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Abstract—Random testing is inexpensive, but it can also
be inefficient. We apply mutation analysis to evolve efficient
subdomains for the input parameters of eight benchmark pro-
grams that are frequently used in testing research. The evolved
subdomains can be used for program analysis and regression
testing. Test suites generated from the optimised subdomains
outperform those generated from random subdomains with 10,
100 and 1000 test cases for uniform, Gaussian and exponential
sampling. Our subdomains kill a large proportion of mutants
for most of the programs we tested with just 10 test cases.
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I. INTRODUCTION

Random testing is a simple and inexpensive way to

generate test data. It is often seen as ineffective compared

to other testing techniques because it does not analyse the

program under test [1]. Input values are selected from a

uniform distribution or by some other straightforward means.

The range from which scalar values are chosen has a

profound effect on the effectiveness of a test suite [2].

Andrews et al. [2] report that the subdomain [0..31] gave

the best results in testing a dictionary, but it is not clear

how to discover this ‘magic number’. Similarly it is difficult

to determine in advance whether sampling from uniform,

Gaussian or exponential distributions will be more efficient.

One way to assess the fault-finding capability of a test

suite is to use mutation analysis. Experimental research has

shown mutation analysis to be more stringent than other

testing criteria and a good predictor of the real fault finding

capability of a test suite [3] [4]. A test suite that can detect

(kill) most of the artificial faults (mutants) can therefore be

expected to perform well against real faults.

We have developed a technique to discover efficient input

subdomains for random testing using mutation analysis. An

evolution strategy (ES) is employed to evolve minimum and

maximum values for each input parameter. The process of

evolving subdomains is computationally expensive, but once

this is achieved, it is inexpensive to generate further highly

efficient test suites. Our technique can be applied in program

analysis and regression testing. Compared to unoptimised

random testing, our subdomains require fewer test cases and

minimise the use of extreme values. This should reduce the

human oracle cost of checking the output values [5].

The rest of this paper is organised as follows. Section

II explores our background motivation, Section III explains

the general principles, Section IV describes our experiments

and Section V presents their results. Section VI discusses

the related work, Section VII summarises our conclusions

and Section VII introduces suggestions for future work.

II. BACKGROUND

A. Metaheuristic Optimisation

Optimisation techniques use fitness functions to guide

their search [6]. If the fitness landscape is smooth, deter-

ministic algorithms (e.g. the simplex method [7]) can find

exact solutions. Heuristics (e.g. greedy approximation [8])

may be used to find approximate solutions. Metaheuristic

optimisation is used when deterministic algorithms cannot

be applied and there is no known heuristic. Candidates are

selected probabilistically using the relative fitness of existing

solutions until a termination condition is reached [6].

Efficient fitness functions provide an accurate evaluation

of each candidate solution and have modest computation

requirements [6]. Fitness landscapes often contain locally

optimal regions, inferior to the global optimum but superior

to the surrounding values. Metaheuristic techniques must

select new solutions far enough away from the existing

candidates to avoid being stuck in a local optimum, but close

enough to take advantage of the previous evaluations.

One way to improve the performance of a metaheuristic

search is to tune the distance between existing and new

candidate solutions, so as to balance the development of

strong candidates with the exploration of new regions. Other

techniques include maintaining a diverse population of can-

didates, restarting the search in a new region and favouring

certain lower performing values [6]. The challenge is to take

advantage of the underlying patterns in the problem without

necessarily knowing what they are.

B. Evolution Strategies

Evolution strategies are metaheuristic techniques inspired

by the process of adaptation in nature [9]. They maintain a

set of numerical parameter values (x1 . . . xn) together with

an update function (F ). At each generation, new candidate

solutions are produced by applying the update function to

existing sets of values, x′

1
. . . x′

n = F (x1 . . . xn). Evolution



strategies differ from some genetic algorithms in that they

optimise numerical values rather than bit strings and focus

on mutation over recombination [13].

Evolution strategies were first developed in the 1960s by

Bienert, Rechenberg and Schwefel to optimise aerodynamics

[9]. They are ideal for the fine tuning of numerical proper-

ties, as any disruption from recombination is largely avoided.

