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Abstract: Inundation models based on the Shallow Water Equations (SWE) have been shown to perform well for a3

wide variety of situations even at the limit of their theoretical applicability and, arguably, somewhat beyond. One of4

these situations is the catastrophic event of floods induced by dyke breach and consequent dyke erosion. The dyke5

collapse is often not sudden - as assumed by many flood simulations in which the dyke boundary is treated as a "dam-6

break". The dyke erosion is a gradual and complex process that delays the onset of the flood, affecting the hydrograph7

of the flow. To simulate correct temporal passage of a flood, it is important to understand the rate at which these dykes8

collapse. In this paper an overtopping flood event combined with dyke erosion is simulated. The model is built upon the9

2D Shallow Water Equations together with sediment-flow interactions and incorporates a sediment transport equation.10

The model is solved using a second-order Godunov-type finite volume method that is accurate and robust. For breach11

formation, the lateral erosion collapse due to slope instabilities has a significant impact and must be considered, in this12

paper a simple mathematical approach in two dimensions is proposed to evaluate the stability of lateral bed slope.13

Several experimental tests are used for validating the morphodynamic model. It is verified that the simulated results14

agree well with measured data, and that the model predicts such flow phenomena effectively. The validated model is15

applied to predict a flood event caused by dyke breach with an initial trapezoidal shape due to flow overtopping. The16

predicted results for the flood event indicate that the 2D process-based morphodynamic model is capable of simulating17

the spatial and temporal changes of the flood event, including predicting the outflow hydrograph with good agreement,18

as well as the erosion of the dyke and subsequent deposition process.19

Keywords: dyke breach; flow overtopping; morphodynamic model; sediment transport20

Introduction21

Inundation modeling is significant in flood risk management and disaster prevention and mitigation. A key example of22

inundation, the catastrophic event of floods induced by the breaching of a dyke is rather complicated to predict, not only23

because it is related to flood water propagation, but also to sediment transport which is still not well understood. In24

recent years, several small-scale experimental studies and field observations have been investigated to further25

understand the dyke breach process caused by flow-overtopping (Chinnarasri et al. 2003, Coleman et al. 2002,26

Froehlich 2008, Morris et al. 2007). Such laboratory experiments provide insight into the continuous breach growth27

process. Based on this understanding, numerical models are increasingly attractive and have emerged in large numbers28

because they are cost-effective and the simulations are not restricted by the spatial-scale of flood events.29

Traditionally dyke collapse is assumed to be a “sudden dam-break” of the whole structure or a constant breach size.30

However, such treatments are unrealistic in reality and the “sudden collapse” hypothesis is too conservative. In fact, the31

dyke breach induced by flow-overtopping is a progressive process of water flow-sediment transport interaction. This32

progressive rather than sudden erosion delays the onset of the flood, changing the outflow hydrograph. Dam breach33

models have been classified into different groups by researchers (Singh 1996, Wu et al. 2011), with each kind identified34

as having advantages and disadvantages as a result of its assumptions or simplifications. The first type of model is the35

so-called parametric or empirical model which assumes the dyke breach enlarges progressively at a constant36
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downcutting rate (Froehlich 1995, Froehlich 2008, Pierce et al. 2010, Wahl 1998, Walder and Oconnor 1997). This37

method estimates the peak outflow or breach width by using statistically derived regression equations with a large38

number of historical parameters for dams and reservoirs. As such, parametric models are very sensitive to the39

parameters related to the constant downcutting rate and neglect the flow eroding capacity during the dyke breach40

process. It is thus probable that unrealistic results could occur under certain flow conditions and material properties.41

More realistic physically-based models have been developed in recent years(Franca and Almeida 2004, Macchione42

2008), but many of these make significant simplifications, for example they assume the breach has a certain shape,43

neglect some characteristics of the dyke or simply transpose the classical sediment transport equation to describe the44

breach evolution, all of which limit their application to real cases. More recently 1D and 2D morphodynamic models45

have been presented based on shallow water theory focusing on embankment breach process and bank erosion issues46

