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Abstract
The aim of this study is to investigate the impact of respiratory motion correction
and spatial resolution on lesion detectability in PET as a function of lesion size
and tracer uptake. Real respiratory signals describing different breathing types
are combined with a motion model formed from real dynamic MR data to
simulate multiple dynamic PET datasets acquired from a continuously moving
subject. Lung and liver lesions were simulated with diameters ranging from 6
to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection
data for 6 and 3 mm PET scanner resolution were generated using analytic
simulations and reconstructed without and with motion correction. Motion
correction was achieved using motion compensated image reconstruction. The
detectability performance was quantified by a receiver operating characteristic
(ROC) analysis obtained using a channelized Hotelling observer and the area
under the ROC curve (AUC) was calculated as the figure of merit. The results
indicate that respiratory motion limits the detectability of lung and liver lesions,
depending on the variation of the breathing cycle length and amplitude. Patients
with large quiescent periods had a greater AUC than patients with regular
breathing cycles and patients with long-term variability in respiratory cycle
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or higher motion amplitude. In addition, small (less than 10 mm diameter) or
low contrast (3:1) lesions showed the greatest improvement in AUC as a result
of applying motion correction. In particular, after applying motion correction
the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm)
and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of
increasing the scanner resolution is small unless motion correction is applied.
This investigation indicates high impact of respiratory motion correction on
lesion detectability in PET and highlights the importance of motion correction
in order to benefit from the increased resolution of future PET scanners.

Keywords: PET-MR, breathing pattern, motion model, motion correction,
lesion detection, numeric observer, receiver operating characteristic analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Across the world a million people die every year from lung and liver cancer (Ferlay et al 2010).
For more advanced stages of cancer, the treatment options become limited and survival rates
decrease. Consequently precise and early detection of small cancerous lesions is important in
order to prolong and improve the survival of cancer patients. Studies have reported increases
in the survival rate among patients who have undergone therapy at the earliest stage of cancer
(Henschke et al 2003, Adam and Vinet 2004). Moreover, apart from detecting the lesions,
accurate staging is important to decide what sort of therapy is best.

Medical imaging techniques such as positron emission tomography (PET) play an essential
role in the diagnosis, staging, radiotherapy planning and therapy response assessment of
cancer (Vansteenkiste and Stroobants 2001, Rohren et al 2004). One of the biggest clinical
applications of PET in oncology is staging of disease for which it is necessary to detect small
and low uptake lesions with as high sensitivity as possible. However, lesion detection in PET
is inherently limited by the spatial resolution of the scanner which underlines the importance
of improved resolution in future scanners (Schäfers 2008). Despite the improvements in PET
scanner technology, respiratory motion is an unavoidable factor that severely degrades the
effective spatial resolution (Xu et al 2011) limiting lesion detection performance for chest and
abdominal imaging. Respiratory motion typically causes displacements of less than 10 mm
for lung lesions but this may increase to more than 20 mm for lung and liver lesions close to
the diaphragm (Seppenwoolde et al 2002, Langen and Jones 2001). Considering that many
conventional PET scanners have a spatial resolution of approximately 6 mm, motion of that
range effectively reduces the spatial resolution. With the potential improved resolution of
future scanners the effects of motion are likely to become relatively more important (Daou
2008).

Previous studies have demonstrated the benefits from PET motion correction (MC) in
quantitative imaging tasks such as computing standardized uptake values (SUVs). However, the
improvement in sensitivity for lesion detection has not yet been rigorously evaluated. Several
approaches have been proposed in the last decade for respiratory MC of PET data (Nehmeh and
Erdi 2008), such as incorporating the motion information within the reconstruction algorithm
known as motion compensated image reconstruction (MCIR) (Li et al 2006, Qiao 2006, Lamare
et al 2007). A recent study showed that MCIR can successfully recover accurate quantitative
values (Polycarpou et al 2012). Despite the interest in the development of respiratory MC
methodologies, there is not currently sufficient clinical evidence to evaluate the impact of MC
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in terms of its diagnostic utility and lesion detectability in particular. A study by Marache-
Fransisco et al (2010) has shown that MC can improve detectability in the liver, but only a
small effect is seen in the lungs, and this may be attributed to the extent of the displacement
caused by motion that varies with the location of the lesions or the accuracy of the motion
fields used for correction. Another recent study by Park et al (2012) reported significantly
larger detection performance for lung lesions after MC. However, in both these studies the
extent of the improvement as a function of lesion characteristics was not investigated while
the study was restricted to one respiratory signal (i.e. motion amplitude and breathing pattern)
and assumed conventional PET scanner resolution.