Amongst many other applications, evolution strategies have

been used to optimise image compression [10], network

design [11] and web crawling [12].

For many problems, evolution strategies have been shown

to be more effective than other evolutionary algorithms in

terms of the number of function evaluations evaluated before

the optimum value is reached. One evolution strategy tri-

umphed in a research challenge for black box optimisation,

by outperforming eleven other algorithms on a diverse set

of 25 benchmark functions [14].

III. SUBDOMAIN OPTIMISATION

We aim to find highly efficient subdomains of input values

to the program under test. If the subdomains are too small it

may not be possible to kill all the mutants, but if they are too

large, the inefficiency of the resulting test suite may mean

that more test cases are required to kill the same number

of mutants. We evaluate the efficiency of subdomains by

repeatedly sampling from them and calculating the mutation

score of the generated test suites.

Take for example a hypothetical program, with three

integer inputs (a, b and c). This program has somewhere

within its internal branch structure the condition a = b = c.
Our task is to find a subdomain for each input parameter

such that test case i consists of ai ∈ [Alower..Aupper],
bi ∈ [Blower..Bupper] and ci ∈ [Clower..Cupper]. If the

subdomains are too small or have poorly chosen ranges, it

might not be possible to meet this branch condition along

with the conditions of other branches in the program. If the

subdomains are larger, the probability of selecting a value

for a, b and c such that this condition holds may be reduced.

In our work, a candidate solution consists of a series of

subdomains with intervals in the following three forms:

Numerical subdomains

are represented with a lower and upper value. Test

input values are selected only between these two

values (inclusive).

Boolean subdomains

are described with an integer value between 0 and

100. This value represents the percentage proba-

bility that a generated parameter value is ‘true’.

Character arrays

are fixed in length (by default to five characters).

Each character is treated as a numerical subdomain

and the selected values are then mapped to letters

in the latin alphabet.

To search the solution space, we have chosen to use an

evolution strategy. We take the traditional approach, whereby

one new candidate is perturbed from the current solution

at a time. The new candidate replaces the current solution

if it evaluates as being superior, otherwise it is discarded.

We use a Mersenne Twister [15] to generate pseudorandom

numbers, mapped to a Gaussian distribution for perturbing

each parameter. The Mersenne Twister is a fast algorithm

with a long period that passes all the Diehard tests for

randomness. Gaussian distributions favour new values close

to the old ones, but still allow some exploration further away.

If the variance of the Gaussian distribution is too small,

the evolution strategy may never reach a global optimum,

but if it is too large, an optimum could be passed over

without it being detected. We follow Rechenberg’s one-

fifth rule to adapt the variance for optimal effectiveness

[16]. The ideal convergence rate is presumed to be achieved

when one out of five new values perform better than their

parents. This is achieved by applying Equation 1) every

ten generations. Algorithm 1 applies the process we use

to find new subdomains with our evolution strategy to the

hypothetical program.

σ′ =











σ ∗ 0.85, if n < 2

σ/0.85, if n > 2

σ, if n = 2

(1)

IV. EXPERIMENTS

We set up experiments to answer two research questions

in regard to optimising subdomains for mutation testing:

A. Is it possible to kill mutants more efficiently than

a random approach by optimising the subdomains

from which test inputs are generated?

B. Are some shapes of input distribution (within the

evolved subdomains) more efficient at killing mutants

than others?

We applied our subdomain optimisation technique to eight

programs of varying size and complexity (see Table I). These

programs are often used in testing research, so are well

known and understood. The programs range in size from 35

up to 500 lines of code. They were mutated by MuJava to

produce between 58 and 1632 non-equivalent mutants each.

Our method for describing subdomains of numerical,

Boolean and character types was explained in Section III.

Two of the programs require special handling: for Schedule,

we represent the input command file as an array of com-

mands; for Replace, we limit the search and replacement

strings to 5 characters and the source string to 10 characters

(or copies of the search string). We evaluate every set of

subdomains according to the mutation scores of test suites

generated from values within each range.



