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11�-Hydroxysteroid Dehydrogenase Type 1 Regulates
Glucocorticoid-Induced Insulin Resistance in Skeletal
Muscle
Stuart A. Morgan,1 Mark Sherlock,1 Laura L. Gathercole,1 Gareth G. Lavery,1 Carol Lenaghan,2

Iwona J. Bujalska,1 David Laber,2 Alice Yu,2 Gemma Convey,2 Rachel Mayers,2 Krisztina Hegyi,3

Jaswinder K. Sethi,3 Paul M. Stewart,1 David M. Smith,2 and Jeremy W. Tomlinson1

OBJECTIVE—Glucocorticoid excess is characterized by in-
creased adiposity, skeletal myopathy, and insulin resistance, but
the precise molecular mechanisms are unknown. Within skeletal
muscle, 11�-hydroxysteroid dehydrogenase type 1 (11�-HSD1)
converts cortisone (11-dehydrocorticosterone in rodents) to ac-
tive cortisol (corticosterone in rodents). We aimed to determine
the mechanisms underpinning glucocorticoid-induced insulin
resistance in skeletal muscle and indentify how 11�-HSD1 inhib-
itors improve insulin sensitivity.

RESEARCH DESIGN AND METHODS—Rodent and human
cell cultures, whole-tissue explants, and animal models were
used to determine the impact of glucocorticoids and selective
11�-HSD1 inhibition upon insulin signaling and action.

RESULTS—Dexamethasone decreased insulin-stimulated glu-
cose uptake, decreased IRS1 mRNA and protein expression, and
increased inactivating pSer307 insulin receptor substrate (IRS)-1.
11�-HSD1 activity and expression were observed in human and
rodent myotubes and muscle explants. Activity was predomi-
nantly oxo-reductase, generating active glucocorticoid. A1 (se-
lective 11�-HSD1 inhibitor) abolished enzyme activity and
blocked the increase in pSer307 IRS1 and reduction in total IRS1
protein after treatment with 11DHC but not corticosterone. In
C57Bl6/J mice, the selective 11�-HSD1 inhibitor, A2, decreased
fasting blood glucose levels and improved insulin sensitivity. In
KK mice treated with A2, skeletal muscle pSer307 IRS1 decreased
and pThr308 Akt/PKB increased. In addition, A2 decreased both
lipogenic and lipolytic gene expression.

CONCLUSIONS—Prereceptor facilitation of glucocorticoid ac-
tion via 11�-HSD1 increases pSer307 IRS1 and may be crucial in
mediating insulin resistance in skeletal muscle. Selective 11�-
HSD1 inhibition decreases pSer307 IRS1, increases pThr308 Akt/
PKB, and decreases lipogenic and lipolytic gene expression that
may represent an important mechanism underpinning their insu-
lin-sensitizing action. Diabetes 58:2506–2515, 2009

T
he pathophysiological effects of glucocorticoids
are well described and impact upon almost all
organ systems within the body. This is high-
lighted in patients with glucocorticoids excess,

Cushing’s syndrome characterized by central obesity, hy-
pertension, proximal myopathy, insulin resistance, and in
some cases overt type 2 diabetes. In addition, up to 2.5% of
the population are taking prescribed glucocorticoids (1),
and their side effects represent a considerable clinical
burden for both patient and clinician.

Glucocorticoids induce whole-body insulin resistance
(2); however, the precise molecular mechanisms that
underpin this observation have not been defined in detail.
In simple obesity and insulin resistance, circulating corti-
sol levels are not elevated (3), but in key insulin target
tissues including liver, fat, and muscle, glucocorticoid
availability to bind and activate the glucocorticoid recep-
tor is controlled by 11�-hydroxysteroid dehydrogenase
type 1 (11�-HSD1). 11�-HSD1 is an endo-lumenal enzyme
that interconverts inactive (cortisone in humans and 11-
dehydrocorticosterone [11DHC] in rodents) and active
glucocorticoids (cortisol in humans and corticosterone
[CORT] in rodents) (4). Critically, the directionality of
11�-HSD1 activity is cofactor (NADPH) dependent that is
supplied by a tightly associated endo-lumenal enzyme,
hexose-6-phopshate dehydrogenase (H6PDH). Decreases
in H6PDH expression and activity decrease 11�-HSD1
oxo-reductase and increase dehydrogenase activity (5).
Despite this bidirectional potential, the predominant direc-
tion of activity in liver, adipose, and muscle is oxo-
reductase generating active glucocorticoid (cortisol and
CORT), therefore, amplifying local glucocorticoid action.