The aim of the current study is to understand the impact of respiratory MC and spatial
resolution in PET on detecting lesions in the lungs and liver as a function of lesion size,
tracer uptake, breathing pattern and displacement. Real respiratory signals were combined
with a motion model formed from real dynamic thorax MR data (King et al 2011) to simulate
multiple dynamic thorax PET datasets acquired from a continuously moving subject. However,
a realistic breathing cycle is not perfectly periodic and may have cycle-to-cycle variations in
magnitude, as well as longer-term variations in both magnitude and period (Sonke et al 2008,
von Siebenthal et al 2007). Consequently, in contrast with other studies, real respiratory signals
representative of three breathing patterns expected to be observed during a PET acquisition (Liu
et al 2009) are used with variable motion amplitude in order to provide a better understanding
of the extent of motion blurring in both normal and extreme breathing cases and define when
motion is important or not. Furthermore, the dynamic PET data were sorted to generate
amplitude based gated data and finally reconstructed with a conventional image reconstruction
method and with respiratory motion compensation using motion information obtained from
similarly simulated gated MR data. The improvement in detectability performance resulting
from MC was quantified using receiver operating characteristic (ROC) methodology with a
channelized Hotelling observer (CHO). All evaluations of the impact of MC on the detectability
were performed for both a simulated 6 mm full width half maximum (FWHM) scanner spatial
resolution and for 3 mm FWHM spatial resolution in order to determine the relative importance
of MC as new higher resolution scanners are developed.

2. Materials and methods

2.1. Respiratory signal database

Three respiratory signals, describing the vertical displacement of the diaphragm as a function
of time (0.1 s duration for each point), were selected from a database of thorax PET studies
with 3 min acquisition time of freely breathing patients obtained using a data driven method
(Schleyer et al 2011). The respiratory signals were selected according to their displacement
histogram such that each signal described one of the three different types of breathing as
suggested by Liu et al (2009). The respiratory signals and their corresponding displacement
histograms are illustrated in figure 1. The first signal is described by long quiescent motion
periods (type-A) accounting for approximately 60% of patients, the second signal by regular
quiescent motion periods (type-B) accounting for approximately 20% of patients and the third
signal is characterized by random baseline shifts (type-C) accounting for approximately 20%
of patients. Furthermore, for each of the three breathing patterns a database with variable
diaphragm motion amplitude was created. To do this, each signal was firstly shifted to have
zero median displacement and then scaled to nine diaphragm amplitudes ranged from 4 to
20 mm with a step of 2 mm (i.e. equal to the voxel size of the reconstructed image) creating a
database of breathing type-A, type-B and type-C each one consisting from nine signals.
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Figure 1. Breathing curves and corresponding displacement histograms for the
three breathing types: (a) long quiescent motion periods (type-A) accounting for
approximately 60% of the patients, (b) regular quiescent motion periods (type-B)
accounting for approximately 20% of the patients and (c) random baseline shifts (type-
C) accounting for approximately 20% of the patients.

2.2. Simulated dynamic PET data

To simulate dynamic PET data a numerical phantom was firstly created by manually
segmenting a 3D MR image of the thorax into different tissue types and assigning to each tissue
18F-fluorodeoxyglucose (FDG) SUVs as typically measured in a clinical acquisition: air 0,
lung tissue 0.5, soft tissue 1, bone 2.3, liver 2.5 and myocardium 3.2. Similarly, an anatomical
attenuation map was generated with attenuation values: air 0 cm−1, lung tissue 0.03 cm−1, soft
tissue 0.099 cm−1, bone 0.15 cm−1. The numerical phantom consisted of 2 mm isotropic voxel
size. As a next step, a population of 3D phantoms was generated by adding spherical lesions
to the phantom with size ranging from 6–12 mm diameter with a step of 2 mm and lesion to
background ratio ranging from 3:1 to 6:1 with a step of 1. For each combination of size and
lesion to background ratio, one phantom was created with lesions manually embedded at six
positions in the lungs and liver such that for a given phantom all lesions had the same size and
tracer uptake but different position whereas for each phantom lesions were added to identical
positions. Considering four different lesion diameters and four different lesion to background
ratios sixteen phantoms were created in total. Finally, each phantom (i.e. 3D FDG distribution)
was convolved with a Gaussian kernel of 6 or 3 mm FWHM in x, y, z to simulate a current and
a high resolution scanner respectively. A PET image is usually modelled as a summation of the
convolution of the actual tracer uptake distribution with the point spread function (PSF) of the
scanner (finite scanner resolution) and noise. However, the PSF of the scanner is commonly
approximately modelled by a 3D Gaussian distribution. Consequently, convolving the FDG
distribution with a Gaussian kernel featuring the same FWHM as the PSF of the scanner may
approximate the total effect of spatial resolution by accounting also for physical phenomena
affecting spatial resolution and not included in the simulation (positron range, non-colinearity
effect, block detector blurring).
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(b)(a)