(Cao et al. 2011, Faeh 2007, Pontillo et al. 2010, Roelvink et al. 2009, Spinewine et al. 2002, Volz et al. 2012). Two-47

layer models and two-phase models for high concentration sediment-laden flow (Greco et al. 2012, Zech et al. 2008) are48

also becoming increasingly attractive. However, due to the complexities of dyke breach processes, the detailed49

breaching models also present some difficulties in application, e.g. the choice of appropriate sediment entrainment50

function and transport capacity function, as well as how to better model the lateral bed erosion etc. For the dyke breach,51

bed slope avalanching is certainly a crucial process. In recent years several bank failure operators have been presented52

in order handle the issues of bank erosion and the dyke breach growth (Spinewine et al. 2002, Swartenbroekx et al.53

2010, Volz et al. 2012). Spinewine et al. (2002) suggested, based on experimental evidence, that the critical failure54

angles should be different above and below the water surface; following this Swartenbroekx et al. (2010) and Volz et al.55

(2012) developed two-dimensional bank failure operators based on triangular mesh and dual-mesh approaches,56

respectively.57

In this paper, we present a 2D layer-based hydro-morphodynamic model focusing on predicting the flood process58

caused by a complex dyke breach. An advanced second-order TVD-WAF scheme is proposed to solve the model system59

numerically and the model is validated by several experimental cases. Further, an easy-to-implement 2D bed slope60

avalanching model applicable to rectangular meshes is proposed in order to evaluate the stability of bed slope. This is61

tested by comparing results against two theoretical bed slope failure cases. Due to the irregularity of topography caused62

by morphological change, the method proposed by (Guan et al. 2013) is used to handle the wetting and drying problem.63

The model is then applied to an experiment-scale partially breached dyke case.64

Morphodynamic model65

Model assumptions66

Based on an understanding of the physical processes of sheet flow, a layer-based concept divides the whole flow region67

into an active bed layer; a mixed flow-sediment sheet flow layer and an upper water flow layer (Fig.1). The framework68

for the layer-based model system considered here consists of:69

 a hydrodynamic module governed by the ShallowWater equations with sediment effects;70

 a sediment transport module controlling the sediment mass conservation;71

 and a bed deformation module for updating the bed elevation under the erosion and deposition of sediment72

Flow-sediment interaction is a rather complex process and understanding is still in its infancy; thus it is impossible73

to include a complete picture of the hydraulic and sedimentary effects accurately in any model. The present model is no74

exception. Consequently in this work the following assumptions are adopted; (1) the sediment material is considered as75

non-cohesive for all of the cases studied; (2) the collision effects of sediment particle-particle are ignored; (3) the time76
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scale of bed change is much larger than that of flow movement, thus the flow is calculated assuming a “fixed” bed at77

each time step.78

79

Fig.1. Schematic drawing of the conceptual model in the longitudinal direction80

81

Governing equations82

The hydrodynamic model is governed by 2D Shallow Water equations including the mass and momentum exchange83

between flow and bed. The sediment transport model is governed by the mass conservation of sediment (Li and Duffy84

2011, Simpson and Castelltort 2006, Xia et al. 2010). Thus the following equations are used to describe the whole85

system:86 డఎడ௧ + డ௛௨డ௫ + డ௛௩డ௬ = 0 (1)87 డఘ௛௨డ௧ +
డడ௫ ଶݑ൫ℎߩ + భమ݃ℎଶ൯ + డఘ௛௨௩డ௬ = ℎ൫ܵ௢௫݃ߩ − ௙ܵ௫൯ (2a)88 డఘ௛௩డ௧ +
డఘ௛௨௩డ௫ +

డడ௬ ଶݒ൫ℎߩ + భమ݃ℎଶ൯ = ℎ൫ܵ௢௬݃ߩ − ௙ܵ௬൯ (2b)89 డ௛್஼್డ௧ +
డ௛್௨್஼್డ௫ +

డ௛್௩್஼್డ௬ = − (௤್ି௤್∗)௅ (3)90

where η=water surface elevation (m); h=flow depth (m); u, v=average flow velocity in x and y direction (m/s); hb, ub, vb,91