Binding of insulin to its cell surface receptor leads to a
conformational change and tyrosine autophosphorylation.
Consequently, the insulin receptor substrate (IRS) family
of adaptor proteins are recruited to the intracellular do-
main of the receptor and are phosphorylated at multiple
tyrosine residues by the receptor tyrosine kinase to permit
the docking of phosphatidylinositol-3-kinase (PI3K) and
subsequent generation of PI(3,4,5)P3. Generation of this
second messenger acts to recruit the Akt/PKB family of
serine/threonine kinases to the plasma membrane where
they are then activated (6). Further downstream, activated
Akt1/protein kinase B (PKB) phosphorylates a rab-GAP
(GTPase) protein, AS160, which is a crucial regulator of
the translocation of GLUT4 GLUT storage vesicles to the
plasma membrane (7). It is this mechanism that permits
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insulin-stimulated glucose entry into target tissues includ-
ing skeletal muscle (8).

The molecular mechanisms underpinning insulin resis-
tance are complex and variable. Serine/threonine phos-
phorylation of IRS1 (in particular Ser307 phosphorylation)
has been shown to negatively regulate insulin signaling
through multiple mechanisms including decreased affinity
for the insulin receptor and increased degradation (9,10).

The interaction of glucocorticoids and the insulin sig-
naling cascade has only been examined in a small number
of studies that have offered variable explanations for the
induction of insulin resistance (11–14). Importantly, the
role of serine phosphorylation and the impact of prerecep-
tor glucocorticoid metabolism have not been explored.
The 11�-HSD1 knockout mouse is relatively insulin sensi-
tive (15), and specific inhibitors of 11�-HSD1 improve lipid
profiles, glucose tolerance, and insulin sensitivity and have
considerable potential as therapeutic agents (16–18).
However, the molecular mechanisms that underpin these
observations remain to be defined.

Therefore, we have characterized the impact of glu-
cocorticoids upon the insulin-signaling cascade and ana-
lyzed the expression, activity, and functional impact of
11�-HSD1 in vitro and using in vivo mouse models.

RESEARCH DESIGN AND METHODS

Cell culture. Mouse skeletal muscle cell line, C2C12 myoblasts (ECACC,

U.K.), were grown in DMEM (PAA, U.K.) supplemented with 10% FBS (37°C,

5% CO2). Cells were grown to 60–70% confluence before differentiation

(initiated by replacing growth media with DMEM with 5% horse serum). After

8 days, myoblasts had fused to form multinucleated myotubes. Before

treatment, cells were washed out with serum-free media for 4 h. For

experiments examining Ser24 phosphorylation, C2C12 cells stably overex-

pressing myc-rIRS1 were generated and used as described previously for

3T3-L1 adipocytes (19).

Primary human myoblasts were obtained from PromoCell (Heidelberg,

Germany). Myoblasts were cultured to confluence, as per the manufacturer’s

guidelines using the supplied media. Once confluent, media was changed to a

chemically defined media (PromoCell, Germany) including 2% horse serum

and cells differentiated into myotubes for 11 days. After differentiation, cells

were incubated with serum-free media for 4 h before treatment.

Unless otherwise stated, for all cell culture experiments investigating

insulin-signaling cascade protein phosphorylation, media was spiked with

human insulin (0.1 �g/ml, Sigma, U.K.) for the final 15 min of the treatment

period to achieve insulin stimulation. In experiments using the glucocorticoid

receptor antagonist, RU38486, cells were pretreated with RU38486 (10 �mol/l)

for 10 min before adding Dexamethasone (Dex). Treatments and reagents

were supplied by Sigma, Poole, U.K. unless otherwise stated. Selective

11�-HSD1 inhibitors (A1 and A2, �95% and �99% purity, respectively) were

provided through material transfer agreements with AstraZeneca (Maccles-

field, U.K.). Inhibitor properties are presented within the results section.

RNA extraction, reverse transcription PCR, and real-time PCR. Total

RNA was extracted from cell lysates using the Tri-Reagent system and from

whole-tissue explants using RNeasy Fibrous Tissue Mini Kit (Qiagen). Integ-

rity, concentration, and reverse transcription were performed as we have

previously described (20). Specific mRNA levels were determined using an

ABI 7500 sequence detection system (Perkin-Elmer Applied Biosystems,

Warrington, U.K.). Reactions were performed in 20 �l volumes on 96-well

plates in reaction buffer containing 2 � TaqMan Universal PCR Master mix

(Applied Biosystems, Foster City, CA). Probes and primers for all genes were

supplied by applied biosystems ‘assay on demand’ (Applied Biosystems). All

reactions were normalized against 18S rRNA as an internal housekeeping

gene.