(c)(d)

Figure 2. The 4D simulation is based around a motion model that describes the 3D
trajectory (b) of each point in a grid covering the torso (c) as a function of the
displacement of the diaphragm (a). The 4D description of the motion in the torso is
then used to create the 4D radionuclide distribution model (d).

Real time 4D PET datasets with time-continuous motion were simulated by transforming
each of the 3D numerical phantoms according to transformations calculated from a motion
model for a given respiratory signal (no tracer kinetic was included in the current 4D model).
To do this for each breathing type and motion amplitude the corresponding respiratory signal
was combined with a motion model (King et al 2011) derived from real dynamic MR data.
Given a respiratory signal, the motion model is used to calculate motion fields necessary
to transform the reference distribution (i.e. the 3D tracer uptake distribution) to the relevant
respiratory positions and generate a 4D phantom. Therefore, for each given 3 min acquisition
signal (0.1 s each point), the motion model calculated transformations for all 1800 sampling
points and the FDG distribution was warped to 1800 positions to create a 4D dataset of a
3 min acquisition with 0.1 s temporal resolution as illustrated in figure 2. Similarly, the motion
fields were applied to the anatomical attenuation maps to create dynamic datasets. Dynamic
datasets were created for each of the 16 phantoms, 2 simulated resolutions, 3 breathing types
and 9 motion amplitudes resulting in 864 investigated cases.

Furthermore, for each dynamic PET dataset, the data were sorted based on amplitude to
generate eight partitions (gates) over the full motion cycle. To do this, for a given breathing type
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and motion amplitude, the corresponding amplitude histogram was firstly divided into eight
equal amplitude bins (i.e. gates) and then each of the 1800 images in a dynamic phantom based
on the respiratory position was stored in the corresponding gate. An averaged image was then
formed for each gate creating a 4D dynamic FDG distribution comprising eight gated images.
Since, the PET acquisition system model is linear, averaging the FDG distributions prior to
simulating the projection data will give the same result as simulating continuous projection data
and gating afterwards. Finally, each gated image was used as input to an analytic simulation of a
PET acquisition to create projection data as described by Tsoumpas et al (2011). The projection
data accounted for photon attenuation, scatter (approximately 33% of the total counts) and
resolution effects (Gaussian kernel of 6 or 3 mm) but not for random coincidences. Each of
the eight gates was forward projected simulating a 3D acquisition (maximum ring difference:
43, span: 3) for the Philips Gemini PET scanner. Statistical (Poisson) noise was added to the
projection data such that the overall counts of the whole dataset correspond to 50 million
unscattered coincidences (i.e. 3–5 min 3D PET clinical thorax acquisition). To add noise in
the gated projection data, based on the corresponding amplitude based histogram, each of the
eight sinograms was weighted according to the dwell time at each displacement (i.e. histogram
value). Sixty noise realizations were obtained for each investigated case.

2.3. Reconstruction algorithms

Each dataset was reconstructed without motion correction (No-MC) and with motion
correction (MC) using the ordered subsets expectation maximization (OSEM) algorithm. The
motion corrected images were obtained by incorporating the motion information within the
reconstruction via the forward/backward transformation operators, as described by Polycarpou
et al (2012). The transformation operators describing the motion between the gated data (i.e.
eight positions of the respiratory cycle) were estimated using voxel-wise deformation vectors,
which were produced by co-registration of MR gated datasets with a non-rigid registration
algorithm based on a composition of hierarchical local affine registrations recently developed
by Buerger et al (2011). The transpose motion matrix operation of MCIR was approximated
by warping the image with the inverted motion fields which were numerically estimated from
the same motion vectors (Crum et al 2007). Finally, reference datasets (zero motion amplitude)
were created by reconstructing only the reference gate with the same standard count statistics
as for the entire gated dataset. All iterative reconstructions were performed with 23 subsets
and for a low number of iterations (i.e. 2) as typically used in the clinic. Each slice consisted
of 250 × 250 pixels with size 2 × 2 mm each, and the entire volume consisted of 87 slices
with 2 mm thickness.

