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Surfing The Spectrum � What Is On The Horizon? 

Paula Lancaster, David Brettle, Fiona Carmichael, Helen Craddock, Jason 
Britton, Val Clerehugh. 

 

Abstract 

Diagnostic imaging techniques have evolved with technological 
advancements - but how far?  

The objective of this article was to investigate the electromagnetic spectrum 
for imaging techniques which may deliver diagnostic information of equal, or 
improved, standing to conventional radiographs and to explore any 
developments within radiography which may yield improved diagnostic data.  

A comprehensive literature search was performed using Medline, Web of 
Knowledge, Science Direct and Pub Med Databases.  Boolean Operators 
were used and key-terms included (but not exclusively): Terahertz, X-ray, 
Ultraviolet, Visible, Infra-red, Magnetic Resonance, Dental, Diagnostic, 
Caries and Periodontal.  

Radiographic techniques are primarily used for diagnostic imaging in 
dentistry, and continued developments in X-ray imaging include: Phase 
Contrast, Darkfield and Spectral Imaging. 
Other modalities have potential application, e.g., Terahertz, Laser Doppler 
and Optical Techniques, but require further development. In particular, Infra-
red Imaging has regenerated interest with caries detection in-vitro, due to 
improved quality and accessibility of cameras.  
 
Non-ionising imaging techniques, e.g. Infra-red, are becoming more 
commensurate with traditional radiographic techniques for caries detection. 
Nevertheless, X-rays continue to be the leading diagnostic image for 
dentists, with improved diagnostic potential for lower radiation dose 
becoming a reality. 
   



 
 

Introduction 

Radiographic imaging using X-rays has been the primary diagnostic imaging 

technology used within the dental profession since its discovery in 1895. 

However, it is an ionising radiation with some detrimental effects to our 

health 1 and has limitations, e.g., superimposition of anatomical structures  

and poor contrast of soft-tissue.  Radiographic imaging is, to a large extent, 

technology limited and has advanced rapidly, particularly in recent years with 

the development of digital imaging. X-rays are also part of the 

electromagnetic spectrum. The aim of this Literature Review was to revisit 

diagnostic imaging considering not just technological advancements, but also 

the entire electromagnetic spectrum (figure 1).  

 

 

 



 
 

The objective is to identify alternative imaging techniques, X-ray or 

otherwise, which may deliver complementary diagnosis, lower dose or better 

diagnostic efficacy than current techniques. Some of the options available 

are discussed below. 

Method: 

A Comprehensive Review of four databases, i.e., Medline, PubMed, Science  

Direct and Web of Knowledge was undertaken. General and restorative 

dental terminologies were combined with the imaging options from the 

electromagnetic spectrum and Boolean Operators were applied. Exclusion 

criteria included articles of Language other than English. 

Results: 

Magnetic Resonance Imaging (Wavelength ଠ100 to 102 m)                      

This utilizes a static 0.1-8 Telsa magnetic field and a radio pulse, both of 

which are non-ionising radiation, to produce 2D or 3D digital images of 

tissues, e.g., tumour staging, TMJ and intra-cranial lesions. The ability to see 

through bone avoids superimposition of structures and calcified and non-

calcified tissues are illustrated2 (figure 2).  

 



 
 

Functional images which provide physiological information are possible with 

real time sequences and good resolution (50µm x 50µm x 350µm). However, 

specialist equipment of considerable size and expense is required and a 

contrast medium is often used for soft tissue, e.g., Gadolinium, which 

requires intra-venous administration3.  Gadolinium is contra-indicated in 

patients with renal impairment. Capture of the image is lengthy and the 

machines are very noisy and claustrophobic. The magnetic field is a problem 

for people with metallic implants of any description and dental restorations 

can distort the image.  