Data were obtained as ct values (ct � cycle number at which logarithmic

PCR plots cross a calculated threshold line) and used to determine �ct values

with �ct � (ct of the target gene) – (ct of the housekeeping gene). Data are

expressed as arbitrary units using the following transformation (expression �

105 � [2��ct] arbitrary units [AUs]). When used, fold changes were calculated

using the following equation: [fold increase � 2�difference in �ct].

Genecard analysis. Taqman 348-well custom arrays were purchased from

Applied Biosystems containing 45 custom genes and 3 housekeeping genes.

Five hundred nanograms of cDNA were mixed with Taqman universal PCR

master mix (Applied Biosystems), and the array was run on an ABI 7900HT

Fast Real-Time PCR System (Applied Biosystems). Data were obtained as ct

values and fold changes calculated. Results were validated with standard

Taqman RT-PCR.

Protein extraction and immunoblotting. Cells were scraped into 100 �l

RIPA buffer (50 mmol/l Tris pH 7.4, 1% NP40, 0.25% sodium deoxycholate, 150

mmol/l NaCl, 1 mmol/l EDTA), 1 mmol/l phenylmethylsulfonyl fluoride, and

protease inhibitor cocktail (Roche, Lewes, U.K.), incubated at �80°C (10 min)

on ice (30 min), and centrifuged at 4°C (10 min, 14,000 rpm). The supernatant

was transferred to a fresh tube and total protein concentration determined by

a commercially available assay (Bio-Rad Laboratories, Hercules, CA).

Twenty micrograms of protein was resolved on an SDS-PAGE gel (acryl-

amide percentage varied according to protein size). Proteins were transferred

onto nitrocellulose membrane, Hybond ECL (GE Healthcare, Chalfont St.

Giles, U.K.). Primary (anti-IRS1, anti-pSer307 IRS1, anti-IRS2, and anti-AS160

from Upstate, Dundee, U.K.; anti-PKB/akt, anti-pSer473 PKB/akt [recognizing

isoforms 1 and 2], and anti-Thr308 Akt/PKB from R&D Systems, Abingdon,

U.K.; and anti-pTyr608 IRS1 from Biosource, Nivelles, Belgium) and secondary

antibodies (Dako, Glostrop, U.K.) were used at a dilution of 1/5,000. Mem-

branes were reprobed for �-actin and primary and secondary antibodies used

at a dilution of 1/5,000 (Abcam plc, Cambridge, U.K.). Bands were visualized

using ECL detection kit (GE Healthcare, Chalfont St. Giles, U.K.) and

quantified with Genesnap by Syngene (Cambridge, U.K.).

Glucose transport assay. Glucose uptake activity was analyzed by measur-

ing the uptake of 2-deoxy-D-[3H] glucose as described previously (21). After

treatment, cells were washed three times with Krebs-Ringer-Hepes (KRP)

buffer and incubated with 0.9 ml KRP buffer at 37°C for 20 min. Insulin (0.5

�g/ml) was then added, and the cells were incubated at 37°C for 20 min.

Glucose uptake was initiated by the addition of 0.1 ml KRP buffer and 37MBq/l

2-deoxy-D-[3H] glucose (GE Healthcare) and 7 mmol/l glucose as final concen-

trations. After 60 min, glucose uptake was terminated by washing the cells

three times with cold PBS. Cells were lysed and radioactivity retained by the

cell lysates determined by scintillation counting.

11�-HSD1 assay. Briefly, intact cells were incubated with 100 nmol/l 11DHC

and tritiated tracer for 2–24 h dependent upon assay system. In studies using

selective 11�-HSD1 inhibitors, cells were incubated for 24 h with inhibitor

before 11�-HSD1 assay being performed. Steroids were then extracted using

dichloromethane, separated using a mobile phase consisting of ethanol and

chloroform (8:92) by thin layer chromatography, and scanned using a Bioscan

3000 image analyzer (Lablogic, U.K.). Protein levels were assayed using a

commercially available kit (Bio-Rad, Richmond, CA).

Mouse protocols. The selective 11�-HSD1 inhibitor A2 was used in two

separate mouse protocols. All experimental procedures were conducted in

accordance with the Animal Scientific Procedures Act 1986, Animal Welfare

Act 2006, and local guidelines. First, male C57Bl6/J mice (6 weeks of age) were

maintained for 20 weeks on a diet comprising 48 kcal% fat/10 kcal% fructose

(Research Diets RD06072801, New Brunswick, NJ). Mice were housed with a

standard light cycle (06:00 h on/18:00 h off), and A2 was administered (20

mg/kg b.i.d) by oral gavage for 28 days and compared against vehicle-control

and pair-fed, vehicle-treated animals (n � 9–10). Food intake was assessed

over the 28-day period, and on day 24 after 12-h fast, an oral glucose tolerance

test (OGTT, 2 g/kg) was performed. Conscious tail-prick samples were

analyzed for glucose using the Accu-Chek Aviva system (Roche) and for

insulin using Ultra Sensitive Mouse Insulin ELISA kits (Crystal Chem #90800,

Downers Grove, IL).

