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We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases

(PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the

negative mass M point of the lattice band structure with energy within the lattice band gap and its wave

function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting

from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to

the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and

optical excitation threshold with increasing lattice amplitude.
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The periodic spatial modulation of a medium creates an
artificial band structure with energy gaps and anomalous
(i.e., negative) dispersion. In the presence of nonlinearity,
spatially self-localized states may appear within the
energy gaps as the result of the interplay between the
anomalous dispersion and interparticle interactions. This
takes place when the kinetic energy contribution [EK ¼
��2

@
2=ð2mb�

2Þ] due to localization of particles with a
negative mass �mb within a radius � compensates the
repulsive interparticle interaction energy EI. These states,
known as gap solitons (GSs), are metastable solutions of
the Gross-Pitaevskii equation [1]. GSs have been explored
in optical fibers [2], nonlinear photonic crystals [3–6],
atomic Bose Einstein condensates (BECs) in optical
lattices [7,8], and, very recently, also in the hybrid light-
matter polariton system [9]. Polaritons result from the
strong coupling of photons and quantum well (QW) exci-
tons in a semiconductor microcavity (MC). Being bosonic
light-matter quasiparticles, they advantageously combine
features from both species. Namely, the small mass arising
from the photonic component allows them to form polar-
iton macroscopic coherent phases (PMCPs) at low den-
sities and high temperatures, while the interexcitonic
interactions provide a nonlinearity several orders of mag-
nitude stronger than in purely photonic systems [10].
While GSs in one-dimensional (1D) potentials have been
extensively studied [2,3,5,7–9], GSs in 2D lattices have so
far only been reported for purely photonic systems [4,6].
GSs in 2D potentials are qualitatively different from their
1D counterparts, for example, opening the way to the
realization of novel topological phases [6,11].

In this Letter, we demonstrate the formation and ma-
nipulation of GSs of PMCPs in a 2D tunable lattice. The
studies were carried out in PMCPs resonantly excited in a
tunable square lattice created by surface acoustic waves
(SAWs). While PMCPs in a homogeneous MC normally

appear at the lowest energy state with zero in-plane
momentum, PMCPs in a shallow (i.e., low amplitude)
lattice have a GS character and are excited via the accu-
mulation of particles at critical points of negative mass and
energy above the ground state [12]. The PMCP forms close
to the negative effective mass M states of the lattice band
structure, its energy lies within the band gap and its wave
function is localized within a few lattice periods, i.e., over a
region smaller than the optical excitation area. By taking
advantage of the tunability of the acoustic lattice, we show
that increasing the lattice amplitude reduces the coherence
length Lcoh as well as the optical threshold power (Pth) for
the excitation of the PMCP. These properties are well
described using a simple analytical energetic model [7,13].
The sample is an (Al,Ga)As-based MC [14] where a

170� 170 �m2 sinusoidal square lattice is created by inter-
fering two SAWs [Fig. 1(a)]. The MC consists of two Bragg
reflectors [stacks of (Al,Ga)As �=4 layers with a different
index of refraction] embedding a �=2 cavity with three
pairs of 15 nm-thick GaAs QWs (� is the wavelength of
the confined photon). SAWs with wavelength �SAW ¼
8 �m, frequency of 370 MHz, and propagation velocity
of 3 �m=ns were excited by acoustic transducers deposited
on the sample surface. The formation of the lattice results
from the modulation of the excitonic band gap and the
microcavity optical resonance by the SAW strain field
[14]. The polaritons were resonantly excited within a
70 �m spot using a single-mode, continuous-wave
Gaussian pump laser delivering photons with energy
Epump ¼ 1:5353 meV and in-plane momentum kpump ¼
ðkpx ; kpyÞ ¼ ð0; 1:7Þ �m�1. The studies were performed

by recording the steady-state photoluminescence (PL)
emerging from the sample top surface (time integration of
a few seconds) with spatial and angular (i.e., k) resolution.
The square lattice creates mini-Brillouin zones (MBZs)

of dimension kSAW ¼ 2�=�SAW separated by energy gaps
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[cf. inset Fig. 1(b)] [15]. Figure 1(b) displays the band
diagram along the X ! � ! M direction calculated for a
shallow lattice, where the curvature of the s band inverts
close to X and M. In the shallow lattice, where the modu-
lation amplitude 2�SAW ¼ 0:1 meV is smaller than the
energetic width of the lowest branch ð@kSAWÞ2=2mp �
0:4 meV (mp ¼ 6� 10�5me and me are the polariton

mass at � and free electron mass, respectively) X is a saddle
pointwith positivemassmp alongX ! M and negativemass