Terahertz Imaging (Wavelength of ଠ10-4 to 10-3 m) 

Also known as Sub-millimeter or T-waves. Production of these waves is 

possible by exposure of Zinc-telluride Crystals to pulses of visible or infra-red 

light and detection is now feasible with advancements in photoconductive 

detectors 4. Terahertz  pulses are strongly absorbed by water, and tissue 

penetration appears to be limited to the micron level 5. Image production is 

from the reflected wave (figure 36) and in mineralised tissue it is proving 

difficult to focus the reflected beam7.  

 



 
 

They are non-ionising and can give good spatial resolution of 1µm but, at 

that level, digital reconstruction of the image is complicated8, whereas 40-

60µm is achievable9. To our knowledge, imaging devices are not readily 

available to the profession and long-term health effects are unknown.  

Infra-red (Wavelengths of ଠ 8 x 10-7 to 10-3 m) 

Infra-red waves are non-ionising, non-invasive and non-destructive, enabling 

repeat images to be taken. Portable devices are available.  

This radiation may be directed at the subject as, in the Near-infra-red range 

of 1310nm, enamel is highly transparent compared to visible light, permitting 

the detection of demineralisation as a dark spot from increased 

scattering10(figure 411).  Fluorosis, stains and pigmentation are recognisable 

from demineralisation11. 

 

Alternatively, the natural Infra-red emissivity of a subject can also be 

recorded with a thermal camera operating in the 9000nm to 12000 nm range. 

The first Thermogram was produced in 1840, and the 1950s saw the first 

medical use12. Temperature differentials of 0.025oC are achievable, 

producing colour contrasting images with pixel resolutions of 640 x 480. 



 
 

Occlusal caries has been associated with reduced temperature compared to 

its surroundings.  Evaporation of water from the porous demineralised area is 

detectable with a thermal camera (figure 5)13, and correlation of the lesion 

depth or mineral loss with surface temperature has been demonstrated14. 

Sensitivity of 58% and specificity of 83% for occlusal lesions reaching the 

dentine has been shown. Soft-tissue lesions, such as Basal Cell Carcinoma, 

can also be observed15. 

 

However, the emissivity is a surface effect and there is low resolution of 

images acquired. Any fluid present will absorb the waves16 (e.g. saliva) and, 

for the breathing subject, there is continuous fluctuation of air temperature 

and humidity, which hinder the accuracy of the readings. Attempts have been 

made to assess tooth vitality from the crown temperature but results have 

been inconclusive. Some studies demonstrate a higher temperature and 

quicker re-warm rate in vital than non-vital teeth 17-19, whilst others have 

demonstrated no detectable difference 20 21 22.   



 
 

Optical Coherence Tomography (Wavelengths of ଠ10-7 m) 

Waves in the near-infra-red are split then recombined, enabling a pattern 

from the interference and back-scattered waves to format a 2D image of the 

optical reflection 23-25 and 3D real-time imaging is also achievable. It is a non-

invasive, non-contact, non-ionising technique, with no biological effects to 

date. The chosen wavelength determines the depth of penetration and the 

resolution, which can reach 2.0mm and 5-15µm, respectively. Uses  include 

assessment of oral soft-tissue lesions and caries-depth with 

polarization26(figure 624).  

 

Sensitivity for detection of Squamous Cell Carcinoma from non-cancer tissue 

was reported at 0.931 and specificity was the same; and for Squamous Cell 

Carcinoma against other pathologies sensitivity was 0.931 with specificity of 

0.97325. However, availability of the machine to the profession is a 

problem27. The status of the tooth-surface needs consideration, as hydration 

of enamel affects signal intensity, which decreases when air is blown28, as 

well as the structural orientation of dentine on the scattering of light29.  