Separately, the impact of A2 upon skeletal muscle gene and protein

expression in an additional hyperglycemic model were determined (male

KK/Ta Jcl mice aged 7 weeks; CLEA Japan, Tokyo, Japan). Animals had free

access to water and irradiated RM3 (E) diet composed of 11.5 kcal% fat, 27

kcal% protein, and 62 kcal% carbohydrate (Special Diets Services, Witham,

U.K.). Compound A2 (20 mg/kg) or vehicle (10 ml/kg) was administered by

oral gavage at 08:00 and 20:00 h for 4 consecutive days. After the administra-

tion of the third dose of A2, mice were anesthetized by inhalation of 2–3% v/v

isoflurane (vaporized by oxygen at 1.6 l/min flow rate) and a 5 mg slow-release

cortisone pellet (�8 mg � kg�1 � day�1 in a 29 g mouse) implanted subcuta-

neously in the lateral aspect of the neck (Innovative Research of America,

Sarasota, FL). On day 4, 1–2 h after the seventh oral dose of A2, a rising-dose

carbon dioxide concentration was used to humanely kill mice in the fed state

and femoral quadriceps muscles were removed and snap frozen in liquid

nitrogen.

Statistical analysis. Where data were normally distributed, unpaired Stu-

dent’s t tests were used to compare single treatments to control. If normality

tests failed, then nonparametric tests were used. One-way ANOVA on ranks

was used to compare multiple treatments, doses, or times (SigmaStat 3.1;

Systat Software, Point Richmond, CA). Statistical analysis on real-time PCR

data was performed on mean �ct values.
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RESULTS

Glucocorticoid impact upon the insulin-signaling
cascade. In agreement with published data, treatment
with the synthetic glucocorticoid Dex (1 �mol/l, 24 h)
decreased insulin-stimulated glucose uptake (2.1 	 0.3 vs.
1.7 	 0.2 dpm � 105, P 
 0.05, n � 4) consistent with the
induction of insulin resistance in differentiated rodent
C2C12 skeletal myocytes.

Using real-time PCR, Dex (1 �mol/l, 24 h) decreased
mRNA expression of IRS1 (8.7 	 0.7 vs. 4.5 	 0.4 AU, P 

0.05, n � 5), an effect that was blocked by the glucocor-
ticoid antagonist RU-38486 (Table 1). In contrast, IR,
Akt/PKB2, PI3K, AS160, and GLUT4 expression all in-
creased after Dex treatment. RU38486 reversed only the
effects of Dex upon GLUT4 and AS160 expression. Al-
though Dex treatment did not alter 11�-HSD1 expression,
H6PDH expression increased (0.10 	 0.01 vs. 1.30 	 0.07
AU, P 
 0.001) and was reversed by coincubation with
RU38486 (0.18 	 0.02 AU, P 
 0.001 vs. Dex). Absolute
mRNA expression data after Dex treatment with and
without the glucocorticoid receptor antagonist RU38486
are presented in Table 1.

At the protein level, treatment with Dex decreased IRS1
total protein expression (0.4-fold, P 
 0.05) that was
recovered by coincubation with RU38486 (Fig. 1A and B).
Insulin-stimulated, activating Tyr608 phosphorylation of
IRS1 was unchanged with Dex treatment (Fig. 1A and B).
However, we observed enhanced inactivating Ser307 phos-
phorylation (3.3-fold, P 
 0.05) after Dex treatment that
was prevented by RU-38486 (Fig. 1A and B). Total IRS2
protein expression was increased by Dex (1.7-fold, P 

0.001) (Fig. 1A and C). Further downstream, Akt/PKB
protein expression did not change with Dex treatment, but
activating Ser473 phosphorylation decreased (0.5-fold, P 

0.05) (Fig. 1A and D). Dex treatment increased AS160
expression 1.5-fold (P 
 0.05), which was blocked by
coincubation with RU38486 (Fig. 1A and E).

Diacylglycerol (DAG)-dependent protein kinase C
(PKC) isoforms have been implicated in the phosphoryla-
tion of IRS1 at Ser24, and this has been linked to the
pathogenesis of insulin resistance (19). We examined the
effect of Dex using C2C12 cells stably overexpressing

IRS1. Although Dex increased Ser307 phosphorylation in
this model, there was no detectable impact upon Ser24

phosphorylation or ectopic IRS1-myc protein levels
(Fig. 1F).