2.4. Detectability performance

Although detectability is traditionally assessed by human observer studies, in cases where a
large number of parameters are to be evaluated this becomes an impractical process. Model
numerical observers may be used to predict human performance in clinically relevant visual
tasks (Barrett et al 1993). An ideal linear observer such as the Hotelling observer maximizes
the observer performance for a given task by computing the inverse of the image covariance
matrix that incorporates the statistical fluctuations (i.e. variability) in the image as well as
the image quantum noise (Barrett 1990). However, to estimate the image covariance matrix a
large number of samples is required. To reduce the required number of samples the Hotelling
observer is constrained to a number of linear frequency selective channels such as spatio-
frequency-selective functions (Gifford et al 2000, Gallas and Barrett 2003) known as CHO
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(Myers and Barrett 1987, Yao and Barrett 1992). Channelized models compute the correlation
between each channel and the image data and the classification decision is determined by a
linear combination of all channel responses providing equivalent performance to the Hotelling
observer (Gallas and Barrett 2003). CHO have been proven to be good predictors of human
visual performance in detecting lesions in images with correlated noise such as PET (Kadrmas
et al 2009, Lartizien et al 2004, Shidahara et al 2006, and Nuyts et al 2009).

The CHO used in this study consisted of five radially symmetric octave wide frequency
channels with 3D processing (Frey et al 2002) while the frequency and width of the first
channel was 1/64 cycles per voxel as has been used in previous studies and that has shown
good correlation with human observer performance. Knowing the position of the lesions the
center of the channels was matched to the center of the lesion for each investigated case. The
CHO was applied by estimating first order (mean) and second order (covariance) statistics
using a number of different noise realizations of lesion-present and lesion-absent reconstructed
images. In order to ensure accurate estimates of the ensemble statistics, a preliminary study was
firstly conducted to estimate the minimum number of noise realizations that would stabilize
the variance of the background. Variance estimations for the background image indicate
approximately 60 noise realizations yield a stable result. Consequently, the ensemble statistics
were calculated by using a sum of 60 realizations for each combination of lesion size and
lesion to background ratio.

After calculating the ensemble statistics, each reconstructed image was processed through
the frequency channels to estimate the likelihood of lesion present or lesion absent. The
likelihood values were used as continuously distributed to create multiple ROC curves
(Swensson 1996, Metz 1986) in order to evaluate and rank the lesion detection performance
MC and No-MC. It must be noted that to derive the ratings and generate the ROC curves,
the number of noise realizations used was the same with that used to calculate the ensemble
statistics of the CHO in order to have similar statistical properties. Assuming a binormal
model, an ROC curve was fitted to the given data using a maximum-likelihood technique.
Furthermore, the area under each ROC curve (AUC) was calculated as the figure of merit of
the detectability performance. An AUC value of 0.5 represents random detectability while
1 represents perfect detectability. An ROC curve was created for each case investigated; 2
regions of interest (i.e. lungs and liver) ×2 reconstruction methods (No-MC or MC) ×4 size
values ×4 tracer uptake values (i.e. 3:1–6:1) ×9 lesion motion amplitudes ×3 breathing types.
In addition, a ROC curve was created for the reference image for two regions of interest (i.e.
lungs and liver) ×4 size values ×4 tracer uptake values (i.e. 3:1–6:1). Finally, the significance
of the differences between two different ROC curves was statistically tested using the Pearson
correlation coefficient.

3. Results

3.1. Impact of respiratory motion on lesion detectability for three breathing types

For scanner resolutions of 6 and 3 mm figure 3 shows examples of coronal planes of lesion-
present studies after reconstruction of the reference image and No-MC of 20 mm for three
breathing types. Each row in the figure shows different slices to emphasize a different lesion.
As indicated by arrows the first and third rows show liver lesions whereas the second and
fourth rows show lung lesions. The displayed lesions have a diameter of 8 mm with a lesion
to background ratio of 3:1 and 6:1. Lesions are easily detectable in the reference images
but hardly or not detectable in images with motion. However, lesions in images representing
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(a)

(b)

Figure 3. Coronal planes after reconstruction of the reference image and prior to motion
correction (No-MC) of 20 mm under breathing of type-A, type-B and type-C. The
lesions, indicated with arrows, are characterized with a diameter of 8 mm with a lesion
to background ratio of: (a) 3:1 and (b) 6:1. The results are displayed for a PET scanner
resolution of 6 and 3 mm. The lesions are easily detectable in the reference image but
hardly or not detectable in images with motion.

breathing type-A are more easily detectable compared with images representing breathing
type-C especially for a scanner resolution of 3 mm.