Cb are depth (m), velocity in x direction (m/s), velocity in y direction (m/s) and volumetric concentration (dimensionless)92

in sheet flow layer; qb=real transport rate (m
2
/s); qb*= transport capacity (m

2
/s); L=non-equilibrium adaptation93

coefficient of sediment transport (m); ρ=density of sediment and water mixture (m3/s), ρ=ρw(1-C)+ρsC; C=volumetric94

concentration in flow depth (dimensionless) ρs, ρw =density of sediment and water respectively (m3/s). Sox, Soy are the95

bed slopes in x and y direction expressed by ܵ௢௫ = ିങ೥್ങೣ , ܵ௢௬ = ିങ೥್ങ೤ ; Sfx, Sfy are the frictional slopes in x and y direction96

calculated by ௙ܵ௫ = ೙మೠඥೠమశೡమ೓ర/య ; � ௙ܵ௬ = ೙మೡඥೠమశೡమ೓ర/య . As the mass flux of sediment transport has, say ℎܥݑ = ℎ௕ݑ௕ܥ௕ →97 ℎ௕ܥ௕ = ೠೠ್ℎܥ = �inܥℎߚ x direction, the Eq.(3) can be approximately converted to the expression below by expanding98

the Eq.(3):99 డ௛஼డ௧ + ଵఉ డ௛௨஼డ௫ +
ଵఉ డ௛௩஼డ௬ = − ଵఉ (௤್ି௤್∗)௅ (4)100

where β=u/ub is the flow-to-sediment velocity ratio. Also, the relationship ρ=ρw(1-C)+ρsC is substituted into Eqs.(2)101

which is then re-formulated. The converted momentum conservation equation is then approximately rewritten as102 డ௛௨డ௧ + డడ௫ ቀℎݑଶ + ଵଶ݃ℎଶቁ + డడ௬ ℎݒݑ = ݃ℎ൫ܵݔ݋ − +൯ݔ݂ܵ ߩݑߩ∆ ݐ߲ܾݖ߲ ቀ1−ߚ݌ − ቁܥ − ℎ2݃ߩ∆
ߩ2 ݔ߲ܥ߲ − ܣܵ (5a)103

డ௛௨డ௧ + డడ௫ ℎݒݑ + డడ௬ ቀℎݒଶ + ଵଶ݃ℎଶቁ = ݃ℎ൫ܵݕ݋ − +൯ݕ݂ܵ ߩݒߩ∆ ݐ߲ܾݖ߲ ቀ1−ߚ݌ − ቁܥ − ℎ2݃ߩ∆
ߩ2 ݕ߲ܥ߲ − ܤܵ (5b)104

The morphological evolution is calculated according to the relation of the sediment transport rate and the transport105

capacity as106
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(1 − (݌ డ௭್డ௧ = (௤್ି௤್∗)௅ (6)107

where p=sediment material porosity (dimensionless); zb=bed elevation (m); Δρ=ρs-ρw; SA, SB are the additional terms108

related to the velocity ratio β which is expressed by109

஺ܵ,஻ = ∆ఘ௏ఘ ቀ1 − ଵఉቁ ቂቀܥ డ௛௨డ௫ + ܥ డ௛௩డ௬ ቁ − ቀℎݑ డ஼డ௫ + ℎݒ డ஼డ௬ቁቃ110

where U=u for SA; U=v for SB; The last three source terms of Eqs.(5a-b) represent the interaction effects of sediment and111

water flow and momentum transfer due to sediment exchange.112

Empirical relationships113

Threshold for incipient motion114

The threshold of sediment incipient motion is closely related to the dimensionless sediment particle size. The115

relationship proposed by Soulsby (Soulsby 1997) is applied in this paper.116 ௖ߠ = ଴.ଷ଴ଵାଵ.ଶௗ∗ + 0.055[1 − exp(−0.02݀∗)] (7)117

in which, d
*
=d[(s-1)g/ν2]1/3 represents the dimensionless sediment particle size. With consideration of bed slope effects,118

the critical dimensionless bed shear stress is calculated by119 ௖௥ߠ = ݇ଵߠ௖ (8)

where θcr is the critical dimensionless bed shear stress for sediment incipient motion; k1 is the coefficient corresponding120

to bed slope effects. Based on the investigation of Smart and Jäggi (Smart and Jäggi 1983), k1 is determined according121

to the relation of flow direction and bed slope S as122 ݇ଵ = ൜cos(arctan |ܵ௢௫|)(1 − |ܵ௢௫| tan߮⁄ ݑ��( ∙ ܵ௢௫ < 0

cos(arctan |ܵ௢௫|)(1 + |ܵ௢௫| tan߮⁄ ) ݑ� ∙ ܵ௢௫ > 0
�

where φ is the angle of repose; u, Sox are the velocity and the bed slope in x direction; similar equations can be derived123

for the y direction.124

The flow-to-sediment velocity ratio125

The sheet flow velocity has been studied by the derivation of empirical relationships based on experiments (Greimann126