To determine whether our observations with synthetic
glucocorticoids were applicable in a physiological context,
further experiments were performed using endogenous
rodent glucocorticoids (11DHC and CORT). Consistent
with our observations using Dex, CORT caused a dose-
and time-dependent decrease in IRS1 total protein expres-
sion (dose: 1.0 [control] vs. 0.59-fold [100 nmol/l], P 
 0.01,
0.47-fold [250 nmol/l], P 
 0.05, 0.44-fold [500 nmol/l], P 

0.01, 0.38-fold [1,000 nmol/l], P 
 0.01; time: 1.0 [control]
vs. 0.19 	 0.04 [48 h], P 
 0.05) (Fig. 2A and B). This was
accompanied by a dose- (1.0 [control] vs. 2.80-fold [250
nmol/l], P 
 0.01, 3.99-fold [500 nmol/l], P 
 0.01, 4.37-fold
[1,000 nmol/l], P 
 0.001) (Fig. 2A) and time- (1.0 [control]
vs. 3.0 	 0.08 [48 h], P 
 0.05) (Fig. 2B) dependent
increase in Ser307 phosphorylation.
11�-HSD1 in rodent and human skeletal muscle. 11�-
HSD1 mRNA was highly expressed in C2C12 cells. Expres-
sion was also detected in whole-tissue explants of mouse
quadriceps muscle, although levels were lower than those
seen in liver and adipose tissue (Table 2). In all systems
(C2C12 cells, human primary cultures, and whole-tissue
explants from mice), functional, bidirectional 11�-HSD1
activity was demonstrated with predominant oxo-
reductase activity (Fig. 3A and B). In mouse quadriceps
explants, oxo-reductase activity was significantly de-
creased after coincubation with the nonselective 11�-HSD
inhibitor, glycyrrhetinic acid (2 �mol/l, 2 h) (114.0 	 5.7 vs.
44.6 	 11.1 pmol � g�1 � h�1, P 
 0.05) (Fig. 3A and B). A1
and A2 are selective 11�-HSD1 inhibitors provided through
an investigator-led collaboration with AstraZeneca. A1 has
a half-maximal inhibitory concentration (IC50) for human
recombinant 11�-HSD1 of 0.3 nmol/l and for rat 637 nmol/l,
mouse 33 nmol/l, and human 11�-HSD2 �15 �mol/l. A2
has an IC50 for human recombinant 11�-HSD1 of 7 nmol/l
and for rat 94 nmol/l, mouse 26 nmol/l, and human
11�-HSD2 �15 �mol/l. Treatment with A1 (1 �mol/l, 24 h),
significantly decreased oxo-reductase activity in mouse
quadriceps whole-tissue explants, differentiated C2C12
cells, and primary cultures of differentiated human skele-
tal myocytes (Fig. 3C).
Functional impact of 11�-HSD1 inhibition
Rodent and human cell lines and primary cultures.
Paralleling our observations with Dex and CORT, 11DHC
(250 nmol/l, 24 h) decreased IRS1 total protein expression
(0.5-fold, P 
 0.05) and increased pSer307 IRS1 (2.0-fold,
P 
 0.05) in C2C12 cells. Coincubation with the nonselec-
tive 11�-HSD inhibitor glycyrrhetinic acid (2.5 �mol/l,
24 h) reversed 11DHC-induced pSer307 IRS1 to levels seen
in control untreated cells (1.1-fold, P � 0.56 vs. control)
(Fig. 4A). Glycyrrhetinic acid treatment alone was without
effect (data not shown). Similarly, observations with the
selective 11�-HSD1 inhibitor A1 (2.5 �mol/l, 24 h) mir-
rored those with glycyrrhetinic acid, completely blocking
the effects of 11DHC to decrease total IRS1 expression and
increase pSer307 IRS1 (Fig. 4B). Extending these findings,
in primary cultures of human skeletal muscle, cortisone
(250 nmol/l, 24 h) decreased insulin-stimulated pThr308

Akt/PKB without altering total Akt/PKB protein expres-
sion. These observations were completely abolished fol-
lowing coincubation with A1 (Fig. 4C).