For every experiment, we record the average result of 100

repeated trials. Each trial begins with subdomains assigned

uniform random values between 0 and 100. The evolution

strategy has an initial variance of 50 and optimises the

subdomains through 300 generations (except for Replace,

which requires 600 generations for convergence). Mutants

are considered to be killed if they output a different result

or error code to the original program, or they appear to be

caught in an infinite loop (and the original program executes

successfully for the same parameter values).

A. Is it possible to kill mutants more efficiently by optimising

the subdomains from which test inputs are generated?

The first research question is addressed by optimising sets

of subdomains to produce test suites of 10, 100 and 1000 test

cases. Subdomains are optimised for each size of test suite

in a separate experiment so that the optimisation process

and resulting subdomains can be investigated for different

numbers of test cases. If 10 test cases can be sampled such

that they kill as many mutants as 100 or 1000 test cases,

we say that this is more efficient. We aim to determine

whether test input subdomains can be optimised such that

they perform more efficiently than random testing.

At each generation, test cases are generated using input

values sampled from within the range of the current subdo-

mains. The mutation scores of these test suites are averaged

over 100 trials and compared to the expected mutation score

for a random test suite of the same size. If, at the end of

the optimisation process, there is no discernible difference

in mutation score between test suites generated by our

technique and random testing, our technique has failed to

optimise the subdomains for this program.

We calculated the number of mutants for each program

expected to be killed by random test suites of 10, 100

and 1000 test cases (see Table II) using a combination of

experimentation and probability theory. In Equation 2, e(s)
is the expected number of mutants killed for a random test

suite sampled with s test cases, where for each mutant m,

K is the number of test cases that killed the mutant and

N is the total number of test cases from a large test suite.

We chose to use a test suite of 100,000 random test cases

(values between 0 and 100) because it is important that N
is much larger than s for accurate results.

e(s) =
∑

m∈mutants

1− (1−K/N)s (2)

Table II
EXPECTED MUTATION SCORE FOR RANDOM TEST SUITES WITH 10, 100

AND 1000 TEST CASES

Program s=10 s=100 s=1000

Power 0.963 0.994 1.00
TrashAndTakeOut 0.787 0.958 0.988
FourBalls 0.356 0.756 1.00
Tcas 0.0499 0.0569 0.0599
Cal 0.766 0.948 0.957
TriTyp 0.394 0.779 0.924
Schedule 0.236 0.840 0.853
Replace 0.209 0.321 0.329

B. Are some shapes of input distribution (within the evolved

subdomains) more efficient at killing mutants than others?

So far in this paper, test suites have been generated by

sampling uniformly across the range of each subdomain.

It may be possible to generate more efficient test suites by

sampling using different shapes of input distribution. We ad-

dressed the second research question by evolving optimised

subdomains for Uniform, Gaussian and Exponential samples

then comparing the mutation scores achieved.

As random numbers are primitively generated from a

uniform distribution between zero and one, they must be

stretched to fit a particular distribution. To sample from

a Uniform distribution, this is a straightforward process

of multiplication and addition (see Algorithm 2). We used

the polar form of the Box-Muller transformation for Gaus-

sian sampling (see Algorithm 3) and the inverse transform

method for Exponential sampling (see Algorithm 4). As Ex-

ponential and Gaussian distributions are infinite, we needed

to discard any values produced beyond the desired range.

We therefore set the mean, variance and/or lambda to ensure

95% of the distribution probability area is inside the range.

The remaining 5% are discarded and sampling is repeated

until values are found within the desired range.

Algorithm 1 Optimisation for subdomains [Al..Au], [Bl..Bu] and [Cl..Cu]

1: Select initial random values for Al, Au, Bl, Bu, Cl and Cu.

2: Evaluate mutation score of s test cases, using values generated from [Al..Au], [Bl..Bu] and [Cl..Cu].
3: Sample new values from a Gaussian distribution with corresponding mean Alower...Cupper and variance σ2:

(Al, Au, Bl, Bu, Cl, Cu, σ
2) → (A′

l, A
′

u, B
′

l, B
′

u, C
′

l , C
′

u, σ
2).

4: Evaluate mutation score of n test cases, using values generated from [A′

l..A
′

u], [B
′

l..B
′

u] and [C ′

l ..C
′

u]
5: If the new subdomains kill more mutants, replace the old subdomains, otherwise discard them.

