vacuum state (ν1 ≃ 1) with a

thermal state having one average photon (ν0 ≃ 3). By contrast,

the top-left part of the figure is related to the probability of

confusing a thermal state having one average photon (ν1 ≃ 3)

with a nearly vacuum state (ν0 ≃ 1). These probabilities are

clearly different.

We are able to derive a simple analytical result when we

compare a thermal state with the vacuum state. Let us start

by considering the vacuum state to be the null hypothesis

(ν0 = 1) while the thermal state is the alternative hypothesis

(ν1 := ν > 1). In this specific case, we find

ln Cs = (1 − s) ln

(

2

1 + ν

)

, (54)

and we get

P (r,s) = ln

(

1 + ν

2

)

−
rs

1 − s
. (55)

Since ν is a constant, the maximization of P over 0 � s < 1

corresponds to minimizing the function rs(1 − s)−1, whose

minimum occurs at s = 0. As a result, we have

H (r) = P (r,0) = ln

(

1 + ν

2

)

.

Since ν = 2n̄ + 1, we can write the QHB in terms of the mean

number of thermal photons, i.e.,

H (r) = ln(n̄ + 1). (56)

This is the optimal error exponent for the asymptotic proba-

bility of false negatives, i.e., of confusing a thermal state with

the vacuum state.

Let us now consider the thermal state to be the null hypoth-

esis (ν0 := ν > 1) while the vacuum state is the alternative

hypothesis (ν1 = 1). In this case, we derive

P (r,s) =
s

1 − s

[

ln

(

1 + ν

2

)

− r

]

, (57)

which leads to the following expression for the QHB:

H (r) =

{

0 for r � ln
(

1+ν
2

)

,

+∞ for r < ln
(

1+ν
2

)

.
(58)

This is related to the minimum probability of confusing the

vacuum state with a thermal state. Note that this is very

different from Eq. (56).

VI. DISCRIMINATION OF TWO-MODE GAUSSIAN

STATES

In this section we consider two important classes of

two-mode Gaussian states. The first is the class of Einstein-

Podolsky-Rosen (EPR) states, also known as two-mode

squeezed vacuum states. The second (broader) class is that

of two-mode squeezed thermal (ST) states, for which the

computation of the QHB is numerical.

A. Asymmetric testing of EPR correlations

The expression of the QHB in the case of EPR states is easy

to derive. Since EPR states are pure, the QHB H (r) is given

by HF (r) of Eq. (19). As a result, we need only to compute

the fidelity between the two states.

An EPR state has zero mean and CM,

VEPR(μ) =
(

μI
√

μ2 − 1Z
√

μ2 − 1Z μI

)

, (59)

with μ � 1, I is the 2 × 2 identity matrix, and

Z :=
(

1 0

0 −1

)

. (60)

Given two EPR states with parameters μ0 and μ1, their fidelity

is computed via Eq. (45), yielding

F =
4

√
det L

, (61)

where L = VEPR(μ0) + VEPR(μ1). After simple algebra, we

find

F =
2

1 + μ0μ1 −
√

(

μ2
0 − 1

)(

μ2
1 − 1

)

, (62)

to be used in Eq. (19).

B. Squeezed thermal states

In this section we consider symmetric ST states ρ(μ,c),

which are Gaussian states with zero mean and CM,

VST(μ,c) =
(

μI cZ

cZ μI

)

, (63)

where μ � 1 and |c| � μ [26,27] (in particular, without loss of

generality, we can assume c � 0). These are called symmetric
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FIG. 2. (Color online) Asymmetric discrimination between the

thermal state ρ0 = ρ(μ,0) and the ST state ρ1 = ρ(μ,μ − 1) with

maximal separable correlations. We plot the QHB as a function of

the thermal variance μ and the false-positive parameter r . As we can

see the QHB improves for lower r and for higher μ.

because they are invariant under permutation of the two

modes [28].

Note that, for c = 0, we have no correlations, and the

ST state is a tensor product of thermal states, i.e., ρ(μ,0) =
ρth(μ)⊗2. For c =

√

μ2 − 1 the correlations are maximal, and

the ST state becomes an EPR state, i.e., ρ(μ,
√

μ2 − 1) =
ρEPR(μ). Finally, for c = μ − 1, we have maximal separable

correlations. In other words, ρ(μ,μ − 1) is the separable ST

state with the strongest correlations (e.g., highest discord).