TABLE 1
mRNA expression of key components of the insulin-signaling
cascade and glucocorticoid metabolism in C2C12 rodent skeletal
myocytes measured using real-time PCR after treatment with
Dex (1 �mol/l, 24 h) with or without the glucocorticoid receptor
antagonist, RU38486 (10 �mol/l)

Gene Control
Dexamethasone
(1 �mol/l, 24 h)

Dexamethasone
(1 �mol/l, 24 h) �

RU38486 (10
�mol/l, 24 h)

InsR 4.4 	 0.4 6.1 	 0.5† 5.4 	 0.5
IRS1 8.7 	 0.7 4.5 	 0.4* 7.5 	 0.7§
AKT1 45.2 	 5.4 39.4 	 2.8 45.1 	 3.4
AKT2 1.5 	 0.3 2.3 	 0.1* 1.9 	 0.3
PI3K(p85) 1.4 	 0.2 2.2 	 0.2* 2.2 	 0.1
GLUT4 2.3 	 0.3 13.1 	 1.5‡ 3.7 	 0.4�
11�HSD1 32.9 	 2.9 27.6 	 2.7 35.6 	 3.6
H6PDH 0.10 	 0.0149 1.30 	 0.07‡ 0.18 	 0.02¶
AS160 0.12 	 0.02 0.23 	 0.02* 0.12 	 0.01§

Data are the mean values from n � 5 experiments and expressed as
AUs 	 SE (*P 
 0.05, †P 
 0.01, and ‡P 
 0.001 vs. control; §P 

0.05, �P 
 0.01, and ¶P 
 0.001 vs. Dex).
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Mouse in vivo studies
Food intake, glucose tolerance, and insulin
sensitivity. Food intake decreased within the first 48 h in
the A2-treated animals in comparison with vehicle-treated
controls. However, by day 4 and for the remainder of the
28-day protocol, food intake did not differ between the
groups (day 4: 15.4 	 0.7 vs. 16.5 	 0.7 kcal/day [A2 vs.
control], P � 0.08). At day 28, fasting blood glucose and
insulin levels were lower in the A2-treated animals com-
pared with both vehicle-treated and pair-fed controls
(glucose: 6.8 	 0.3 vs. 7.4 	 0.35 vs. 7.7 	 0.3 mmol/l, P 

0.05; insulin: 0.60 	 0.10 vs. 0.82 	 0.14 vs. 0.91 	 0.11
ng/ml, P 
 0.05, A2 vs. vehicle vs. pair-fed vehicle).
Similarly, homeostasis model assessment values were
lower (4.2 	 0.9 vs. 6.0 	 0.98 vs. 7.1 	 0.9 [A2 vs. vehicle
vs. pair-fed vehicle], P 
 0.05) as was insulin secretion

(area under curve, AUC) across an OGTT (2.29 	 0.23 vs.
2.95 	 0.37 vs. 2.94 	 0.21 ng � ml�1 � h�1 [A2 vs. vehicle vs.
pair-fed vehicle], P 
 0.05). Glucose levels across the
OGTT (AUC) did not change significantly (22.4 	 0.46 vs.
24.2 	 0.42 vs. 22.9 	 0.45 mmol � l�1 � h�1 [A2 vs. vehicle
vs. pair-fed vehicle], P � not significant).
Gene and protein expression in skeletal muscle from
KK mice. Cortisone pellet–implanted KK mice treated
with A2 for 4 consecutive days had increased total IRS1
protein expression, decreased Ser307 phosphorylation, and
increased Thr308 phosphorylation of Akt/PKB in whole-
tissue quadriceps explants. Tyr608 phosphorylation did not
change (Fig. 5A). Genecard analysis of quadriceps mRNA
expression following A2 treatment is shown in Table 3.
Positive findings were endorsed with real-time PCR (Fig.
5B). 11�-HSD1 expression decreased (0.48-fold) (Table 3,
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FIG. 1. Dex treatment (1 �mol/l, 24 h) in C2C12 rodent skeletal myocytes decreases IRS1 total protein expression, increases pSer307 IRS1, but
does not change pTyr608 IRS1. These observations are reversed by coincubation with the glucocorticoid antagonist RU38486. IRS2 expression
increased after Dex treatment. Although Akt/PKB expression does not change, activating pSer473 Akt/PKB decreases but is not recovered by
coincubation with RU38486. Total AS160 protein expression increased after Dex pretreatment and was reversed with RU38486. Representative
Western blots are shown in panel 1A with quantitation relative to �-actin as internal loading control shown in subsequent panels (IRS1 [total
IRS1: black bars, pSer307 IRS1: white bars, pTyr608 IRS1: gray bars] [B], IRS2 [C], akt/PKB [total Akt/PKB: black bars, pSer473 Akt/PKB: white bars]
[D], and AS160 [E]) (*P < 0.05 vs. control, †P < 0.05, ††P < 0.01 vs. Dex). In C2C12 cells stably overexpressing IRS1, Dex increases Ser307 but
does not induce Ser24 phosphorylation (F). Ctrl, control. PMA, phorbol myristate acetate.
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Fig. 5B) without effect on glucocorticoid receptor or
H6PDH expression. In agreement with our protein expres-
sion data, IRS1 mRNA expression increased after selective
11�-HSD1 inhibition (Fig. 5B). The regulatory subunit of
PI3K p85 decreased 0.25-fold after treatment with A2 with
no change in catalytic subunit (p110) expression (Table 3,
Fig. 5B). PI3K activity was not measured as part of this
study. A2 treatment decreased expression of key target
genes involved in lipogenesis (ACC1 0.3-fold, DGAT 0.4-
fold), lipolysis (HSL 0.3-fold, ATGL 0.39-fold) and lipid
oxidation (ACC2 0.6-fold) (Table 3, Fig. 5B). In addition,
PDK4 increased 1.7-fold (Fig. 5B).