6: Repeat steps 2-5 ten times. Count the number of times the new subdomains kill more mutants (n)

7: If n < 2: σ2 = σ2 ∗ 0.85, else if n > 2: σ2 = σ2/0.85, else: σ2 = σ2.

8: Repeat steps 2-8 until the termination condition is achieved.



Table I
TEST PROGRAMS USED IN THE EXPERIMENTS

Program Mutants LOC Function Reference

Power 58 35 Calculates the value of xy [17]
TrashAndTakeOut 111 60 Performs different calculations for each input condition [17]
FourBalls 189 40 Calculates the ratio of one input parameter to three others [18]
Tcas 267 120 Evaluates factors for air traffic control [19]
Cal 280 134 Counts the number of days between two dates [17]
TriTyp 310 61 Classifies triangles as scalene, isoceles, equilateral and invalid [18]
Schedule 373 200 Determines prioritised execution order [19]
Replace 1632 500 Performs substring replacement [19]

Our experiments use subject programs with a variety of

forms of computation, from control programs to programs

that perform string processing or numerical calculations.

Distribution shapes emphasise different parts of the sub-

domain. The impact of these changes will depend on the

internal control and data flow of the program under test. We

therefore expect each shape of input distribution to be better

suited to some programs than others.

Algorithm 2 Restricted Uniform Random Sampling

1: if left > right then
2: swap(left, right)
3: end if
4: range = right− left
5: return rand() ∗ range+ left

Algorithm 3 Restricted Gaussian Random Sampling [20]

1: if left > right then
2: swap(left, right)
3: end if
4: range = right− left
5: mean = range/2 + left
6: variance = (range/4) ∗ (range/4)
7: repeat
8: repeat
9: x = 2 ∗ rand()− 1

10: y = 2 ∗ rand()− 1
11: w = x ∗ x+ y ∗ y
12: until w < 1
13: w = x ∗ sqrt((−2.0 ∗ ln(w))/w)
14: until abs(w) ≤ range/(2 ∗ variance)
15: return mean+ variance ∗ w

Algorithm 4 Restricted Exponential Random Sampling

1: if left > right then
2: swap(left, right)
3: end if
4: range = right− left
5: lambda = 2 ∗ ln(20/range)
6: repeat
7: y = −ln(rand())/lambda
8: until y ≤ range/2
9: return left+ y

V. RESULTS

Below we present the results of our experiments, address-

ing each research question in turn.

A. Is it possible to kill mutants more efficiently than a

random approach by optimising the subdomains from which

test inputs are generated?

Our approach seeks highly efficient subdomains for each

program under test. At the start of a run, the minimum and

maximum value of each subdomain is generated uniformly

at random from [0..100]. In our experiments, we optimised

subdomains using three different sizes of test suite (s=10,

s=100 and s=1000). The average mutation scores achieved

at each generation are shown in Figure 2 along with the

expected mutation scores for random test suites (generated

uniformly from [0..100], without optimisation over time).

Optimised subdomains achieve a higher mutation score

than the initial random subdomains for every program with

all sizes of test suite. The average optimised mutation

scores also exceed the expected mutation scores (with range

[0..100]) on every program under test, with just three excep-

tions (see Table III). In these three cases, all the mutants are

expected to be killed by random testing, while the evolution

strategy occasionally becomes stuck in a local optimum. In

all other cases where random testing is not expected to kill

all the mutants, our optimisation technique finds subdomains

that kill more mutants.

We can compare the effectiveness of our approach against

two experiments using dynamic symbolic execution (see

Table IV). With 100 test cases, the average mutation score of

our subdomains for TriTyp and Schedule outperformed that

of dynamic symbolic execution by a considerable margin.

Yet with Tcas and Replace, even the highest mutation score

achieved by our subdomains fell short of that achieved by

dynamic symbolic execution.

We observed a correlation between the size of a program

and the mutation score achieved by 10 sampled test cases.

It is possible to kill most of the mutants from the smallest

program (Power) with little optimisation (see Figure 2a). In

contrast, the largest program (Replace) had a low mutation

score, even after 600 generations (see Figure 2h). The

proportion of mutants killed by 10 test cases from optimised



subdomains is correlated to the number of mutants and lines

of code with -0.690 and -0.667 Spearman’s rank coefficients.