et al. 2008, Hu and Hui 1996, van Rijn 1984). In this paper, the Eqn. by (Greimann et al. 2008) is used to estimate the127

approximate velocity ratio. In terms of high bed shear stress with θ≥20θcr, the flow-to-sediment velocity ratio β=1 is128

assumed. Thus129

ߚ = ൝ ௨௨್ = ௨௨∗ ඥఏ೎ೝଵ.ଵ(ఏ/ఏ೎ೝ)బ.భళ[ଵିୣ୶୮(ିହఏ/ఏ೎ೝ)] ௖௥ߠ/ߠ���� < 20

௖௥ߠ/ߠ�����������������������������������������������������������������1 ≥ 20 � (9)130

where θ is the real dimensionless bed shear stress.131

Non-equilibrium adaptation coefficient L132

The non-equilibrium adaptation length L means the ability of sediment particles movement in water flows. The133

coefficient L has been investigated by many researchers (Armanini and Di Silvio 1988, Greimann et al. 2008, Wu 2004),134

following which, the relationship ܮ = ℎ√ݑଶ + ߱ߛ/ଶݒ is used, but the coefficient γ is regarded as the ratio of the135

near-bed concentration and the volumetric concentration in flow with a maximum of (1-p). Thus,136 ܮ = ௛ඥ௨మା௩మఊఠ with ߛ = min ቀܥܾܥ , ܥ݌−1 ቁ = min ቀߙ ℎℎܾ , ܥ݌−1 ቁ137



in which, hb=µθd50, µ is a dimensionles138

sediment setting velocity (Pugh and W139

determined by Soulsby’s equation (Soul140

Sediment transport rate141

The commonly-used relationship, Meye142

However, the MPM equation is derived143

to 0.02 and dimensionless bed shear str144

bed slope of <0.03 and a calibrated c145

transport rate is (M_MPM) expressed by146 כ௕ݍ� ൌ ߰ͺ(147ߠ

where ߰ is a calibrated coefficient. W148

expanded the database obtained by MPM149

to estimate the maximum transport capa150

bed slope>0.2, the bed slope S is mod151

physically large due to surpassing the152

written by:153 כ௕ݍ� = 4 ቀௗవబௗయబቁ଴Ǥଶ ௛భȀల௡√௚m154

in which, d90/d30=1.02 for uniform sedim155

Two-dimensional bed slope avalanc156

As discussed in the introduction, Swarten157

bank failure operators using different cr158

presented for triangular meshes and th159

implement 2D bed slope avalanching m160

method is that: if the bed slope φi of a161

avalanching will then occur to form a n162

short, the process of avalanching is sim163

material. As shown in Fig.2. for the164

surrounding each cell. Taking, say cell (165

will be used for updating the elevation i166

in the four directions, and each update o167

168

Fig.2. Schematic diagram of proposed bed le169

170

5
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ment particles.

ching model

tenbroekx et al. (2010) and Volz et al. (2012) have d

ritical angles above and below the water; however, bo
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171

We take the re-forming process of sediment in i (i=1, 2, 3, 4) direction as an example to derive the updating172

equation as follows. When φi>φ, the new angle of bed slope is approximately equal to the angle of repose by reducing173

the higher cell elevation and elevating the lower cell elevation. This is depicted in Fig.1for the case of φi>0, in which174

case zi is calculated using:175 ௜ݖ∆ = ∆௭ଶ ≈ ௟೔(୲ୟ୬ఝ೔ି୲ୟ୬ఝ)ଶ (10)176

where li = the length of two cells in i direction; l1=dx; l2=dy; l3=l4=ඥ݀ݔଶ + .ଶݕ݀ As the bed slope angle φi in i (i=1, 2,177

3, 4) direction might be negative or positive, the equation above is rewritten with consideration of the positive and178

negative of φi by179 ௜ݖ∆ = ቊ∆௭ଶ ≈ (௜߮)݊݃݅ݏ ௟೔(୲ୟ୬|ఝ೔|ି୲ୟ୬ఝ)ଶ |߮௜| > ߮
0 |߮௜| ≤ ߮� (ܽ)݊݃݅ݏ��݁ݎℎ݁ݓ� = ൝1���������ܽ > 0