DISCUSSION

In this study, we have characterized in detail the impact of
both synthetic and endogenous glucocorticoids upon in-
sulin signaling in the rodent skeletal muscle cell line,
C2C12. In addition, we have characterized expression and
activity of 11�-HSD1 in both rodent and human skeletal
muscle, ascribed a functional significance to its activity in
terms of insulin sensitization, and have begun to explore
the mechanisms by which this occurs.

Glucocorticoids impair insulin signaling at multiple lev-
els, importantly decreasing total IRS1 protein expression
and increasing Ser307 phosphorylation. IRS-1 serine phos-
phorylation at this site has been reported to decrease the
affinity of IRS1 for the insulin receptor and increased IRS1
degradation (9,10), and this may account for the decrease
in total protein expression that we observed. It is also

sufficient to account for the glucocorticoid-induced de-
crease of insulin-stimulated glucose uptake. The pivotal
role of IRS1 in skeletal muscle insulin signaling is high-
lighted by IRS1 knockout mice (22–24) that develop
marked insulin resistance. Serine phosphorylation of IRS1
at numerous residues has been implicated in the develop-
ment of insulin resistance (19,25–27). Specifically, Ser307

phosphorylation is a negative regulator of IRS1 function.
Inflammatory cytokines including tumor necrosis factor-�
and C-reactive protein increase Ser307 phosphorylation
(28,29), and insulin itself has been described to have
similar effects (30,31). Although several kinases have been
implicated in serine phosphorylation of IRS1 (32), PKC
 is
believed to have a critical role, notably after free fatty acid
(FFA) exposure (33,34). PKC
 knockout animals resist
lipid-induced skeletal muscle insulin resistance (35), and
rodent models with muscle-specific targeted serine-to-
alanine substitutions at residues within IRS1 including
Ser307 resist fat-induced insulin resistance (36). Glucocor-
ticoid induction of lipolysis and consequent FFA genera-
tion (37) as well as increased FFA uptake will activate
PKC
, and this may well be an important contributor to the
insulin resistance induced by glucocorticoid. This is en-
dorsed by our gene expression analysis of lipogenic/
lipolytyic genes in rodent muscle after 4-day treatment
with the selective 11�-HSD1 inhibitor A2 (see discussion
below). In addition, the lack of Ser24 phosphorylation
may also add weight to this hypothesis. PKC
 does
not contribute to phorbol-12-myristate-13-acetate–induced
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FIG. 2. The endogenous rodent glucocorticoid, CORT, induces a dose- (A) and time- (B) dependent decrease in total IRS1 protein expression
(black bars) and increase in pSer307 IRS1 (white bars). Data presented are the means of n � 4–6 experiments with representative Western blots
inserted above (*P < 0.05, **P < 0.01 vs. control).

TABLE 2
Comparative mRNA expression of 11�-HSD1, glucocorticoid receptor, and H6PDH in mouse skeletal muscle and C2C12 myotubes

Gene C2C12 Quadriceps Liver Adipose

11�-HSD1 32.9 	 2.9 0.29 	 0.03 18.40 	 1.96 1.26 	 0.14
H6PDH 0.10 	 0.015 0.1 	 0.006 0.12 	 0.005 0.11 	 0.0009
Glucocorticoid receptor 0.56 	 0.022 5.67 	 0.29 3.33 	 0.36 3.9 	 0.68

Data are expressed as AUs (AU means 	 SE, n � 3–5 experiments). Expression in rodent liver and adipose tissue are provided as a
quantitative reference.
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Ser24 phosphorylation but instead is dependent upon PKC�
activation (19).

Other studies have also highlighted the pivotal role of
IRS1 in glucocorticoid-associated insulin resistance, al-

though serine phosphorylation has not been examined.
The results of these studies do show a degree of variability
and some but not all have shown decreased activating
tyrosine phosphorylation of IRS1 (11–13). Others have
reported changes in insulin receptor expression and acti-
vation, PI3K activity and expression, and IRS2 expression
and phosphorylation (12,38,39). The explanation for these
inconsistencies is not entirely clear but may reflect differ-
ences between animal and cell models and specific inves-
tigative protocols.

