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Atomistic simulations were performed on hydrated model lipid multilayers that are representative of the lipid matrix in the outer

skin (stratum corneum). We find that cholesterol transfers easily between adjacent leaflets belonging to the same bilayer via

fast orientational diffusion (tumbling) in the inter-leaflet disordered region, while at the same time there is a large free energy

cost against swelling. This fast flip-flop may play an important role in accommodating the variety of curvatures that would be

required in the three dimensional arrangement of the lipid multilayers in skin, and for enabling mechanical or hydration induced

strains without large curvature elastic costs.

1 Introduction

The outer layer of skin (of order 10-50 µm)1, called the stra-

tum corneum (SC), comprises non-viable corneocyte cells

within a matrix of lipid multilayers, and is the main barrier

against water loss and uptake of foreign pathogens and chem-

icals2. In a simplified brick and mortar picture3 the corneo-

cytes are the ‘bricks’ and the lipid multilayers constitute the

‘mortar’. Possibly because of the extensive work on phos-

pholipid biomembranes, SC lipid multilayers have often been

considered to behave similarly to phospholipids, with highly

hydrophilic head groups that lead to a bulk-like water layer

between adjacent bilayers4–6. However, direct experimental

support for hydrated multilayers has been scant7–9.

To explain in vivo and in vitro structural data, a number

of detailed scenarios have been proposed in which the lipids

in multilayers are in crystalline or gel states, with negligible

diffusion10–16. Yet, SC lipid multilayers in vivo necessarily

undergo large deformation during hydration/dehydration and

mechanical deformation. For example, the corneocyte volume

(diameter ∼ 30µm and thickness ∼ 300 nm) can change un-

der hydration by up to a factor of three17,18. Moreover, the

concomitant changes in local curvature of an adjacent gel-

like lipid multilayer would require large elastic (or plastic)

stresses.

Fully hydrated bilayers have frequently been simulated

to understand the lipid arrangements within and permeation
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through SC bilayers19–23, and multilayer stability has been

simulated under limited hydration24,25. An important result

is that the different tail lengths intrinsic to SC lipids (Fig. 1a)

lead to a unique sandwich structure with a disordered liquid-

like region between leaflet tails (Fig. 1b)22–24.

However, fully hydrated bilayers are not representative of

the lipid environment in SC. Even after drastic hydration (up-

take of 300% wt/wt water), electron microscopy shows that

the lipid organization remains similar to that in low hydration,

with the majority of water accommodated inside the corneo-

cytes and isolated lipid-free water pools17,26,27. Similar con-

clusions about the lack of change in lipid structure has been

inferred from X-ray scattering experiments7. Neutron scat-

tering experiments of model SC lipids suggest less than 1Å

thick water layer between leaflets9 at full hydration. These

experiments suggest that SC lipid multilayers are strongly de-

hydrated in physiological conditions.

Here we consider two bilayers in excess water but without

interbilayer water, comprising the ceramide N-lignoceroyl-D-

erythro-sphingosine (CER NS 24:0), lignoceric acid (a com-

mon free fatty acid, FFA 24:0), and cholesterol (CHOL)

(Fig. 1a) as a simple model that incorporates the dehydrated

multilayer structure. We calculate the free-energy of swelling

and find a large (∼ 3.6kBT/water molecule) barrier for ini-

tial water ingress, suggesting that the analysis of SC lipid

matrix function should invoke the properties of dehydrated

SC lipid multilayers. From long (1 µs) molecular dynam-

ics simulations, we find that strong hydrogen bonds between

the head-groups of apposing leaflets (from adjacent bilayers)

force these two leaflets to move together as an inverse bilayer,

with the hydrophobic tails in the disordered regions sliding

against each other. CHOL in these disordered interleaflet re-

gions is in dynamic equilibrium with CHOL in the ordered

(gel) part of the leaflets, which facilitates transfer of CHOL

between leaflets that is orders of magnitude faster than in fluid

1–7 | 1



phospholipid bilayers. This fast flip-flop can reduce the cur-

vature elastic cost in bending of the lipid multilayers by re-

distributing CHOL asymmetrically between the two leaflets,

thus enhancing the pliability and energy absorbing effects of

the SC and hence skin.

