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Abstract

Learning from imbalanced data is an important problem
in data mining research. Much research has addressed the
problem of imbalanced data by using sampling methods to
generate an equally balanced training set to improve the
performance of the prediction models, but it is unclear what
ratio of class distribution is best for training a prediction
model. Bagging is one of the most popular and effective
ensemble learning methods for improving the performance
of prediction models; however, there is a major drawback
on extremely imbalanced data-sets. It is unclear under
which conditions bagging is outperformed by other sampling
schemes in terms of imbalanced classification. These
issues motivate us to propose a novel approach, unevenly
balanced bagging (UBagging), to boost the performance of
the prediction model for imbalanced binary classification.
Our experimental results demonstrate that UBagging is
effective and statistically significantly superior to single
learner decision trees J48 (SingleJ48), bagging, and equally
balanced bagging (BBagging) on 32 imbalanced data-sets.

Introduction

Imbalanced class distribution (Weiss and Provost 2003)
refers to a situation in which the numbers of training
samples are unevenly distributed among different classes.
The imbalanced class distribution problem is an important
challenging problem in data mining research. Bagging
(Breiman 1996) is an effective ensemble method to improve
the performance of the prediction model. However, in an
extremely imbalanced situation, bagging performs poorly in
rendering predictions of the minority class. This is the major
drawback of bagging when dealing with an imbalanced
data-set.

Sampling techniques are considered to be an effective
way to tackle the imbalanced class distribution problem.
Goebel states that there must be situations in which
bagging is outperformed by other sampling schemes
in terms of predictive performance (Goebel 2004). We
believe that in extremely imbalanced situation, bagging
can be outperformed by other sampling schemes. These
issues motivate us to propose a new sampling scheme,
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unevenly balanced bagging (UBagging), for outperforming
the bagging prediction models on imbalanced data-sets.

Most research on existing bagging-based sampling
schemes for imbalanced data, e.g. (Li 2007; Hido, Kashima,
and Takahashi 2009), focused on using sampling methods
to provide a set of equally balanced or average-balanced
training sub-sets for training classifiers to improve the
performance of the prediction models for imbalanced
classification. (Liang, Zhu, and Zhang 2011; 2012)
investigated the impact of varying the degree of class
distribution from 10% to 90% (|Pi| : |Pi| + |Ni|) with
the same bagged size in a set of training sub-sets in each
ensemble learning. To our knowledge, nobody has used a set
of training sub-sets with both different bag sizes and varying
ratios of class distribution in the ensemble as a sampling
scheme to try to outperform bagging for imbalanced data.

This paper proposes the UBagging approach, a new
sampling scheme to generate a set of unevenly balanced
bootstrap samples to form a set of training sub-sets in
an ensemble to boost the performance of the prediction
model on imbalanced data-sets. The key contributions of
this approach are as follows. (1) A new sampling scheme,
UBagging, is proposed. (2) Empirical investigation and
statistical analysis of the performance of the four prediction
models, SingleJ48, bagging, BBagging and UBagging are
comprehensively performed. (3) Our UBagging approach is
demonstrated to be effective and statistically significantly
superior to the other three prediction models at a 95%

confidence interval on 32 imbalanced data-sets.

The UBagging Algorithm

Algorithm 1 outlines our new approach. Our designed
framework is very different from previous approaches for
imbalanced classification. In each sub-set of the training
set, the positive instances are randomly selected with
replacement from the entire positive class, where the number
of positive instances |Pi| have the same size as the entire
positive class, |P |; the negative instances are randomly
selected from the negative class of the original training data
with replacement, where the number of negative instances
|Ni| is incrementally increased by 5% of |P | from 1

2 ∗ |P |
to 2 ∗ |P | . As a result, the size and class distribution of the
sub-sets are different in each of the 31 bags in the ensemble.
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Algorithm 1: Unevenly Balanced Bagging

Input:

D, original training set, containing |P | positive and |N |

negative instances;

a learning scheme, eg. J48;

Output: A composite model, C∗.

Method:

Do

Create unevenly balanced bootstrap samples of size

|Di| sub-sets, Di = Pi + Ni where,

Pi and Ni are randomly drawn with replacement from

P and N , respectively, where:

|Pi| = |P | and;

|Ni| = (0.5 + 0.05 ∗ i) ∗ |P |;

Train each base classifier model Ci from Di;

while |Ni| < 2 ∗ |P |)

To use the composite model, C∗ for a test set T on an instance x where its true

class label is y:

C∗(x) = argmaxy

∑

i

δ (Ci(x) = y)

Delta function δ(·) = 1 if argument is true, else 0.

Experimental Results and Analysis

This section presents the experimental results and analysis,
comparing the performance of the prediction models based
on two evaluation metrics, Fvalue and Gmean. A 10-trial
10-fold cross-validation evaluation is employed for this
study. The J48 with default parameters from WEKA is used
as the base learner.

Table 1: Comparison of the performance of four prediction models
based on Fvalue and Gmean

Fvalue Gmean

Evaluation Methods SingleJ48 Bagging Bbagging Ubagging SingleJ48 Bagging Bbagging Ubagging

Average 0.656 0.687 0.772 0.787 0.711 0.739 0.888 0.902

STD 0.284 0.276 0.207 0.202 0.274 0.254 0.087 0.076

Average Rank 3.64 2.77 2.37 1.22 3.8 3.14 2.05 1.02

“Critical Difference” 0.829 0.829

Table 1 presents the summary of the experimental results,
which respectively indicate the average of the evaluation
metrics with standard deviation (STD) and the average
rank of evaluation metrics with “Critical Difference” of
the Nemenyi test over 32 data-sets taken from (Merz
and Murphy 2006). The results indicate that UBagging
performs the best on average with the smallest STD and
average rank based on both evaluation metrics, Fvalue and
Gmean, across all data-sets (results in bold indicate the best
overall performance out of the four classifiers).

The Null Hypothesis of the Friedman test is rejected, so a
post-hoc Nemenyi test is required to calculate the “Critical
Difference” to determine and identify where one prediction
model is significantly different from another (Demšar 2006).

Figure 1 presents a comparison of the performance of
the prediction models with the Nemenyi test, where the
x-axis indicates the average rank of Fvalue and Gmean,
respectively, the y-axis indicates the ranking order of the
four prediction models, and the horizontal bars indicate
the “Critical Difference”. If the horizontal bars between
prediction models do not overlap, it means there is a
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Figure 1: Comparison of the performance of four prediction models with the

Nemenyi test, where the x-axis indicates the average rank of Fvalue and Gmean,

respectively, the y-axis indicates the ranking order of the four prediction models, and

the vertical bars indicate the “Critical Difference”.

statistically significant difference between the prediction
models at a 95% confidence interval. The results indicate
that based on Fvalue and Gmean, our proposed UBagging
is statistically superior to the other three prediction models.

Conclusion

This paper proposes a new UBagging approach to boost the
performance of the prediction model for imbalanced binary
classification. This approach is different from previous
approaches, which to the best of our knowledge all use
identically sized bags (or nearly identical) to improve the
performance of the bagging predictor to solve imbalanced
classification problems.

The experimental results demonstrate that our new
UBagging approach is statistically significantly superior
to the other three prediction models at a 95% confidence
interval on two evaluation metrics over 32 imbalanced
data-sets. We believe the success of these results will also
apply to other base learners, and initial experiments with an
SVM indicate support for this hypothesis.
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