 
 

Laser Doppler (Wavelength ଠ 10-7 m) 

Red30 or green31 light is utilised and tissue vascular supply is assessed by 

the Doppler Effect32. It is non-invasive, non-ionising with arbitrary Units33, 

which  prevent comparison of successive readings. Future indications 

include assessment of grafts, osteomyelitis of bone and supporting-bone of 

dental implants 34. Unfortunately, the signal received can vary due to the 

location and angulation of the probe on the tooth35 and also due to the optical 

properties of the tooth30.  When investigating the pulpal vascular supply, 

there may be contamination of the signal from other vascular sources, e.g., 

periodontal ligament36, giving unreliable results. Its use is contra-indicated in 

heavily-restored dentitions.  

Digital Fibre Optic Transillumination, DIAGNOdentTM and Quantitative 

Light-Induced Fluorescence (Wavelength ଠ 400 to 750 nm) 

These diagnostic techniques draw on the visible spectrum for assessment of 

the mineralised coronal portion of the tooth. Fibre Optic Transillumination 

(FOTI)(figure 7) preceded the Digital Fibre Optic Transillumination (DiFOTI) 

which captures the transmitted photons from the light-source with a Charge 

Couple Device (CCD), enabling the digital image to be displayed37.  

 



 
 

Sensitivity of 14% and specificity of 95% for occlusal caries is reported, but 

proximal lesions result in 4% sensitivity and 100% specificity38 from FOTI. 

Quantitative assessment is possible from DiFOTI, with resolution of 43 

pixels/mm39. It is simple to use, non-ionising and non-invasive with the ability 

to provide real- time images, which are a great education tool. However, 

depth of lesion cannot be estimated and subgingival areas are not 

accessible40. 

DIAGNOdentTM uses 655nm red laser light to initiate fluorescence which is  

possibly of microbial origin41, captured by a photocell delivering a numerical 

and acoustic signal42. It is non-ionising and simple to use but active or 

arrested lesions are indistinguishable43. Sensitivity and specificity for dentinal 

lesions have been cited as 0.75 and 0.96, respectively44. 

Quantitative Light Fluorescence (QLF) utilizes light with a peak intensity of 

370-410nm to fluoresce the tooth and the emitted photons are captured by a 

CCD and digitised45. Non-ionising, non-invasive, quick to use, but hydration 

of the tooth affects the results, with a stronger signal from dehydrated lesions 

due to increased scattering of the short-length photons46. Accessibility can 

be a concern for interproximal surfaces and smooth surfaces can only be 

assessed to 500µm4(figure 8), with stains and white spot lesions appearing 

identical. Sensitivity of 0.68 and specificity of 0.70 for occlusal caries has 

been achieved47. 

 



 
 

Ultraviolet (UV) (Wavelength of 10-8 to 4 x 10-7 m) 

UV light can produce fluorescence in enamel48 which, if demineralised, will 

lack fluorescence but it is difficult to separate caries from developmental 

defects49. UV digital viewers and camcorders utilise 396nm UV-rays and can 

give resolution of 640 x 480 pixels. The UV-rays may be reflected or 

absorbed in surface layers and aid forensic medicine with detection of 

bitemarks and bruises50 and the fluorescence properties identify dental 

materials51. Basal Cell Carcinomas can be recognised as dark patches and 

oral Squamous Cell Carcinoma may be discerned52. 

It is non-ionising but the subject and operator need protection due to risk of 

cataracts and possible damage to DNA formation15. Some subjects will be 

particularly sensitive to UV-rays and care is need, e.g., Systemic Lupus 

Erythematous and Xeroderma Pigmentosa53. 

X-Rays (Wavelength ଠ 10-8 to 10-10 m) 

X-rays whose absorption is dependent on the tissues� atomic number (Z) 

produce image contrast primarily due to the photoelectric effect.  An energy 

range of 65 to 70 kV for intra-oral dental views, and 90 to 120kV for Cone 

Beam Computed Tomography, is employed. This yields a variety of analogue 

or digital images from full-field or scanning sequences (figure 9).  