Figure 4 presents the effect of motion on lesion detection performance as measured by the
AUC plotted as a function of motion amplitude. The relationship was investigated for three
breathing patterns and for approximate scanner resolutions of 6 and 3 mm. The results are
displayed for the liver lesions of 8 mm diameter and for low (i.e. 3:1) and high (i.e. 6:1) lesion
to background ratio values. For all the aforementioned graphs a zero lesion motion amplitude
is also presented as the result of the reference reconstructed image. Considering a current (i.e.
6 mm) PET resolution, motion of 20 mm for small lesions (e.g. 8 mm diameter) and high (i.e.
6:1) lesion to background ratio may result in a degradation of detectability performance of up
to 16% reduction in AUC under breathing of type-A, up to 28% for type-B and up to 30% for
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Figure 4. Area under the ROC curve (AUC) as a function of the motion amplitude
prior to correction of motion (No-MC) under breathing of type-A, type-B and type-C.
The results are displayed for the liver lesions of 8 mm diameter and for 3:1 and 6:1
lesion to background ratio values. The impact of motion in lesion detection is higher for
respiration with higher amplitudes and long-term variability as compared with longer
quiescent motion periods.

type-C. Similarly, for a high PET resolution (i.e. 3 mm) motion of 20 mm for small lesions
(e.g. 8 mm diameter) and low (i.e. 3:1) lesion to background ratio may result in a degradation
of detectability performance of up to 21% under breathing of type-A, up to 29% for type-B
and up to 37% for type-C. Similar trends have been observed for the lung and liver lesions and
therefore only the results for liver are presented.

3.2. Impact of respiratory motion correction on lesion detectability as a function of lesion
characteristics

Figure 5 presents the performance in lesion detection before and after MC as a function of
lesion size and tracer uptake. For each lesion size (i.e. 6–12 mm diameter) and lesion to
background ratio (i.e. 3:1–6:1) the detection performance as measured by the AUC is plotted
with respect to the motion amplitude No-MC and MC under breathing pattern of type-C. The
results are displayed for scanner resolutions of 6 and 3 mm. As the motion amplitude becomes
larger than the scanner resolution MC significantly increases the detectability performance for
small (less than 10 mm diameter) lesions (p-value less than 0.01). The highest gain in detection
performance after MC is achieved for small (less than 10 mm diameter) or low tracer uptake
(3:1) lesions. In particular, MC showed an up to 42% and 51% improvement in detectability
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Figure 5. Area under the ROC curve (AUC) as a function of the motion amplitude after
reconstruction prior to motion correction (No-MC) and after motion correction (MC)
under breathing of type-C. The results are displayed for a PET scanner resolution of 6
and 3 mm. Motion correction significantly increases the detectability performance for
small lesions (less than 10 mm diameter).

performance for 6 and 3 mm PET resolution respectively. For example lesions of 8 mm and
3:1 lesion to background ratio for 3 mm scanner PET resolution and 20 mm motion are just
detectable prior to MC (AUC = 0.63) whereas after correction they may be easily detected
(AUC = 0.95). On the other hand, the detection performance was only moderately changed
with MC using a large lesion size since as the lesion size is increasing the susceptibility to
motion blurring is decreased. In particular, lesions with diameter larger than 12 mm have
negligible (i.e equal to zero for 3 mm resolution and 9% for 6 mm resolution) reduction
in AUC with motion even for low tracer uptake and high motion amplitudes (i.e. 20 mm)
and were perfectly detected even No-MC, indicating that in this case there is no apparent
advantage on detectability of applying MC even for respiration characterized by randomly
varying amplitude (i.e. type-C). Similar trends were observed under breathing pattern of
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Figure 6. Area under the ROC curve (AUC) for lesion motion amplitude of 20 mm after
reconstruction prior to motion correction (No-MC) and after motion correction (MC)
for PET scanner resolutions of 6 and 3 mm. After MC the 3 mm resolution has superior
detection performance to the 6 mm resolution. The benefit of increasing the scanner
resolution is small unless MC is applied.

type-A and type-B (results not shown) and therefore only type-C is presented which is the
case expected to be more beneficial from MC as shown in the previous subsection.