0���������ܽ = 0−1������ܽ < 0

� (11)180

Thus, the modified 2D bed slope avalanching equation is finally given by181

⎩⎪⎨
௡௘௪(௜,௝)ݖ⎧⎪ = ௜,௝ݖ + ∑ ௡௘௪(௜,௝ାଵ)ݖ௜ସ௜ୀଵݖ∆ = ௜,௝ାଵݖ − ௡௘௪(௜ାଵ,௝)ݖଵݖ∆ = ௜ାଵ,௝ݖ − ௡௘௪(௜ାଵ,௝ାଵ)ݖଶݖ∆ = ௜ାଵ,௝ାଵݖ − ௡௘௪(௜ିଵ,௝ାଵ)ݖଷݖ∆ = ௜ିଵ,௝ାଵݖ − ସݖ∆

� (12)182

Since avalanching between two cells may induce new avalanching at neighbouring cells, the sweeping process is183

repeated using Eq.(12) until no further avalanching occurs. The re-forming process is however time-consuming which184

considerably increases the computational time. In general, the time step of bed slope avalanching depends on the185

sediment material properties closely and it is difficult to estimate it. In this study, to increase simulation efficiency, the186

stability analysis is implemented at a larger time step based on a sensitivity test which shows an insignificant influence187

of it on the predicted results. Additionally, different values are used for the critical angles (φdc for dry bed and φwc for188

wet bed) and the re-formation bed slope angles (φdr for dry bed and φwr for wet bed) above and below the water as189

supported by (Spinewine et al. 2002). Here, the wet and dry conditions are evaluated according to the simulated value190

of water depth at each time step. Correspondingly, the estimated critical and re-formation bed slope angles are assigned191

for the two different conditions.192

Numerical Solution193

Eq.(1), Eq.(2) and Eq.(3) constitute a shallow water non-linear system. In compact form, the governing equations can be194

expressed by195 డ܃డ௧ + డ۴డ௫ + డ۵డ௬ = ܁ (13)196

܃ = ቎ ቏ܥℎݒℎݑℎߟ ,۴ = ⎣⎢⎢
⎢⎡ ℎݑℎݑଶ + ଵଶ݃ℎଶℎݒݑଵఉ ℎܥݑ ⎦⎥⎥

⎥⎤
,۵ = ⎣⎢⎢

⎢⎡ ℎݑℎݒݑℎݒଶ + ଵଶ݃ℎଶଵఉ ℎܥݒ ⎦⎥⎥
⎥⎤
, ܁ =

⎣⎢⎢
⎢⎢⎡

0݃ℎ൫ܵ௢௫ − ௙ܵ௫൯ + ∆ఘ௨ఘ డ௭್డ௧ ቀଵି௣ఉ − ቁܥ − ∆ఘ௚௛మଶఘ డ஼డ௫ − ஺ܵ݃ℎ൫ܵ௢௬ − ௙ܵ௬൯ + ∆ఘ௩ఘ డ௭್డ௧ ቀଵି௣ఉ − ቁܥ − ∆ఘ௚௛మଶఘ డ஼డ௬ − ܵ஻− ଵఉ (௤್ି௤್∗)௅ ⎦⎥⎥
⎥⎥⎤197

To solve the system (13), a HLL based scheme has been used. An excellent description of this approach is given by198

Toro (Toro 2001), so a detailed description is omitted here. However, the proposed model system incorporates an extra199

governing equation for sediment transport. To incorporate this in to the HLL Riemann solver, the flux at the interface of200

two adjacent cells is obtained by the use of a middle contact discontinuity waves S*. Through the assessment of S*, the201
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sediment flux is determined based on the concentration at the right cell or left cell. In the following, a brief description202

is given explaining how this interface flux is calculated for the coupled flow and sediment model. Firstly, the first three203

flux terms can be expressed by the basic HLL scheme expression as follows:204

۳௅ோ�ଵ,ଶ,ଷ∗ = ൝۳௅���������݂݅�ܵ௅ ≥ 0۳ோ ��������݂݅�ܵோ ≤ ݁ݏ݅ݓݎℎ݁ݐ݋��������∗0۳ � (14)

where EL =E(UL), ER =E(UR) are the flux and conservative variable vectors at the left and right side of each cell205

interface. E
*
is the numerical flux in the star region, calculated in two dimensions by206 ۳∗ ∙ ܖ = ௌೃ۳ಽ∙ିܖௌಽ۳ೃ∙ܖାௌೃௌಽ(܃ೃି܃ಽ)ௌೃିௌಽ207

in which, n=[nx, ny]
T
; the SL and SR denote two wave speeds which must be selected carefully to avoid any entropy208

violation. The so-called “two expansion” approach (Toro 1992) was adopted here including dry-bed options to estimate209