�mb ¼ �0:5ðmp�SAW=�@Þ2�Eg along X ! � [see

Supplemental Material (SM), Sec. I, [16]]. Here, �Eg �
2�SAW is the energy gap between the first and second folded
bands [14]. M, in contrast, has a negative effective mass
equal to �mb along both M ! � and M ! X. �SAW can
be controlled by the radio-frequency powerPrf applied to the
acoustic transducers since�SAW / ffiffiffiffiffiffiffi

Prf

p
[14].

The lattice emission properties below Pth are summa-
rized in the leftmost panels of Fig. 2. The k-space image of
Fig. 2(a) is dominated by the bright spots around kpump,

which are the diffracted replicas of the pump polariton
state. Since this image is not energy resolved, the emission
around k ¼ ð0; 0Þ appears as a weak and unstructured
background. The white lines delineate, for reference, the
contours of the first four MBZs, as in Fig. 1(b).
The real-space emission map in Fig. 2(b) shows an

intensity distribution reflecting the Gaussian shape of the
pump laser beam. Finally, Fig. 2(c) displays the PL spectral
distribution along the slit delineated in panel (b). The broad
energy range of the emission indicates that the level popu-
lation below Pth essentially reflects the polariton density of
states and is mainly governed by incoherent (multistep)
energy relaxation rather than by direct scattering of parti-
cles from the pump states.

FIG. 1 (color online). (a) Square lattice for polaritons created
by the interference of two surface acoustic waves (SAWs)
propagating along the x̂ ¼ ½010� and ŷ ¼ ½001� surface direc-
tions of a (100)-(Al,Ga)As MC. The lattice moves along the
ðx̂þ ŷÞ ¼ ½110� direction with a velocity of vlat ¼

ffiffiffi
2

p
vSAW,

where vSAW ¼ 3 �m=ns is the SAW phase velocity. (b) One-
particle band structure for polaritons in a shallow lattice
(�SAW ¼ 50 �eV). E2d denotes the soliton energy and wave
vector range. The energy is relative to the bottom of the un-
modulated dispersion. The inset is a diagram of the first four
mini-Brillouin zones of the square lattice. (c) Schematic repre-
sentation of the OPO process in the modulated polariton disper-
sion along � ! M. The pump state is generated by tuning the
laser energy and angle of incidence. Above the threshold of
formation of the PMCP polaritons scatter into the signal and
idler states, as indicated by the arrows. (d) Calculated squared
moduli of the wave function jc j2 of the 1s and 2px2py states at

the M point. The crosses mark the minima of the potential
lattice. The whole pattern moves along the vertical direction
with velocity vlat.

FIG. 2 (color online). (a) k-space PL image of an incoherent
polariton gas. The red point at kp ¼ ðkpx ; kpy Þ ¼ ð0; 1:7Þ �m�1

marks the pump state, which was blocked during the experiment.
The PL peaks at k ¼ ð�kSAW; kpy Þ ¼ ð0:78; 1:7Þ �m�1 and at

k ¼ ð�kSAW; kpy � kSAWÞ ¼ ð0:78; 0:9Þ �m�1 are the diffracted

pump beams. The white lines delineate the first four MBZs.
(b) Real-space PL image of an incoherent polariton gas at a
pump power P‘ < Pth. (c) Spatially resolved spectrum along
the slit in (b). The dotted lines mark the positions of the lattice
s and p states. (d)–(f) and (g)–(i) are the corresponding images at
P‘ ¼ Pth and at P‘ ¼ 1:4Pth. The image intensities were ampli-
fied within the boxes in (i). In all cases, Prf ¼ 22 mW.
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A closer examination of Fig. 2(b) also reveals faint
diagonal lines, which trace the paths of the moving sites
of the lattice [cf. Fig. 1(a)] [15]. The PL from the lowest
energy bonding (s) and anti-bonding (p) lattice states in
Fig. 2(c) are spatially shifted (white lines) in agreement
with the calculations in Fig. 1(d). The latter shows that the
maxima of the s and p wave functions follow separated
paths [17].