There are some exceptions to this rule. Cal has almost

twice the number of mutants as Fourballs, but 89% were

killed by 10 test cases, compared to 83% with FourBalls (see

Figures 2e and 2c). TriTyp has one more line of code than

TrashAndTakeOut, but only 64% of its mutants are killed

by 10 test cases (see Figures 2f and 2b). For the size of the

program, the mutants of Tcas were the hardest to kill. The

mutation score achieved with Tcas was only slightly higher

than that achieved with Replace, but it has one sixth the

number of mutants and one quarter the lines of code.

None of our original trials with Tcas were able to produce

a mutation score above 0.05, the score predicted for random

testing (see Figure 2d). Inspection of the program code

reveals Tcas uses large constants in equality conditions.

For example, unless the value of Cur V ertical Sep is

greater than 600, most of the code will not execute. We

improved the mutation score slightly by widening the initial

subdomains, but it was more productive to scale the program

constants. We transformed the program by dividing eight of

its constants by 10, thus bringing them within the 0-100

range that we use for our initial subdomain limits. With the

transformed program, the optimised programs achieved an

average mutation score of 0.316 with 10 test cases. With

100 and 1000 test cases, the mutation score is even higher

(see Figure 2d, NB: the s=100 line is covered by s=1000).

Subdomains discovered on the transformed program can

be scaled up for use on the original program by multiplying

the relevant values by 10. The subdomains identified by our

technique were scaled to achieve an average mutation score

of 0.401 for 1000 test cases, with one of the trials achieving

0.625. This is comparable to the 0.643 mutation score

achieved by Papadakis et al. [19] with dynamic symbolic

execution. The approach could easily be applied to other

programs, although it would be difficult to automate this pro-

cedure. It is necessary to identify the relationship between

the input parameters and the internal program constants in

order to determine which parameters should be scaled.

Schedule achieves an average mutation score of just

0.350 with 10 test cases, but 0.845 with 100 test cases

(see Figures 2g). Looking at the subdomains produced by

optimisation (see Figure 1) suggests that parameters (such

as ‘prio 1’) have important values in different areas of their

input domain. Hence the optimised subdomains for Schedule

are large and 10 test cases insufficient to cover the important

input values. One possible solution would be to use multiple

subdomains, one for each cluster of values that achieve a

high mutation score.

Figure 1. Subdomain means for ’prio 1’

Evolved subdomains typically require fewer test cases

than directed search techniques such as dynamic symbolic

execution (see Table III). Papadakis and Malevris [19] used

8927 test cases to achieve a 56% mutation score with

Replace. It should be noted that our technique evaluates test

cases at each generation of subdomain evolution. It took

an average of 244 generations to achieve convergence with

Replace (see Table V. Therefore, for subdomains with 100

test cases, we evaluated on average almost three times as

many test cases as dynamic symbolic execution. The real

benefits of our technique only become available once the

subdomains have been evolved.

B. Are some shapes of input distribution (within the evolved

subdomains) more efficient at killing mutants than others?

In addition to uniform sampling, subdomains were opti-

mised for Gaussian and exponential distributions. There was

a significant difference in average mutation score between

the shapes of input distribution used to sample 10 test

Table III
DIFFERENCE BETWEEN OPTIMISED SUBDOMAINS AND RANDOM BENCHMARKS

Program 1) Compared to Initial 2) Compared to Expected
s=10 s=100 s=1000 s=10 s=100 s=1000

Power +5.04% +5.72% +6.30% +2.45% -0.0645% -0.0918%
TrashAndTakeOut +44.7% 42.2% +42.4% +23.8% +1.68% +0.176%
FourBalls +191% +231% +226% +134% +31.3% -0.733%
Tcas +379% +377% +376% +533% +728% +687%
Cal +125% +127% +130% +15.9% +0.859% +2.00%
TriTyp +126% +90.4% +83.2% +62.4% +22.5% +33.0%
Schedule +117% +2.25% +17.6% +48.0% +0.667% +5.04%
Replace +47.5% +32.4% +43.7% +68.5% +34.9% +31.6%