SL and SR. They are expressed by210 ܵ௅ = ቊmin൫ܙ௅ ∙ ܖ − ඥ݃ℎ௅ ∗ݑ, − ඥ݃ℎ∗൯��݂݅�ℎ௅ > ோܙ0 ∙ ܖ − 2ඥ݃ℎோ ��������������������������������݂݅�ℎ௅ = 0
� ; �ܵோ = ቊmin൫ܙோ ∙ ܖ + ඥ݃ℎோ ∗ݑ, − ඥ݃ℎ∗൯��݂݅�ℎோ > ௅ܙ0 ∙ ܖ + 2ඥ݃ℎ௅����������������������������������݂݅�ℎோ = 0

�211

where ∗ݑ = ଵଶ ௅ܙ) + (ோܙ ∙ ܖ + ඥ݃ℎ௅ − ඥ݃ℎோ , ඥ݃ℎ∗ = ଵଶ ൫ඥ݃ℎ௅ + ඥ݃ℎோ൯ + ଵସ ௅ܙ) − (ோܙ ∙ ܖ ; q=[u, v]. The middle212

wave speed S*is calculated by the following form as recommended by Toro (2001).213 ܵ∗ = ௌಽ௛ೃ(ܙೃ∙ିܖௌೃ)ିௌೃ௛ಽ(ܙಽ∙ିܖௌಽ)௛ೃ(ܙೃ∙ିܖௌೃ)ି௛ಽ(ܙಽ∙ିܖௌಽ)214

To calculate the intercell numerical fluxes, a weighted average flux (WAF) of total variation diminishing (TVD)215

method is employed with a flux limiter function. The TVD-WAF scheme is second-order accurate in space and time by216

solving the conventional Riemann problem associated with the first-order Godunov scheme. A detailed description can217

be found in (Toro, 2001). Taking the calculation of flux in the x direction as an example, this is calculated using:218 ۴௜ାଵ/ଶ,(ଵ,ଶ,ଷ)∗ =
ଵଶ (۴௜ + ۴௜ାଵ) − ଵଶ ∑ Φ௜ାଵ/ଶ௞(௞ܿ)݊݃݅ݏ ∆۴௜ାଵ/ଶ௞ே௞ୀଵ (15)219

in which, Fi= F (Ui), Fi+1= F (Ui+1) are the flux and conservative variable vectors at the left and right sides of each cell220

interface; ck is the Courant number for wave k, ck=ΔtSk/Δx; Sk is the speed of wave k and N is the number of waves in221

the solution of the Riemann problem, N=2 in conjunction with HLL approximate Riemann solver. ΔF(k)i+1/2=F(k+1)i+1/2-222

F
(k)
i+1/2, which is the flux jump across wave k; F

(k)
i+1/2 is the value of the flux vector in the interval k; herein223

F
(1)
i+1/2=F(UL), F

(2)
i+1/2=F(U

*
), and F

(3)
i+1/2=F(UR) which are estimated by virtue of the HLL approximate Riemann224

solver, Φ(r) is the WAF limiter function. The WAF limiter used here is expressed through the well-known conventional225

flux limiter term φ(r) was the min-mod limiter:226

Φ(r) =1-(1-|c|)φ(r) with φ(r)=max[0, min(1, r)] (min-mod limiter)227

where r
(k)
is the ratio of the upwind change to the local change in scalar quantity q. It can be written by:228

(௞)ݎ = ൝∆ݍ௜ିଵ/ଶ(௞) ௜ାଵ/ଶ(௞)ൗݍ∆ = ൫ݍ௜(௞) − ௜ିଵ(௞)ݍ ൯ ൫ݍ௜ାଵ(௞) − ௜(௞)൯ൗݍ ����݂݅�ܿ௞ > ௜ିଷ/ଶ(௞)ݍ∆0 ௜ାଵ/ଶ(௞)ൗݍ∆ = ൫ݍ௜ାଶ(௞) − ௜ାଵ(௞)ݍ ൯ ൫ݍ௜ାଵ(௞) − ௜(௞)൯ൗݍ ����݂݅�ܿ௞ > 0

�229

For the x split 2D Shallow Water equations we choose q=η for the left wave SL (k=1) and the right wave SR (k=2).230