The symplectic decomposition of a symmetric ST state is

known. From the CM of Eq. (63), one can check that the

symplectic spectrum is degenerate and given by the single

eigenvalue,

ν =
√

μ2 − c2. (64)

The symplectic matrix S which diagonalizes VST(μ,c) in the

Williamson form ν(I ⊕ I) is given by

S =
(

ω+I ω−Z

ω−Z ω+I

)

, (65)

where

ω± :=
√

μ ± ν

2ν
. (66)

As a result, the s overlap between two symmetric ST states,

ρ0 and ρ1, can be computed using the simplified formulas,

�s = 4G2
s (ν0)G2

1−s(ν
1), (67)

�s = 	s(ν
0)S0ST

0 + 	1−s(ν
1)S1ST

1 , (68)

where ν0 (ν1) is the degenerate eigenvalue of ρ0 (ρ1), computed

according to Eq. (64), and S0 (S1) is the corresponding
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FIG. 3. (Color online) Asymmetric discrimination between the

thermal state ρ0 = ρ(μ,0) and the EPR state ρ1 = ρEPR(μ). We plot

the QHB as a function of the thermal variance μ and the false-positive

parameter r . The QHB improves for lower r and for higher μ. In

particular, there is a threshold value after which the QHB becomes

infinite (white region).

diagonalizing symplectic matrix, computed according to

Eqs. (65) and (66).

Let us start with simple cases involving the asymmetric

testing of correlations with specific ST states. First we

consider the asymmetric discrimination between the uncor-

related thermal state ρ0 = ρ(μ,0) as null hypothesis and

the correlated (but separable) ST state ρ1 = ρ(μ,μ − 1)

as alternative hypothesis. A false negative corresponds to

concluding that there are no correlations where they are

actually present [29]. It is straightforward to derive their

degenerate symplectic eigenvalues which are simply ν0 = μ

and ν1 =
√

2μ − 1. Then, we have S0 = I ⊕ I, while S1 can

be easily computed from Eqs. (65) and (66). By substituting

these into Eqs. (67) and (68), we can compute the s overlap

Cs = �s/
√

det �s and therefore the QHB H (r) via Eq. (15).

The results are plotted in Fig. 2, for values of thermal

variance μ up to 3 (i.e., from zero to 1 mean photon) and

small values of the parameter r , bounding the rate of false

positives. As expected, the QHB improves for decreasing r and

increasing μ.

Now let us consider the asymmetric discrimination between

ρ0 = ρ(μ,0) and the EPR state ρ1 = ρEPR(μ), i.e., the most

correlated and entangled ST state [29]. Thanks to the simple

symplectic decomposition of the EPR state (ν1 = 1), we can

further simplify the previous Eqs. (67) and (68) and write

�s = 4G2
s (μ), �s = 	s(μ)(I ⊕ I) + VEPR(μ), (69)

with VEPR(μ) being given by Eq. (59). As before, we compute

the QHB which is plotted in Fig. 3, for 1 � μ � 3 and r � 2.

As expected the QHB improves for decreasing r and increasing

μ. Note a discontinuity identifying two regions, one where the
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FIG. 4. (Color online) Asymmetric discrimination between two

ST states with the same thermal variance (μ = 3) but different

correlations c0 and c1. Setting r = 0.1, we plot the QHB as a function

of c0 and c1. We can see that the QHB increases orthogonally to the

bisector c0 = c1.

QHB is finite, and the other where it is infinite (white region

in the figure).

In fact, by expanding the term P (r,s) in Eq. (15) for s →
1−, then we find

P (r,s) ≃
N

s − 1
+ O(s − 1), (70)

where

N := r − ln

(

1 + 3μ2

4

)

. (71)

For values of r and μ such that N > 0, we find that the term

P (r,s) diverges at the border, making the QHB infinite. For a

given r , this happens when

μ > μ̃(r) :=
√

4er − 1

3
. (72)

Finally, we consider the most general scenario in the

asymmetric testing of correlations with ST states. In fact, we

consider two generic ST states, ρ(μ,c0) and ρ(μ,c1), with the

same thermal noise but differing amounts of correlation. For

this computation, we use Eqs. (64)–(66) with c = c0 or c1,

to be replaced in Eqs. (67) and (68), therefore deriving the

s overlap and the QHB. At small thermal variance (μ = 3)

and for the numerical value r = 0.1, we plot the QHB as a

function of the correlation parameters c0 and c1. As we can

see from Fig. 4, the QHB is not symmetric with respect to the

bisector c0 = c1 (where it is zero) and increases away from

this line.

VII. CONCLUSION

In this work we have considered the problem of asymmetric

quantum hypothesis testing by adopting the recently developed

tool of the quantum Hoeffding bound (QHB). After a brief

review of these notions, we have shown how the QHB can be

simplified in some cases (pure states) and estimated using

other easier-to-compute bounds based on simple algebraic

inequalities.

In particular, we have applied the theory of asymmetric

testing to multimode Gaussian states, providing a general

recipe for the computation of the QHB in the Gaussian

setting. Using this recipe, we have found analytic formulas and

shown numerical results for important classes of one-mode and

two-mode Gaussian states. In particular, we have studied the

behavior of the QHB in the low energy regime, i.e., considering

Gaussian states with a small average number of photons.

Our results could be exploited in protocols of quantum

information with continuous variables. In particular, they could

be useful for reformulating Gaussian schemes of quantum state

discrimination and quantum channel discrimination in such

a way as to give more importance to one of the quantum

hypotheses. This asymmetric approach could be the most

suitable in the development of quantum technology for medical

applications.
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