 



 
 

Sensitivity of 0.95 and specificity of 0.83 are reported for enhanced digital 

images for proximal caries detection47.  Subtraction of digital images is also 

possible and, when monitoring lesions, may be very useful but the geometric 

reproducibility needs to be exemplary.  There are numerous digital detector 

systems available54 which convert the radiation into an electric signal which 

may be wired or wireless, e.g., Solid State (CCD and CMOS) or 

Photostimulable Phosphor Plates. Considerations such as patient-comfort, 

image quality (e.g., spatial resolution and contrast), radiation dose, speed of 

image production and cross-infection risk influence the operator�s choice.  

The detector may integrate the signal over time or record every signal event. 

Digital detectors do compare with analogue film for spatial resolution, 

achieving 20 lp/mm. However, X-rays are ionising with associated 

detrimental health-effects, i.e., somatic deterministic and stochastic, genetic 

stochastic1. The geometric accuracy may lead to errors in assessment of 

lesion-depths, such as caries42. Guidelines for dental radiography are shown 

in Table 1.   



 
 

 

Tomography: 

Conventional Tomography can deliver the single-slice dental panoramic 

image but, with technological advances, multiple-slices of Computed 

Tomography (CT) can provide a 3D image from a CT scanner. However, the 

equipment is very expensive and occupies a large space. Dental Cone Beam 

CT (CBCT) - also known as Digital Volumetric Tomography (DVT) - can use 

a vertically-positioned patient, reducing the space requirement compared to 

the horizontal CT scan. This is available and affordable to the general dental 

practitioner. Spatial resolution of between 0.07 � 0.4 mm55 56 with isotropic 

voxels is possible with CBCT. CT voxels may be anisotropic or isotropic. 

Multi-slice CT may deliver equivalent resolution from equivalent dose 

compared to CBCT56 but it has also been stated CBCT can deliver reduced 



 
 

effective dose57(Table 258). Both CT and CBCT can have an adjustable Field 

of View (FoV).  

 

CT has been used for assessing intracranial disease and damage following 

trauma to the head and neck, facial fractures, tumour-staging in the head 

and neck, implant-planning and investigating the TMJ1 but, with a possible 

reduction in effective radiation dose, CBCT may be more appropriate in 

some situations, e.g., implant-planning. Other uses of CBCT may include: 

assessment of dento-alveolar pathology, maxillofacial surgery, orthodontics, 

nerve-position, endodontics, periodontics and general and forensic 

dentistry59. 

Measurement accuracy of CBCT can be good (within 1 pixel longitudinally 

and up to 2.35 pixels horizontally60) with good geometric accuracy (mean 

deviations 0.13±0.09 mm from three co-ordinate axes61). However, with 

increasing voxel size there can be a tendency to underestimate volumetric 

measurements which can become significant above 300µm62. 

Many manufacturers market CBCT machines, each with their own limitations 

and there is a need to establish image-quality criteria, irrespective of 

machine58.  



 
 

CBCT also has increased noise and scatter, leading to less soft-tissue 

contrast than CT55.  Additional limitations of CBCT include: arbitrary 

greyscale values63, streak or star artefacts from metallic objects (e.g., 

amalgam restorations, reducing diagnostic yield64) and motion artefacts. The 

motion may be unavoidable due to respiration and cardiac rhythm or to head-

tremor65 and needs further research to enable correction during image 

reconstruction.   

The scan settings (e.g., FoV, resolution and X-ray parameters) determine 

effective dose66 which may vary by a factor of 4.6 to 5.2 from the lowest to 

highest dose67 and can influence whether sensitive organs are inside or 

outside the direct beam. This influences image quality and diagnostic 

potential of the CBCT image. A more standardised approach is needed to 

achieve the �as low as reasonably achievable� dose68. Copper filtration can 

reduce effective dose by 43% with adjusted kVp 69 without loss of image 

quality. The use of collimation and patient protection has been suggested to 

minimize dose to structures such as the eyes and thyroid 70. However, the 

thyroid should not be in the primary beam.  

For dental applications imaging high and medium-contrast tissues, CBCT 

may be the correct choice compared to CT but the Profession needs to 

review CBCT Guidelines regularly.  