Based on the solution of the previous three flux terms, the fourth flux term-sediment flux Fi+1/2,4 at the interface of two231

adjacent cells is determined by the relationship of the middle waves S* and zero, calculated by232 ∗௜ାଵ/ଶ,ସܨ = ቊܨ௜ାଵ/ଶ,ଵ∗ ∗௅���ܵܥ ≥ ∗௜ାଵ/ଶ,ଵܨ0 ∗ோ���ܵܥ < 0
(16) �

where CL and CR are the volumetric sediment concentration in left and right cells; Fi+1/2,1 is the first flux component233
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derived based on experimental data and as such are unlikely to be completely applicable to all the complex flow333

conditions. We have performed a simulation on a finer mesh, and found that the mesh size is not a major reason causing334

the inaccuracies.335

336

Fig.10. Comparisons between simulated results and measured data for full dyke breach test337

338

Simulation of a Dyke Breach from a Partial Overtopping Flow339

In this section, a flood event caused by a partially breached dyke is reproduced by the validated morphodynamic model340

to simulate the spatial and temporal evolution of the dyke breach. The predicted outflow hydrograph and the change of341

water level in the reservoir are compared with measured data.342

Experimental conditions343

The experiment conducted by UCL (Spinewine et al. 2004) was simulated. A sand dyke of 2.4m long and 0.47m high344

was built at 11.8m along a 36.2m×3.6m flume; two fixed blocks were placed on the left and right sides of the dyke; the345

upstream and downstream slopes of sand dyke were 1:2 and 1:3 respectively, and a 10cm sand layer was laid346

downstream of the dam. The sediment material was composed of sand with a median diameter d50=1.80mm, specific347

gravity of s=2.615 and a loose bed porosity p=0.42 after compaction. An upstream reservoir contained water for the348

experiment, which was held by a gate which was then gradually opened so the water filled the region upstream of the349

dyke until water level was at 0.45m. A small trapezoidal breach was dug on the top middle of dyke to initiate the flow350

overtopping at this point. Subsequently the breach enlarged with the flow gradually with increasing time. The two351

blocks besides the sand dike are treated as the part of the sand dyke with the restriction that in the simulation they are352

not erodible.353

Measured data354

The measured data (Spinewine et al. 2004) used is:355

(1) the water level change with time in the upstream reservoir;356

(2) the outflow discharge against time;357

(3) full digital terrain models (DTMs) of the breach topography interpolated from laser-observed transverse profiles.358

The outflow discharge was estimated by using the measured water level, thus the estimated outflow hydrographs359

show a significant uncertainty range as shown in (Spinewine et al. 2004, Van Emelen et al. 2011); the estimated360

discharge Q2 is used in the following.361

Predicted hydrograph362

The whole dyke and channel are discretised with dx=0.035m and dy=0.03m and the coefficient values ψ=1.5 and μ=9.0363

were chosen. For this kind of flood event the outflow peak discharge is a vital hydraulic parameter that needs to be364
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predicted. Manning’s coefficient n has a direct influence on the bed shear stress and thus strongly influences the flow-365

induced sediment transport; therefore, four different Manning’s coefficients (n=0.017, 0.018, 0.019, 0.02) are used for366

evaluating and analysing its sensitivity in the modelling of the dyke breach process. Fig.10 illustrates the comparisons367

between the predicted results and the measured data, showing both the outflow hydrograph (Fig.11a) and the water level368

in the reservoir (Fig.11b). It can be seen that the Manning’s coefficient changes the peak value and the time of369

occurrence of the peak outflow discharge, consequently the water level in the reservoir is also affected. More370

specifically, the larger the Manning’s coefficient the more water flow from the reservoir, thus the outflow peak371

discharge becomes larger and occurs at an earlier time. The reason for this is primarily because increasing Manning’s372

coefficient increases the calculated bed shear stress, so the dyke is eroded more severely and thereby the breach process373

is accelerated. Some small oscillations occur at the simulated outflow hydrograph, in particular at the peak stage. These374

occur because the lateral bed avalanching erodes the sediment material of the breach, which raises the elevation of the375

breach temporarily and locally blocks the flow; then as further erosion occurs based on the previous updating of the bed.376

Overall, the present model predicts the outflow hydrograph and the temporal change of water level in the reservoir377

effectively with good agreement to measured data.378

379
Fig.11. Comparisons between predicted result and measured data for partial dyke breach test, (a) water level; (b) outflow discharge380