Table V
NUMBER OF GENERATIONS BEFORE CONVERGENCE

Program
Number of generations
Maximum Average

Power 36.0 5.68
TrashAndTakeOut 216 79.4
FourBalls 197 75.8
Tcas 297 183
Cal 297 203
TriTyp 300 207
Schedule 269 65.1
Replace 476 244

cases (see Figure 3). Gaussian distributions achieved higher

mutation scores with Tcas, Cal and Schedule; exponential

distributions performed better with Power, TrashAndTake-

Out, FourBalls, TriTyp and Replace.

The difference between input distributions is very small,

however, when compared to the improvement made by

optimising the subdomain minimum and maximum values.

The biggest improvement in mutation score (13.4%) was

seen when changing the FourBalls sampling distribution

from uniform to exponential with 10 test cases. This is

much less than the improvement already made for this

program by subdomain optimisation (134%). The difference

is even smaller when more test cases are sampled. No

significant difference was observed with FourBalls between

the distribution shapes used to sample 1000 test cases.

On the eight programs evaluated, uniform sampling was

never the best choice. This suggests it is useful to focus test

cases on a particular part of each subdomain. The problem

lies in deciding which distribution shape to use. In our

experiments, choosing the right shape only provided a small

increase in mutation score. Perhaps we should adopt a more

complex approach to match the ideal shape more closely.

VI. RELATED WORK

Despite its weaknesses, random testing is often used in

research and industry [21]. It is has the ability to produce

test cases quickly and can be implemented without analysing

the source code. Random testing can handle complex struc-

tures given an operational profile of expected usage and a

sufficient number of test cases [21]. The computational cost

is particularly high for mutation testing because, in addition

to complex reachability conditions, it is also necessary for

faults to propagate their effect to the output. This paper

presents a new approach that allows effective use of random

testing for mutation coverage by carefully selecting subdo-

mains of input to the program under test.

Previous research into random testing has aimed at dis-

tributing test cases more evenly to reduce the time it takes to

find faults. Adaptive Random Testing (ART) [22] maximises

the distance between existing test cases and Restricted Ran-

dom Testing (RRT) [23] sets up an exclusion zone around

each test case. Quasi-random sequences [24] and lattices

[25] have also been investigated. There are some limitations

to this technique. Chen and Merkel [26] have proven that

no strategy can find a fault in less than half the test cases as

a purely random strategy without using information about

the behaviour of the software. Arcuri and Briand [27] have

shown that the added expense involved with these techniques

can sometimes outweigh the benefits.

Most test generation strategies for mutation use directed

structural search techniques. Fraser and Zeller [32] measure

how close a test suite is to killing a mutant in terms of branch

coverage and mutant impact. Dynamic symbolic execution

has been used to exercise mutants [30] [19] [31]. Papadakis

and Malevris [19] negate symbolic branch conditions to

promote mutant propagation. Harman et al. [31] search for

conditions that maximally disrupt the execution path after

mutation. These techniques are all ‘white box’. Mutants

are targeted individually and specific test cases produced.

This approach does not work on every program and it is

computationally expensive to produce new test cases. Our

technique is more ‘black box’. It finds input subdomains,

which can be used repeatedly and inexpensively to produce

high performing test cases.

There are parallels between our work and statistical

structural testing. Statistical testing has been used for spec-

ification models [28] and also for branch coverage [29].

The aim is to find an input distribution for testing such

that it achieves an even coverage of the program elements.

Statistical structural testing optimises more complex shapes

of input distribution than we achieve in our research. These

techniques have not yet been applied to mutation testing.

Mutation coverage is more difficult to achieve than branch

coverage and there are questions over how to optimise

complex input shapes for mutation testing. Our technique

produces simple input subdomains which can easily be

reused. It may also be possible to adapt our technique for

more sophisticated shapes of subdomain input distribution.