3.3. Improvement in lesion detectability with respiratory motion correction and scanner
resolution

Figure 6 shows the lesion detection performance for scanner resolutions of 6 and 3 mm
No-MC and MC. The detection performance as measured by the AUC is given for a lesion
motion amplitude of 20 mm and breathing pattern type-C. After motion correction the 3 mm
resolution outperforms the 6 mm resolution in terms of lesion detection performance. For
example, lesions of 8 mm diameter with low (i.e. 3:1) lesion to background ratio are not
detectable with a 6 mm resolution scanner No-MC or MC (AUC = 0.51–0.52) whereas with
a 3 mm resolution scanner they are hardly detectable (AUC = 0.63) without correction but
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almost perfectly detectable if motion is corrected (AUC = 0.95). The combination of increased
scanner resolution and MC results in substantial improvement in detectability.

4. Discussion

4.1. Impact of respiratory motion on lesion detectability for three breathing types

Visual interpretation of Figure 3 shows blurring and inferior lesion contrast in PET
reconstructed images with motion compared to the motion-free-reference images. Lesions
in the lungs and liver may be hardly detectable in the images No-MC whereas they are clearly
detectable in the reference image. However, the detectability performance differs among
the three breathing pattern types; motion blurring is more important for acquisitions under
respiration with long-term amplitude variability (i.e. type-B and type-C) as compared with
longer quiescent motion periods (i.e. type-A).

Quantitative analysis of lesion detection performance as measured by the AUC presented
in Figure 4 confirms the visual observation and shows the extent of the impact of motion
blurring in detectability for the variable breathing cycles length and amplitude among the
different breathing types. For any breathing type, respiratory motion degrades the detectability
performance, with the greatest impact of motion blurring observed for type-C whereas the
minimum is observed for type-A. The discrepancies among the three breathing pattern types
are expected since respiration becomes progressively more irregular from type-A to type-C.
The patients in type-A tend to breathe to a similar end-expiration location and spend a higher
amount of time near that location while patients with type-B respiration have similar inspiration
and expiration positions but spend similar amounts of time in inspiration and expiration. On the
other hand, patients with type-C respiration cycle breathe irregularly with long term variation
of the breathing cycles length and amplitudes and therefore type-C is expected to have the
highest motion content in the acquired data with type-A the lowest. However, it must be noted
that approximately 60% of the patients are expected to breath with a type-A pattern whereas
only 20% of patients are expected to breath with type-C.

4.2. Impact of respiratory motion correction on lesion detectability as a function of lesion
characteristics

Comparing the various plots in figure 5 we are able to see the difference resulting from
respiratory motion correction as lesion size and tracer uptake increase. Motion correction
significantly increases the detectability performance for small (less than 10 mm diameter)
lesions (p-value less than 0.01). The greatest improvement from motion correction was
achieved for the smaller lesions and lesions with low metabolic activity as long as the
detectability was not limited by the scanner resolution. Large diameter or high tracer uptake
lesions are less subject to motion and more easily detectable yielding little improvement by
using motion correction. This is expected due to the fact that motion blurring spreads out
and decreases the apparent tracer uptake (i.e. lesion contrast) (Liu et al 2009) and therefore
smaller lesions which are more susceptible to partial volume effect will be more affected.
Consequently the required tracer uptake in order to detect the lesions varied with the motion
amplitude and lesion size.

Another feature of the results in figure 5 is that motion correction does not fully recover
the best possible outcome of a scan without motion and the detection performance moderately
depends upon the motion amplitude. This might be attributed to the possible inaccuracies of
the estimated motion fields since different motion fields were used to create the simulations
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and to correct for motion. Simulations are derived from real-time respiratory curves whereas
motion fields for correction were derived from registration of gated MR data simulated as
simultaneously acquired with PET. Therefore the results are prone to any errors in the motion
estimation (e.g. interpolation) introduced by the registration algorithm. Another possible
explanation is the limited number of gates used as each gate is representative of a specific
moment of the motion cycle, the different gates have different motion content especially under
breathing with high variability between the different breathing cycles. Consequently, a higher
number of gates, or real time motion correction, may be required to limit the content of motion
in each gate and capture extreme phases such as a deep inspiration or expiration. In the current
study eight gates have been used as is common in clinical practice. However, the optimal
number of gates is expected to be correlated with the scanner resolution and motion amplitude
(Dawood et al 2009) but this is beyond the scope of this study.