Future developments for X-rays include: 

Phase Contrast 

On entry through tissue, X-rays refract like light waves through glass 

and the index of refraction deviates from 1, i.e., Unity: 

 n = 1 � į � ȓȕ 
 

n = index of refraction 
į = phase shift incorporating the refractive effects 
ȓȕ = absorption of incident rays 



 
 

 

 

This will result in a loss of coherence of the waves generating a shift 

in wave phase. The refractive proportion is greater than the absorption 

component normally used to assemble an image and if captured can 

exhibit detail not currently achievable 71(figure 1072 and 1173).  

 

 



 
 

This can operate at the higher energy levels of X-rays, reducing 

exposure of the subject but achieving greater image contrast. The 

greatest contrast is seen with soft-tissues, not the mineralised 

tissue.73 

Sophisticated equipment is required to produce the phase contrast of 

the waves, e.g., a synchrotron, which was unacceptable clinically due 

to size and cost, and  historically crystals split the beams to enable 

phase differences, but these were unstable and gave a small field of 

view. Micro-focus X-ray tubes are being successfully operated to 

generate the beam but also have limited field of view74.  X-ray 

Interferometery is now achievable by exposing the beam to a series of 

gratings. One grating is located close to the wave-source (source-

grating) before the subject, and two gratings are positioned after the 

subject. These are described as a phase-grating and absorption-

grating, respectively. The phase-contrast is generated by the last two 

gratings which are strategically placed to produce a linear periodic 

fringe pattern which is aligned with the absorption grating placed 

infront of the detector73.  Changes in oscillations within the detector 

when the gratings are scanned are assessed according to subject. 

These signals are digitised to generate the phase contrast image for 

analysis.  

Darkfield 

X-ray grating interferometry, as described above, is actually a 

multimodal imaging technique and can be drawn on to fabricate not 

only the absorption and phase-contrast image but also the darkfield 



 
 

image73. The darkfield image, as with visible light, is manufactured 

from the scattered X-rays. The image contrast is created by the small 

angle scattering of the waves generated from a conventional x-ray 

tube source. The detector, which is a technological achievement, has 

the capacity to detect the scattered waves and decipher the 

unscattered waves which can be removed. The greater the scatter, 

the greater the contrast of the image and this is seen with the 

mineralised tissue (figure 11 c73). Directional darkfield imaging has 

been demonstrated on a dry slice of tooth75. This allows structural 

information smaller than the image resolution and maximises the 

different angles created by the scattered rays. 

The detector will primarily register the perpendicular scattered waves 

in darkfield imaging but, in directional darkfield, the actual angle of the 

scattered wave is analysed as well. Dentine showed the strongest 

signal and the strength of the signal decreases with increasing 

distance from the pulp-chamber. This may correlate with the dentinal 

tubules, as enamel which is a reasonably homogenous mineralised 

tissue, generated little scatter signal. Whether this will actually happen 

with a vital tooth with dentinal fluid remains to be seen, as this 

equipment is not currently available to the profession. Is it  feasible to 

hypothesise that selective demineralisation of enamel prisms in the 

early carious lesion would induce greater scattering enabling 

detection?  

Future developments of three dimensional darkfield images require  

technological furtherance but, with the ability to capture the data to 



 
 

produce the absorption, phase-contrast and darkfield image, the 

potential improvement in diagnostic yield is vast. 

Spectral 

Initially proposed in 197676 Spectral Imaging exploits the energy 

spectrum of  X-rays. Manipulation of  X-rays has enabled the 

production of specific incident energy spectrums (Spectral Shaping) 

and detection of photons in specific energy bands (Spectral 

Imaging)77.  

An energy-dependent detector charts the charge release from 

incoming photons and, the higher the energy, the higher the weighting 

documented. This improves the resolution of the image. Counting of 

each individual photon in a set energy range is possible (figure 1278) 

and eliminates any weighting for the higher energies, again increasing 

the image resolution.  