2 Simulations

We use the ‘Berger’ force field28–31 to describe the lipid in-

teractions and the SPC model32 for the water molecules. The

topology and the partial charges used for the lipid molecules

have been reported elsewhere22. Molecular dynamics simu-

lations at constant temperature (340 K) and pressure (1 atm)

were carried out with GROMACS molecular dynamics soft-

ware33,34 using Nosé-Hoover thermostats separately coupled

to the lipids and the water molecules, and with a Parrinello-

Rahman barostat. At physiological temperatures, SC lipids

form a ‘gel’ phase with limited mobility. We use a higher

than physiological temperature to have reasonable molecular

mobility in our simulations. Simulations show that between

300 K and 350 K, SC lipid bilayers do not show any phase

transition22 and the free-energy profile of water inside lipid

layer remain quilitatively unchanged23.

Standard periodic boundary conditions were applied in all

three directions. Bond lengths were constrained with the

LINCS algorithm for the lipid molecules and the SETTLE al-

gorithm for the water molecules. Long-range electrostatics

contributions were calculated with Particle Mesh Ewald sum-

mation (PME) and a cut-off of 1.2 nm was used for both the

Lennard-Jones and the short-range electrostatics interactions.

The timestep was 2 fs.

As the starting configuration we use an equilibrated hy-

drated bilayer from an earlier study22. The water molecules

were removed and the lipid bilayer was repeated once along

the bilayer-normal (z-direction) and was then rehydrated with

5250 water molecules. The double bilayer contained 112

CER, 112 CHOL and 64 FFA molecules. After density equili-

bration, the configuration was evolved for a further 1 µs. Con-

figurations were stored at 0.2ns intervals.

From the final configuration of this multilayer system, we

randomly select one test water molecule and pull it through

the lipid multilayer at a speed of 0.05nm/ps along the z-

direction. Configurations were stored every 0.2nm. These

saved configurations were then evolved with the test molecule

constrained to have the same z-separation from the lipid cen-

ter of mass, for longer than the relevant force-autocorrelation

times (2−40ns). The average force 〈Fz(z)〉 on the constrained

water molecule can then be used to calculate the excess chem-

ical potential35. The whole procedure was repeated for six

different water molecules to calculate statistical errors.
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Fig. 1 (a) Schematic representation of the lipid molecules showing

the polar atoms. (b) Simulation snapshot with representative

highlighted lipids (red=CHOL, blue=CER; orange=FFA). The box

dimension is 4.96×5.03×16.12 nm3. (c) Mass densities of the

lipids and water and (d) number density of center of mass of the

lipids; CER (black solid line), CHOL (red dashed line), FFA (green

dot-dashed line), water (blue dotted line).
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lipid inter HB intra HB H2O HB total

outer CER – 0.94 2.02 2.96

leaflet CHOL – 0.26 0.58 0.84

FFA – 0.36 1.30 1.66

inner CER 0.70 1.27 – 1.97

leaflet CHOL 0.29 0.36 – 0.65

FFA 0.70 0.72 – 1.42

Table 1 Hydrogen bonds (HBs) per molecule between a given inner

or outer leaflet lipid, and lipids on either the same (intra) or different

(inter) leaflets, or with water. Inner-leaflet lipids have fewer total

HBs, but a significant fraction (42%) of them are inter-leaflet HBs.

3 Lipid structure and dynamics

Fig. 1b shows a typical simulation snapshot with a few high-

lighted lipid molecules. CER and FFA show high nematic

order close to the head groups and a disordered environment

in the tail-tail interface of each bilayer (Fig S3 in Electronic

Supplementary). Some of the CHOL occupy this liquid-like

tail-tail interface region. The head-head contact region (z = 0)

shows large mass densities from the CER and FFA (Fig. 1c),

signaling better alignment of the lipids when a leaflets is in

contact with one from an adjacent bilayer (z = 0) as opposed

to when they are in contact with water (z = ±4.5nm). Fig. 1d

shows that the CER and FFA centers of mass are sharply lo-

calized at the centers of the leaflets, while the CHOL center of

mass has a subpopulation (≃ 8.3% or ≃ 9.3 molecules) in the

tail-tail interface.

There are a large number of both intra-leaflet and inter-

leaflet (and thus inter-bilayer) hydrogen bonds (Table 1).

There are more total hydrogen bonds per lipid on the outer

leaflets, presumably because of the greater flexibility afforded

by the solvent degrees of freedom. While the outer-leaflet

lipids hydrogen bond with water, the corresponding inner-

leaflet lipids can replace some of these solvent hydrogen

bonds by inter-leaflet hydrogen bonds, which effectively glue

the inner leaflets together and make the dynamics of a double

bilayer very different from a single hydrated bilayer.