4.3. Improvement in lesion detectability with respiratory motion correction and scanner
resolution

The results indicate that in order to take advantage of the potential increased spatial resolution
of future PET scanners, it becomes important to account for respiratory motion assuming
that acquisition protocols remain largely similar to those currently used and investigated in
this study. In particular, considering a small tumour for the current standard of 6 mm PET
resolution (i.e 6 mm lesion diameter) even if it has very high tracer uptake (i.e. 6:1) it cannot be
detected due to the inherently limited resolution (AUC = 0.5). However, although it is likely
to be recovered with a next generation scanner of 3 mm (i.e. AUC = 0.88 for zero motion
amplitude) the motion effect limits this benefit (i.e. AUC = 0.57 in the non motion corrected
images). Similarly, considering a very low tracer uptake (3:1) of 8 mm diameter, it is not
detectable with a 6 mm resolution (AUC = 0.51) whereas although it is likely to be recovered
with a next generation scanner of 3 mm resolution (i.e. AUC = 1 for zero motion amplitude)
the motion effect limits this benefit (i.e. AUC = 0.63 in the non motion corrected images).
Consequently, improving spatial resolution allows not only the detection of smaller tumours
but also the detection of tumours with low metabolic activity and contrast (i.e. metastases)—
the detection of small and lower uptake lesions may prove important for early detection and
staging.

Prior studies have shown that for a conventional PET scanner resolution (i.e. 6 mm)
motion correction can improve detectability (Marache-Fransisco et al 2010, Park et al 2012)
but did not study the effect of the lesion characteristics or extent of motion. In addition,
in parallel of this work another similar investigation by Geramifar et al (2013) was made
aiming to study the impact of respiratory motion on lung and liver tumor quantification and
delineation by applying different attenuation maps such as end exhalation, end inhalation or
average of the respiratory cycle. Similar with our study the results were compared for various
diaphragm displacement and tumor size with location using a numerical phantom but only
the type-A respiratory pattern was investigated. The results have shown high errors in tumor
quantification, tumor misdisplacement and volume overestimation using attenuation correction
involving the end exhalation or end inhalation compared with the respiration averaged.

There are a number of limitations to the current study that should be considered. Firstly,
all results are shown after a low number of iterations (i.e. 2) of image reconstruction
with a standard OSEM algorithm as used in clinical practice. Using other reconstruction
parameters (i.e. number of iterations) and advanced techniques such as time of flight and
PSF modelling in image reconstruction (Alessio et al 2010, Tong et al 2010) or smoothing
filters and incorporating regularization (Wang and Qi 2012, Tsoumpas et al 2013) may provide
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better image quality and could affect detectability performance therefore limiting any possible
positive false findings that might occur due to the high noise observed in OSEM reconstructed
images. However, this is beyond the scope of the current study. Another limitation is the
spherical shape of the lesions and the homogeneity in the anatomy (uniform FDG distribution)
of the simulations simplifying the detection task especially in liver. In addition, bulk motion
during acquisition (i.e. unpredictable random patient motion) was not taken into account.
Furthermore, the numerical observer was applied in the center of the lesion eliminating the
possibility of false positives in surrounding regions. Finally, the statistical power of this study
was limited by the number of images used. Although, a preliminary study was conducted
to estimate the minimum required number of noise realizations in order to ensure sufficient
statistical power to differentiate between the different methods with high confidence, increasing
the number of realizations may yield a better estimate of the ensemble statistics and decrease
the statistical uncertainty in the AUC estimates.

5. Conclusions

This investigation indicates that respiratory motion correction has a high impact on lesion
detectability. Patients with large quiescent motion periods are less subject to the effects of
motion than patients with regular breathing cycles or with long-term variability in respiratory
cycles and higher motion amplitudes. Furthermore, lesion detection performance is correlated
with the lesion size, position and tracer uptake. Motion blurring particularly influences small
size (less than 10 mm) or low metabolic activity lesions highlighting that respiratory motion
correction could play a key role in detecting marginally detectable lesions. Finally, this study
underlines the importance of handling respiratory motion in order to benefit from the potential
improved spatial resolution of future PET scanners.
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