For higher excitation intensities, a PMCP forms via an
optical parametric oscillator (OPO) process [18] depicted in
Fig. 1(c). Here, polaritons in the pump state scatter into
states with a lower (signal) and a higher (idler) energy
conserving energy [2Epump ¼ Esignal þ Eidler] and in-plane

wave vector [2kpump ¼ ksignal þ kidler]. Interestingly, the ex-

perimental k-space map of Fig. 2(d) shows that the signal
PMCP in a shallow square lattice forms at the negative mass
M points [i.e., ksignal ¼ ð�0:5;�0:5ÞkSAW), cf. Fig. 1(c)].
Further results included in the Supplemental Material
(Sec. III) [16] prove that the formation of a PMCP at M is
insensitive to the orientation of kpump with respect to the

lattice and that all theM-point peaks emit at the same energy
within the experimental spectral resolution of 60 �eV.
The real space map of Fig. 2(e) indicates that the PMCP
emission extends over approximately three central lattice
sites with an intensity orders of magnitude stronger than
below Pth. Finally, the spectrum in panel (f) shows the
energy blueshift and linewidth reduction characteristic of
the formation of a PMCP.

The OPO stimulated scattering requires a critical density
N2D;min of signal particles. Since no selective scattering

takes place below Pth, the preferential accumulation of
particles at M is attributed to its anomalous (negative)
dispersion. This behavior contrasts to PMCPs in unmodu-
lated MCs, where N2D;min is typically achieved by particle

accumulation close to the minimum of the dispersion [i.e.,
ksignal ¼ ð0; 0Þ].

In order to determine the energy of the PMCP relative to
the s and p band states, we have increased P‘ to � 1:4Pth

to enhance the residual emission from these states. The
amplified insets of the energy region below and above the
PMCP [boxes in Fig. 2(i)] reveal that the emission peaks of
the PMCP are aligned with the positions of the s states and
displaced with respect to the p states. Although the exact
PMCP emission energy cannot be determined due to the
limited spectral resolution, Fig. 2(i) shows that it appears
above of the s and below the p bands.

So far, we have shown that the PMCP forms close to the
negative-mass M states of the lowest energy band. Another
important feature is the limited size of the PMCP wave
function, which is quantified by the spatial coherence length
Lcoh of the PL. Lcoh can be extracted from the k-space maps
in Fig. 2 by using Heisenberg’s uncertainty relationship
�x�k � 2�, where �x ¼ Lcoh and �k is the full width at
half maximum (FWHM) of the emission peaks. At threshold
[cf. Fig. 2(d)], Lcoh � 27 �m� 3�SAW coincides with the

diameter of the real-space image in Fig. 2(e). A 40%
increase in P‘ doubles the PMCP diameter [Fig. 2(h)], but
changes only slightly the FWHM of the diffraction peaks
[cf. Fig. 2(g)], thus indicating that Lcoh is essentially inde-
pendent of the total size of the PMCP.
While the preferential accumulation of particles at M

results from the negative mass, the formation of a PMCP
with a limited Lcoh is attributed to the excitation of a GS in
the shallow lattice. The GS consist of a superposition of M
states with an energy E2d within the band gap and close to
the top of the s band. The observation of a large emission
area (� Lcoh) for light fluxes above threshold [cf. Fig. 2(h)]
can thus be accounted for by the excitation of several GSs
with similar Lcoh at random positions of the potential.
The tunability of the potential provides a powerful tool

to investigate the dependence of the GS properties, in
particular those related to self-localization, on the lattice
amplitude �SAW. Figure 3(a) compares k-space intensity
profiles along M ! � ! M for the pump and signal
PMCP states recorded along the dashed lines in Fig. 2(g).
The coordinate k0 of the peaks in the pump profile (topmost
line) defines the limits of the 1st MBZ and does not change
with �SAW. The GS peaks (lower lines), however, broaden,
and their maxima k0 move inwards within the MBZ. Both
features are ascribed to the self-localization of the GS wave
packet, as discussed in detail below. Since k0 for the pump
replicas remains fixed for all �SAW, we conclude that the
k-space configuration of the GS is mainly determined by its
particle density and by �SAW, rather than by interactions
with the pump states.
It is notable that increasing �SAW also reduces the

optical threshold Pth for GS excitation, as indicated by

FIG. 3 (color online). (a) Intensity profiles along a M!�!M
direction [cf. dashed lines 1 and 2 in Fig. 2(f)]. The topmost curve
for the diffracted pump beam (line 1) defines the limits of the first
MBZ. The additional curves are profiles for the signal PMCP
(line 2) in lattices created with Prf ¼ 22, 35, and 56 mW (from
the second to the bottom curves). (b) Experimental dependence of
Pth on Prf (squares). The empty circles show the calculated
dependence of the minimum number of polaritons N2d;min to

form the soliton with �SAW. The line is a guide to the eye. The
parameters used are listed in the caption of Fig. 4. (c) Dependence
of the PMCP coherence length (Lcoh) at threshold on Prf .
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the squares in Fig. 3(b). This behavior can be understood by
setting EIðN2dÞ ¼ N2dg2d=�

