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Buried Utility Pipeline Mapping based on Street Survey
and Ground Penetrating Radar

Huanhuan Chen1 and Anthony G Cohn2

1 INTRODUCTION

In the UK and many other countries, underground networks are used

to deliver a range of services to households and industries. Maintain-

ing and upgrading these networks are major undertakings. In order

to avoid unnecessary holes dug in wrong places, prior to invasive

works it is normally required that excavators should request and ob-

tain record information from all relevant utilities to identify what is

buried where. However, the mapping information supplied by utility

companies is often of limited use as asset records are usually inac-

curate and incomplete. Thus a street survey is often conducted using

sensor devices, such as ground penetrating radar (GPR). However,

these are costly, and forming a complete picture combining the ex-

pectation of the map and the sensor data is an expert task. This paper

will investigate an algorithm for utility pipeline mapping based on

street survey and GPR data.

2 UTILITY PIPELINE MAPPING ALGORITHM

GPR has been widely used in the detection and mapping of subsur-

face utilities. However, it is difficult to estimate the pipe direction

based on the GPR scans, which is very important for utility map-

ping. To solve this problem, this paper proposes to use a set of scans

at each scan location to estimate the direction of the buried pipes.

Fig 1(a) shows the situation when the GPR operates perpendicu-

larly to the pipe. Buried pipes typically generate a hyperbola [1, 2]

in a GPR scan. In this case, the hyperbolae in each GPR scan are

exactly the same. The real-world GPR image is shown in Fig 1(d).

If the scan direction is parallel to the direction of the pipe, there

is one hyperbola (small pipe) or one linear line (large pipe) in only

one GPR scan or there are incomplete hyperbolae in one or two GPR

scans, which is illustrated in Figs 1(b) and 1(e).

The most common situation is that GPR scans the pipe at an angle.

As illustrated in Figs 1(c) and 1(f), there should be one hyperbola in

each GPR scan for each pipe. However, the x position of each hyper-

bola is different as the x axis records the distance from the starting

point to the point where GPR detects the pipe. The angle can be esti-

mated by α = arctan x/d, where x is the distance between the first

and last scan, d is the horizontal distance between starting points of

the first scan and the last scan. In practical work, the distance d is

fixed and each scan is 3 metres in our data, i.e. the range of the x
axis is 3 metres and each increment in x direction represents 5cm.

To facilitate this model, this paper employs our recently proposed al-

gorithm to determine the position of hyperbolae automatically based
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Figure 1. The model to estimate pipe direction by GPR data and the
corresponding GPR data illustration with hyperbola identification.

on orthogonal distance fitting and classification expectation maxi-

mization algorithm [1, 2]. In the following, we will incorporate street

survey data, such as manhole locations and the possible direction of

these pipes, with GPR scans for utility mapping. Two kinds of inputs

are presented in this algorithm.

• Data from manhole investigation. The data consists of a series

of manhole locations and the pipe directions (xi,k, yi,k, θi,k)m
i=1,

where m is the number of manholes in the data, k is the number

of pipes through manhole i and θi,k is the direction of the pipe

k through manhole i. The covariance matrix Ci,k for each triplet

(xi,k, yi,k, θi,k) is provided for uncertainty consideration.

• GPR scanning locations and the estimated pipe directions

(xg,k, yg,k, θg,k)n
g=1, where k is the pipe coming through

(xg, yg). The uncertainty is represented by Cg,k in the GPR anal-

ysis; note that the uncertainty Cg,k is larger than Ci,k as manhole

investigation is relatively more reliable than GPR scans.

The utility map is created by data association algorithms, which

connect the observed manholes and GPR detections. In this paper,

nearest neighbour (NN) standard filter and joint compatibility branch

and bound (JCBB) methods are employed.

The NN standard filter simply takes the nearest validated measure-

ment to connect the map. A pipe will be regressed from the starting

point to the possible ending point. The uncertainty of the starting

point will be regressed to the ending point area. As we see from Fig

2(a), the final uncertainty consists of location uncertainty and the
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Figure 2. Illustration of Individual Compatibility and Joint Compatibility
in Map Connection. The blue (gray) points represent the ending manholes

and the circle (blank) points represent the regressed starting points.

angle uncertainty. The two points are connected only when the Ma-

halanobis distance of two survey points (either manhole or GPR with

pipe direction) is smaller than a threshold, 0.99 in this paper.

The NN algorithm uses individually compatible pairings to con-

nect points to form the maps. However, individually compatible pair-

ings are not guaranteed to be jointly compatible to form a consis-

tent hypothesis. Even if street observations and GPR analysis results

are independent, correlations in the uncertainty of manhole locations

might be presented. The problem can be illustrated in Fig 2(b). The

blank circular point is within the neighbourhood area of both blue

points. In this case, it is difficult to judge which one to connect to.

To solve this problem, JCBB is proposed to measure the joint

compatibility of a set of pairings, and is known to be more robust

in complex environments. The mechanics of JCBB are illustrated in

Fig 2(c), where there are two corresponding points and two ending

points, and the error of these two pairings are correlated. JCBB is

preferable to NN in the situation that the starting manhole/GPR ob-

servations uncertainty are correlated, which often exists as the pipes

through nearby manholes often follow the roughly similar directions

and thus the uncertainties of these estimations are not independent.

3 EXPERIMENTAL STUDY

Two real-world data sets have been employed. Each data set consists

of an AutoCAD drawing, sets of GPR point scans and the street sur-

vey results. Each GPR point scan consists of six pushes in a three

metres neighbourhood area. Therefore, d equals to three metres in

these experiments. Figs 3(a) and 3(d) show the bird’s eye views of

the survey sites, which are from the Birmingham area, UK. We only

consider utilities with manholes in the survey area. Figs 3(b) and

3(e) provide the AutoCAD drawings of the survey sites with GPR

scan boxes (small box with a line going through the box), the scans

start from the line and go forward 3m perpendicular to the line, in

the direction of the box side of the line. The Autocad drawing also

show the estimated underground asset location as given by the survey

company. These are used in lieu of ground truth to compute the error

rate (Table 1). Besides these data, there is a data file for each survey

showing the location of each manhole and the possible directions of

the pipes through these manholes.

In these experiments, the uncertainty for the manhole location and

GPR point scan are chosen as 0.2 and 0.4 metre, respectively. The

uncertainty of pipe directions is fixed to 8 and 15 degrees for manhole

observation and GPR scans, respectively. We illustrate the obtained
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Figure 3. Geographical Map, Autocad Survey Drawing and the obtained
Utility Mapping

map using JCBB in Figs 3(c) and 3(f) and the detailed comparisons

between nearest neighbour (NN) method and JCBB are presented in

Table 1.

According to the table, NN makes 8 and 2 connection errors in

the first and second data sets respectively while JCBB makes 3 and 0

connection errors in the first and second data set. The computational

time of JCBB is larger than that of NN.

The algorithm presented here represents an initial prototype to

fuse the sensor output of a multi-sensor device being researched

and constructed to improve buried asset location detection [3]. Ul-

timately, this project aims at facilitating the reliable detection and

mapping of all buried assets for greatly improved street-working.

Table 1. The comparisons between NN and JCBB. The computational
environment is Linux with Intel 4 core 2.5G CPU and 4G RAM.

Experiments Algorithm Error # Computational Time

Site 1 NN 8 0.0573s

Site 1 JCBB 3 4.3s

Site 2 NN 2 0.0461s

Site 2 JCBB 0 2.1s
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