Fig. 2 shows snapshots during the 1 µs trajectory. The two

inner leaflets diffuse together coherently in the center of mass

frame of the lipids. Thus, a stack of SC lipid multilayers

behaves like a collection of ‘inverse bilayers’ wherein two

leaflets belonging to adjacent traditional bilayers are strongly

coupled by the head groups and slide relatively easily at the

hydrocarbon tail-tail interface. This is the opposite from hy-

drated phospholipid biological membranes.

3.1 Cholesterol flip-flop

In Fig 2 we have highlighted four CHOL molecules, showing

that CHOL frequently exchanges between the ordered regions

Fig. 2 Snapshots of the lipid molecules in the lipid center of mass

frame. For clarity, only lipid molecules with y-component of the

initial center of mass less than 3.5 nm are shown. Four of the CHOL

molecules are highlighted with spheres. The outer two leaflets are

labelled as O1 and O2 and the inner two leaflets are labelled as I1

and I2 in subplots (a) and (f). The inner two leaflets move together

because of the inter-leaflet hydrogen bonding, and CHOL exchanges

frequently between the ordered region and the subpopulation

between leaflets, leading to rapid flip-flop. An animation of the

trajectory is in the electronic supplementary material.
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of leaflets and the liquid-like tail-tail inter-leaflet region. SC

lipids in vivo are in a glassy or gel state; despite local segmen-

tal motion (e.g. slithering of the tails), two dimensional diffu-

sion only occurs through slow cage-hopping22. However, the

CHOL molecules in the liquid-like region can readily diffuse,

both translationally and rotationally, which allows high overall

CHOL mobility. A molecule in the ordered region can transfer

to the liquid-like region and move a large distance. Because

of the rapid tumbling and head-group reorientation due to ro-

tational diffusion, it can easily be reabsorbed into either of the

leaflets. The vacancy left when CHOL exits the ordered re-

gions in turn increases the in-plane mobility of CER and FFA

molecules.

From the peaks of CHOL center of mass density nCHOL
CM

(Fig. 1d) we identify zones associated with the ordered and

liquid-like regions of the bilayers, with boundaries specified

by the local minima of nCHOL
CM . We define a transition be-

tween zones when the center of mass of a molecule pene-

trates 10% of the way into a neighboring zone, and remains

in the new zone for at least 0.4 ns. In the 1 µs long trajec-

tory, we identified 322 such transitions involving 35 individual

molecules (31% of total CHOL content), while 6 molecules

(5% of CHOL) occupied both leaflets at different times. In

steady state, detailed balance implies that N21 ≡ n1k21 dt =
N12, where ni is the number in a given zone, k ji is the rate,

per molecule, that a molecule in zone i transits to zone j,

and N ji is the total number that transit in a time dt. Hence,

if there are N total transitions between two zones in time

T , then the characteristic time τ1→2 = k−1
21 = 2n1T/N. For

N = 322 flip events in T = 1µs, nO ≃ 102.7 and nD ≃ 9.3, giv-

ing τO→D = (2×102.7/322)µs = 0.64µs and τD→O = 0.06µs.

For flip-flop events we consider all 112 CHOL molecules to

be members of one of the two leaflets (exploring an ordered

and a disordered zone) until the flip-flop event takes place (to

another ordered zone). Hence, 6 flip-flop events in 1µs leads

to τff = 2× (112/2)/6 = 18.7µs.

3.2 In-plane mobility of lipids

Accounting for the inner and outer leaflets separately leads to

a CHOL exchange timescales from the ordered to disordered

region of ∼ 0.4µs for the outer (hydrated) leaflets and ∼ 1.2µs

for the inner leaflets.

The much faster CHOL exchange from the outer hydrated

leaflets is reflected in a much larger mean-square in-plane dis-

placement for all lipids in the outer leaflets, as compared to

their counterparts in the inner leaflets. Fig. 3 shows the x− y

component of mean square displacement of the center of mass

of the lipids, in a reference frame in which the center of mass

of all the lipids is fixed. The data is averaged over the lipid

molecules and over the time origin. CHOL shows higher in-

plane mobility (red dashed line) than CER or FFA. We sepa-
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rate CHOL into populations that did and did not undergo flip

events during the entire trajectory. CHOL without any flip

events show a mean-square in-plane displacement similar to

that of CER or FFA, while CHOL with flip events have a much

larger mobility: e. g.
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Fig. 4 Diffusion of center of mass of the leaflets with respect to the

center of mass of all lipid molecules.