381

Simulated dyke breach382

As mentioned above, the DTMs (Spinewine et al. 2004, Van Emelen et al. 2011) are compared with the simulated dyke383

terrain to assess the capability of the present model and the bed slope avalanching model to predict the breach size. The384

DTMs themselves suffer from a lack of accuracy in certain regions because of air/water refraction issues and water385

covered land when the measurements were taken. For the simulation, n=0.018 is chosen because the model reproduced386

the peak discharge accurately at this value. Fig.12 displays the digital terrain measurements compared to the simulated387

dyke breach at the initial stage t=20s and the final stage t=370s. The breaching process is reasonably well reproduced.388

The numerical model predicts slightly more severe erosion at the downstream toe of the dyke at t=20s; it is clear that389

more deposition is indicated there by the digital terrain data. At t=370s, more severe erosion can be observed in the390

middle area of the dyke, whilst less lateral erosion occurs at each side of the breach. The sediment transport model391

appears to overestimate the vertical erosion, while the bed slope avalanching model slightly underestimates the lateral392

erosion presenting a narrower breach. Fig.13 shows the simulated spatial distribution of bed and water in the stretched393

ordinates, as well as the experimental data at the final equilibrium stage. It can be seen that the present model394

reproduces the characteristic erosion, deposition and wet/dry areas well; the eroded sediment from the breach primarily395

deposits behind the dyke and a secondary channel is formed along the centreline. In summary, the present model can396
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Fig.12. DTM (Van Emelen et al408
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Fig.13. Simulated final dyke410
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The role of bed slope avalanching412
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has been investigated by (Pickert et al. 2011) that the apparent cohesion represented by the pore-water pressure418

influences the stability of the breach slide slopes and thereby the whole breach process. To further investigate the419

effects of these angles, three runs with three different pairs of angles are implemented: run1 (82°, 34°) means the420

critical angles above and below the water are 82° and 34° respectively, it is similar for run2 (72°, 34°), and run3 (62°,421

30°); the re-formation angles are equal to the critical angles minus 2°. For the breach cross-section profiles,422

comparisons for the three runs at the dyke top and the downstream slope of the dyke are given in Fig.14. It is shown that423

the breach width is influenced by the angles, as expected. More specifically, the smaller the critical angles, the wider the424

breach size, whilst the side slope of the breach is steeper for the larger critical angles. This is because the bed slope425

avalanching occurs at an earlier time for the smaller critical angles, and correspondingly more lateral erosion occurs. In426

summary, through the above analysis, we emphasise the crucial role of the critical angles in predicting the dyke breach427

evolution is shown.428

429

430
Fig.14. Predicted bed cross-sections for the three pairs of angles at the dyke top and the dyke downslope431

432

Conclusions433

Dyke breaching is a complex process and the traditional “sudden dam-break” assumption is too conservative to434

represent it adequately. On the other hand to estimate breach evolution and outflow discharge by empirical or simplified435

physical models involves many unknown factors. This paper proposes a layer-based two-dimensional hydro-436

morphodynamic model to predict the complex dyke breach processes. Also, a 2D bed slope avalanching model is437

proposed in order to calculate the lateral erosion and also maintain the stability of unstable sloped bed. The model is438

solved numerically with a second-order TVD-WAF/HLL which is both accurate and robust. The model is validated by439

several experimental benchmark tests, presenting good agreement with the measured data in terms of both440

hydrodynamic and morphodynamic aspects. Finally, the validated model is applied to predict a dyke breach process441

caused by partial flow overtopping with an initial trapezoidal shape. The complex flow-sediment process is reproduced442

by the model with good agreement. In short, the advantages of the 2D morphodynamic model together with the bed443

slope avalanching model involve:444

 The key hydraulic components, the water level and the outflow hydrograph, especially peak discharge, can be445

predicted fairly well.446
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 The spatial and temporal evolutions of the dyke breach are also well reproduced, including the dyke breach447

shape and size, as well as the distribution of erosion and deposition in the downstream area.448

The disadvantages of this approach, however, lie in the empirical parameters involved in both morphodynamic449

model and bed slope avalanching model. Appropriately calibrated parameters are important for the numerical results.450

This study is primarily focused on the small-scale flood events with flow-sediment interactions. In reality, the hydraulic451

and bed conditions are much more complex. Therefore, applications of the model in large-scale flood events will be452

investigated in subsequent research.453
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