 

The scanning beam method is beneficial for the subject, as the 

majority of scatter is blocked. In addition, the actual number of 

photons produced interacting with the patient�s tissue is reduced. 

Transmitted information needs to be accurately and efficiently 



 
 

detected by X-ray optics, capillary optics or an array of refractive X-ray 

lenses. 

Comparison between photon-counting detectors (e.g., Medipix1) and 

CCD used within dentistry for diagnostic imaging, demonstrated dose 

reductions without loss of resolution contrast79. Further research 

revealed an increase in contrast of 18% is possible with the 

Medipix278. 

Characterisation of tissue-type (figure 13) and element enhancement 

for contrast studies80 from the energy of the detected photons 

(Spectral imaging) is feasible.  

 

This is due to each tissue-type having its own signature because of its 

atomic number (Z)81 82. This enables optimising the incident beam 

energy for a chosen tissue (Spectral shaping)83 which can reduce the 

dose to the patient from non-informative low- and high-energy 

photons. 

The possible benefits of Spectral Imaging include: 

 Energy weighting 



 
 

 Dual energy subtraction 

 Identify tissue and quantify it. 

This system is not currently commercially available to the dental 

profession. 

 

Gamma Rays (Wavelength ଠ 10-13 to 10-10 m) 

A radioisotope, e.g., Technetium (99mTC) is obligatory, usually amalgamated 

with a pharmaceutical and administered intravenously or orally. The 

radioisotopes nuclei are unpredictably volatile and spontaneously 

disintegrate, producing Gamma Rays, making the patient the provenance of 

ionizing radiation.  A specialised Gamma Camera captures the emitted 

radiation to produce the image, e.g., Single Photon Emission Computed 

Tomography (2D � Scintigraphy, slices - SPECT) or Positron Emission 

Tomography (PET) which employs two photons from the annihilation 

radiation. A functional image can be generated, enabling all tissues to be 

assessed from one visit and recognising physiological change prior to 

anatomical change84. However resolution is poor 85. Anatomical location can 

improve accuracy by superimposition of a PET Scan with a CT or MRI 

Scan86 87 . 

It is expensive, time-consuming and the images, unfortunately, are not 

disease-specific. The radiation dose is substantial following intravenous 

administration of radioisotope (5-7mSv and, when combined with CT 

scanning, approximately 25mSv88). Dental restorations can produce 

artefacts89 and it is used for diagnosis of osteomyelitis, osteoblastic 

metastatic tumours, Paget�s disease (figure 14) and salivary gland function. 



 
 

 

Ultrasound does not employ waves from the electromagnetic spectrum and 

is not discussed within the remit of this article. 

 

Summary 

The utilization of computer technology has enhanced imaging techniques, as 

shown with the development of the digital image and detector, e.g., Medipix,  

along with the accessible stable beam sources for the production of Phase 

Contrast, Darkfield and Spectral Imaging. Not all techniques are available to 

the clinician yet but they indicate what the future may hold. It must be 

remembered that technology may also be the limiting factor for any imaging 

technique. Signals may be received and converted to digital images but the 

monitor they are viewed on may not resolve adequately, with loss of 

diagnostic information54.  The format the images are stored in may lead to 

loss of data, as well. The correct environment and setting for viewing the 

images must be rigidly observed90, which leads to operator capabilities. 



 
 

There needs to be quality control, not just for the acquisition of images, but 

also for those undertaking the reporting of the image91. 

Conclusion: 

Non-ionising imaging techniques, e.g., Infra-red, are becoming more 

commensurate with traditional radiographic techniques as technology 

progresses, and need further exploration. Nevertheless, X-rays continue to 

be the leading diagnostic image for dentists and are being nurtured for 

improved diagnostic potential with elevated contrast and resolution with 

reduced doses, hopefully diminishing the potential health-risk to our patients.  
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