In simulations of finite bilayers the leaflets can diffuse with

respect to each other36,37. Since some of the CHOL molecules

move between leaflets, we define an approximate leaflet center

of mass in terms of the CER and FFA molecules. Fig. 4 shows
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the diffusion of the leaflets’ centers of mass. Both the x and

y components of the inner two leaflets (red and blue) move

together coherently over the entire trajectory.
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By calculating displacements in the reference frame of a

given leaflet, we obtain the mean square displacement of CER

and FFA lipids in the reference frame in which the leaflet

center of mass is fixed, which is appropriate for a macro-

scopic multilayer stack in which unstressed leaflet diffusion

or sliding is expected to be prohibited. Fig. 5 shows that

the lipids in the outer leaflets are significantly more mobile

than those in the inner leaflets. Comparison of Figs. 5 and 3

shows that, even for the outer leaflets, the main contribution

to in-plane displacement in the lipid center of mass reference

frame is from leaflet diffusion, which is pronounced here be-

cause of the small membrane size and periodic boundary con-

ditions. The fast CHOL exchange and fewer inter-lipid hydro-

gen bonds render the lipids in the outer leaflets several times

more mobile.

4 Excess chemical potential of water

From simulations with a water molecule constrained at a given

height z, we calculate the average z-component of the force

〈Fz(z)〉 on the constrained water. Fig. 6(a) shows 〈Fz(z)〉 aver-

aged over time and six different water molecules. Because of

the symmetry about the lipid center of mass, we expect 〈Fz(z)〉
to be an odd function of z. We exploit this symmetry in cal-

culating the excess chemical potential, µex(z) = −
∫ z

∞
〈Fz′〉dz′,

from numerical integration of 〈Fz(z)〉 (Fig 6(b)). The maxi-

mum in the ordered region is similar to that found in simula-

tions of hydrated SC lipid bilayers23. The excess chemical po-

tential remains positive and large compared to the thermal en-

ergy (10.3±3.6kJ/mol ≃ 3.6±1.2kBT ) at the bilayer-bilayer

interface (z = 0), which demonstrates that at equilibrium the

SC multilayers do not undergo swelling.

From simulation studies that consider different tempera-

tures on excess chemical potential in SC lipid bilayers23, we

expect the swelling barrier at physiological temperature to be

very similar to what we calculate at 340K. At first glance, this

barrier to swelling may seem to be contradictory to the total

number of hydrogen bonds from table 1. Though the inner

leaflets form a number of inter-leaflet hydrogen bonds, the to-

tal number of hydrogen bonds formed by the lipids in the outer

leaflet is higher due to large number of hydrogen bonds with

water. When a water molecule from bulk reaches the inter-

bilayer region, the loss of inter-water hydrogen bonds and en-

tropy makes the swelling free energy positive.
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Fig. 6 (a) Average force 〈Fz(z)〉 on a water molecule constrained at

a given z from the lipid center of mass (averaged over 8 water

molecules). (b) Excess chemical potential of water molecules.

5 Discussion

The long (1 µs) simulations show that CHOL has a dynamic

subpopulation at the disordered bilayer midplane, which

rapidly exchanges with CHOL in the ordered lipid region on

µs timescales. The high rotational diffusivity (tumbling) of

CHOL in the mid-leaflet liquid-like region allows molecules

from the subpopulation to readily incorporate into the ordered

region of either of the adjacent leaflets, leading to fast flip-flop

times τff ≃ 19 µs.

CHOL flip-flop has been investigated extensively for phos-

pholipid bilayers, yielding much slower timescales than found

here. Different experiments assign a timescale of millisec-

onds to hours38,39. From potential of mean force calculations

using an all atom DPPC bilayer with 40% CHOL concentra-

tion, the flip-flop time scale of CHOL was estimated to be

∼ 50 ms40. Similar time scales were estimated from sim-

ulations of bilayers containing 1:1:1 molar ratios of palmi-

toylsphingomyelin (PSM), 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholin (POPC), and CHOL41. Naively one would

assign a much smaller flip-flop rate for CER bilayers, in which
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the small ceramide headgroup and prevalence of single chain

fatty acids lead to relatively high densities in the ordered re-

gion, which would imply much lower molecular mobility, par-

ticularly in the gel phase found in vivo (and in our simulations

even at 340 K).

However, CHOL flip-flop is enhanced by a number of ef-

fects that are specific to the SC membrane: (1) strong hy-

drogen bonding among CER molecules leads to an ordered

dense leaflet (Fig. 1), which is comparatively less favorable

for CHOL than in phospholipid solid (or fluid) phases; (2)

the length asymmetry of the CER tails leads to a low-density

liquid-like inter-leaflet region, within which the CHOL can re-

side (ESI Fig S3); (3) the higher free-energy of CHOL in the

ordered region lowers the barrier for hopping into the liquid-

like region; (4) the relative disorder in the liquid-like region

allows the CHOL to easily reorient to incorporate into another

leaflet (ESI Fig S3).