Table IV
COMPARISON WITH DYNAMIC SYMBOLIC EXECUTION

Program
Evolved subdomains (s=100) Papadakis and Malevris [19] Harman et al. [31]

Highest mutation score Average Mutation Score Mutation Score Test Cases Mutation Score Test Cases

Tcas 62% 47% 64% 422 54% -
TriTyp 99% 95% 69% 90 59% -
Schedule 100% 85% 57% 301 57% -
Replace 46% 43% 56% 8927 53% -



(a) Power (b) TrashAndTakeOut

(c) FourBalls (d) Tcas

(e) Cal (f) TriTyp

(g) Schedule (h) Replace

Figure 2. Mutation scores for random test suites and evolved subdomains (averaged over 100 trials)



(a) Power (b) TrashAndTakeOut

(c) FourBalls (d) Tcas

(e) Cal (f) TriTyp

(g) Schedule (h) Replace

Figure 3. Mutation scores for subdomains sampled with different distributions (averaged over 100 trials)



VII. CONCLUSIONS

Our optimisation technique identified subdomains from

which test cases can be selected with higher mutation

score than from the interval [0..100] or random subdomains

thereof. This was achieved for eight benchmark programs,

three sizes of test suite and three shapes of input distri-

bution. Our technique only failed to surpass the expected

mutation score of subdomains selected from [0..100] when

the expected mutation score was 100%.

Optimisation increased the mutation score of each test

suite, but greater improvements were made using 10 test

cases compared to 100 or 1000, largely because the initial

mutation score was much lower. The three shapes of input

distribution used to sample test cases had little effect on the

mutation score. The distribution shapes used in our exper-

iments are primitive. This allows us to specify a different

distribution shape without any additional parameters, but

more complex shapes may achieve better results.

Scaling the parameters of Tcas allows more effective

identification of subdomains. Some basic understanding of

the program code was necessary in order to determine

which parameters to scale. This threatens the validity of

subdomain optimisation as a black-box technique, but it was

only necessary to have knowledge of the global constants in

Tcas. No scaling was needed for the other seven programs.

The strengths of our technique are:

1) It allows black-box testing for an unknown program

2) It selects effective subdomains for regression testing

3) It provides some insight into how to choose good

input values for testing a program (e.g. Tcas)

The weaknesses of our technique are:

1) It is computationally expensive if the resulting

subdomains are only used once

2) It can be difficult to decide how best to represent

the input parameters in an evolution strategy

3) It may not always possible to optimise subdomains

without some understanding of the program code

VIII. FUTURE WORK

Some suggestions for future work include:

1) Optimising more sophisticated shapes of input dis-

tribution, from which to sample test cases

2) Experimenting with larger test programs, using

examples from industry

3) Investigating whether we can learn about program

behaviour using the optimised subdomains

Our technique can be made more sophisticated by opti-

mising multiple subdomains for each input parameter. This

may help in cases where important input values are located

far apart (e.g. Schedule). The challenge will be to decide

where to focus each subdomain. We could take a clustering

approach based on the previous results. It would be simpler

to optimise the subdomains simultaneously, using an extra

parameter to determine how often each set of subdomains

is used. This approach would effectively generate a mixture

distribution of subdomains.

We can also use more generalised distributions such as

the Weibull and exponentiated Weibull distribution, or build

up a histogram of input values (using similar techniques

to statistical testing). The disadvantage of extending our

technique in this way is that the extra complexity of adding

more parameters may make optimisation more difficult.

We can improve the evolution strategy by adapting a

separate variance for each parameter. Different parameters

require different sized steps away from the mean for optimal

fine-tuning. Techniques such as CMA-ES take this into

account by adapting a covariance matrix rather than a single

variance for Gaussian adaptation. It is difficult to make

generalised statements from our current results. With more

advanced forms of evolution strategy, we should be able to

apply our technique to larger programs used in industry.

Finally, we can investigate the size and position of each

optimised subdomain. This may reveal information about the

behaviour of the programs under test that will allow us to test

them more effectively. Important properties to consider in-

clude the minimum and maximum value of each subdomain,

as well as its mean and length. Initial experiments with Tcas

reveal the value of ‘Cur Vertical Sep’ must be above 600 to

achieve a high mutation score. This corresponds to a branch

in the program which passes execution quickly to the exit

if this value in less than 600. We can therefore construct a

basic semantic model without inspecting the program code.
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