2 in the equality EIðN2dÞ ¼ EK

defined in the introduction, whereN2d is the particle number
and g2d > 0 their characteristic interaction constant. The
latter yields a number of particles in a stable GS of N2d ¼
�2

@
2=ð2g2dmbÞ. Since jmbj increases with �SAW (see SM,

Sec. I [16]), N2d, and consequently Pth, must decrease.
Finally, Fig. 3(c) shows that the reduction in Pth with Prf

is accompanied by a decrease of the value of Lcoh at
threshold.

In order to quantitatively support the GS description we
have used a variational approach [13] to calculatemetastable
states in a square lattice defined by a potential Vðx; yÞ ¼
��SAW½cosðkSAWxÞ þ cosðkSAWyÞ�. This approach has
been shown to be compatible with numerical solutions of
the Gross-Pitaevskii equation for BECs out of equilibrium
[7]. Despite the fact that the OPO is a nonequilibrium three-
state system, this simple approach gives a consistent physical
picture of the main experimental findings by describing only
the energetic configuration of the signal PMCP state. The
results are alsowell reproduced by full numerical solution of
the Gross-Pitaevskii equation (see Supplemental Material,
Sec. II [16]). We assume a trial wave function consisting of
Bloch states of the square lattice with an envelope function
given by

�2dðx; yÞ ¼
ffiffiffiffiffiffiffiffi
N2d

�r20

s
2e�ðx2þy2Þ=ð2r2

0
Þ

ðe�ðk0r0Þ2 þ 1Þ cosðk0xÞ cosðk0yÞ: (1)

This expression includes, in addition to the Gaussian term
with width r0 proposed in Ref. [13], two oscillating cosine
terms with wave vector k0. r0 is related to the coherence

length Lcoh of the state by Lcoh ¼
ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
r0.

Figure 4(a) displays the energy for the state �2d as a
function of the parameters r0 and k0 calculated for a fixed
number of particles N2d. The ground state corresponds to
the extended (s) band state at k0 ¼ 0 and r0 ! 1 (out of
the scale of the plot). The potential landscape also exhibits
a valley indicated by the dashed line. For particular combi-
nations of N2d and �SAW, local minima (M1 and M2) may
appear within this valley. These minima correspond to GS
states with coherence length Lcoh, effective wave vector k0,
and energy within the lattice band gap �Eg [cf. Fig. 1(c)].

While M1 is a GS localized within a single unit cell, M2 is
an extended mode spreading over several lattice unit cells
(see Supplemental Material, Sec. IV [16]). The position of
the minima changes with N2d and/or �SAW.

The PMCP at the M point reported in this work is
ascribed to an M2 GS mode with k0 < kSAW=2 ¼
�=�SAW and Lcoh of a few SAW periods. The open circles
in Fig. 4(b) display the dependence of k0 of M2 on Lcoh

(open circles) calculated for a fixed value of N2d while
varying �SAW. The squares display the corresponding
experimental values obtained from Fig. 3(c) (i.e., k0 vs
Lcoh). The calculations reproduce well the observed

displacement of the PMCP k-space peaks with �SAW.
Physically, the reduction of k0 with Lcoh is analogous to
the downwards shift in frequency of a harmonic oscillator
with increasing damping. Finally, the model can also
qualitatively account for the observed reduction of Pth

with increasing Prf displayed in Fig. 3(b). Here, the circles
show that the calculated minimum particle number N2d;min

required for the formation of the M2 states reduces as
�SAW increases.
In conclusion, we have presented experimental evidence

for the gap solitonic nature of PMCPs resonantly excited in
a 2D shallow tunable lattice. The soliton PMCP forms at a
critical point of negative mass due to the combined effects
of particle attraction and repulsive interparticle interac-
tions. This work opens the way for the study of lattice
vortex solitons and other polariton quantum phases such as
a Bose glass.
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