A flat multicomponent lipid bilayer is governed by a free

energy G that includes the asymmetry δφ of the CHOL con-

tent between leaflets39,42:

G =
1

2

∫

d2r
[

κC2 +2αCδφ + χδφ 2
]

, (2)

where C is the bending curvature, κ the bending modu-

lus, χ the penalty for creating asymmetry, and the bending-

asymmetry coupling α depends on the shape and energetics

of CHOL packing into the leaflets. An imposed curvature C

can induce a CHOL fluctuation δφ ≃ −αC/χ on timescales

longer than the flip-flop timescale τff, which leads to a re-

duction of the bending modulus κ → κR = κ −α2/χ . Thus,

SC membranes can quickly adapt to widely different curva-

tures without the high elastic penalty expected for a gel-like

phase. Such dynamic curvature changes are expected in vivo

due to hydration- and dehydration-induced shape changes of

the corneocytes, and normal folding and stretching of skin due

to physiological activities. With the low permeability of skin

such hydration-induced changes of corneocyte shape will hap-

pen much more slowly than flip-flop, which can act to keep the

SC multilayers free of curvature stress.

The subpopulation of CHOL within the disordered center

region allows for anomalous in-plane diffusion controlled by

adsorption-desorption between the ordered and disordered re-

gions43, which is much faster than permitted in the dense lipid

lamellae. In turn, the CHOL dynamics enhances the mobility

of other lipid species by creating temporary free volumes in

the ordered leaflet. Such enhanced molecular mobility should

render skin more dissipative than similarly packed long chain

molecules. Hence, flip-flop may be the dominant mechanism

for the experimentally-observed enhancement of fluidity of

SC lipids due to CHOL44.

The outer layer in contact with water shows more frequent

transitions (time scales 0.4 µs ) of CHOL to the disordered

region compared to the hydrogen bonded inner leaflets (time

scales 1.3 µs). Flip-flop, in which a single CHOL need to ac-

cess flips from one leaflet to disordered zone and then dis-

ordered zone to another leaflet, necessarily is slowed down

by the slow flip events involving the inner leaflets. Thus, for

a bilayer (where both the leaflets will be equivalent to outer

leaflets in multilayer simulations), we expect flip-flop to be

faster than the current simulations. Similarly, the diffusion of

lipids (as in Fig. 3) will be faster for a bilayer simulation.

From the excess chemical potential of a single water

molecule in a dry double-bilayer, we find a positive chemi-

cal potential for water compared to the bulk. With more than

10kBT barrier to overcome, it is highly unlikely for multi-

ple water molecules to penetrate the inter-bilayer region at the

same time in a dry multilayer and our calculations suggest that

such dry multilayers will remain indefinitely stable.

6 Summary

We have carried out large-scale molecular dynamics simula-

tions of stratum corneum lipid bilayers. The membranes are

strongly dehydrated, with a barrier for aqueous swelling of

multilayers that is governed by inter-leaflet hydrogen bond-

ing. Hence, theories developed to describe fully-hydrated

phospholipids must be applied to SC multilayers with care.

The gel-like phase found at physiological temperatures has

a liquid-like disordered layer between leaflets, which facili-

tates rapid cholesterol flip-flop and can significantly soften the

bending modulus, as well as inducing mechanisms for greater

dissipation. One expects a strong modulus with little dissipa-

tion at high frequencies ω > τ−1
ff , and a softer response and

greater dissipation at lower frequencies. These effects are im-

portant for adaptation of the skin to changing conditions, as

well as contributing to the skin’s effective and remarkable re-

silience. The extensive hydrogen bonding within SC multi-

layers has some similarities with novel self-healing materials

invented by Liebler et al.45. In both cases, hydrogen bonds

form and reform to control the mechanical properties and re-

sponse of materials. Implementing an analog of CHOL flip-

flop in self-healing materials might impart stronger dissipation

and frequency dependent bending response.

The primary function of SC lipids is as a hydration barrier.

Simulations show23 that CER alone provides orders of mag-

nitude lower permeability for water, when compared to three

component CER:CHOL:FFA bilayer. The presence of CHOL

decreases the tail order and thus increases permeability; how-

ever, CHOL also helps to soften the mechanical properties,

both the intrinsic bilayer compressibility23 and the bending

modulus. Hence, evolution may have optimized the lipid com-

position so that the SC lipid matrix can be deformed rapidly

and relatively easily, while still maintaining an acceptable hy-

dration barrier.
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