Downstream of IRS1, we observed decreased activating
pSer473 Akt/PKB and pThr308 Akt/PKB, and we propose
that this may be a direct consequence of reduced insulin
signaling capacity through enhanced IRS1 inactivation. In
addition, we observed an increase in AS160 protein ex-
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FIG. 3. Functional 11�-HSD1 enzyme oxo-reductase (A) and dehydroge-
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activity is also observed in differentiated C2C12 rodent skeletal myocytes
(data presented as picomole per milligram of protein per hour for C2C12
cells). Although dehydrogenase activity is present, the predominant
activity is oxo-reductase generating active glucocorticoid. Coincubation
of skeletal muscle explants with the nonselective 11�-HSD inhibitor,
glycyrrhetinic acid, significantly decreases activity (data shown are the
means � SE of n � 3–6 experiments, *P < 0.05). In addition, the selective
11�-HSD1 inhibitor, A1 (1 �mol/l, 24 h), decreases oxo-reductase activity
in rodent whole-tissue quadriceps explants, differentiated C2C12 skeletal
myocytes, and primary cultures of human skeletal myocytes (C) (data
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pression. AS160 is a recently identified protein with Rab-
guanosine triphosphate (GTP)ase activity. Under basal
conditions, it is resident within GLUT4-containing vesicles
and limits the GTP availability that is necessary for vesicle
translocation to the cell membrane to permit glucose
entry. Upon phosphorylation by activated Akt/PKB, AS160
dissociates from the vesicle, allowing GTP to bind to Rab

proteins and vesicle translocation to the cell membrane to
occur (7). While regulation of AS160 phosphorylation at
differing sites by growth factors including IGF-1 and EGF
has been described (40), glucocorticoid regulation has not
been explored. Our data show that glucocorticoids in-
crease both AS160 protein and mRNA expression in a
glucocorticoid receptor–dependent mechanism. These ob-
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servations are interesting and point toward a separate
mechanism of regulation rather than simply a downstream
consequence of decreased IRS1 activation.

Although the net effect of glucocorticoid was to induce
insulin resistance, we did observe an increase in IRS2
mRNA and protein expression. In addition IR, PI3K (p85

subunit), and GLUT4 mRNA expression increased, al-
though protein expression was not examined in this study
nor was PI3K-specific activity. It is possible that this
represents a compensatory mechanism to preserve insulin
sensitivity in an attempt to compensate for the inhibition
of signaling through IRS1. However, overall the effect of

TABLE 3
Quadriceps skeletal muscle Genecard analysis of 45 preselected gene targets implicated in the pathogenesis of glucocorticoid-
induced insulin resistance

Gene of interest
Cortisone � vehicle
(means �ct 	 SE)

Cortisone � A2
(means �ct 	 SE)

Fold change in
gene

expression
after M1

treatment

Insulin signalling cascade

Insr 15.9 	 0.2 16.5 	 0.2 0.65
Irs1 16.9 	 0.1 16.6 	 0.1 1.27
Irs2 17.2 	 0.2 16.3 	 0.8 1.93
Pik3r1 (p85�) 14.9 	 0.2 16.9 	 0.4 0.25
Pik3cb (p110�) 19.4 	 0.3 19.8 	 0.1 0.79
Pdk1 15.9 	 0.2 16.9 	 0.1 0.49
Akt1 16.3 	 0.1 17.1 	 0.2 0.59
Akt2 17.7 	 0.3 18.2 	 0.3 0.74
Prkcz (PKC�) 19.2 	 0.3 20.6 	 0.6 0.37
Prkci (PKC�) 19.6 	 0.1 20.2 	 0.1 0.62
Tbc1d1 15.7 	 0.3 16.5 	 0.1 0.58
Tbc1d4 (AS160) 17.2 	 0.3 18.1 	 0.3 0.53
Rab10 11.7 	 0.3 12.3 	 0.1 0.68
Slc2a1 (GLUT-1) 16.8 	 0.2 17.0 	 0.1 0.91
Slc2a4 (GLUT-4) 14.1 	 0.1 14.1 	 0.1 1.03
Ptpn1 (PTP-1b) 17.8 	 0.1 18.8 	 0.1 0.52
Ptpn11 (SHP2) 16.1 	 0.2 16.4 	 0.1 0.77
Pten 15.8 	 0.1 16.6 	 0.1 0.60
Ppp2r1a (PP2A) 14.9 	 0.2 15.2 	 0.1 0.81
Socs1 21.5 	 0.4 21.2 	 0.4 1.20
Socs3 19.4 	 0.2 19.4 	 0.1 0.98
Frap1 (mTOR) 16.5 	 0.2 17.3 	 0.3 0.55
Foxo1 16.9 	 0.2 17.4 	 0.1 0.75
Foxo3a 15.9 	 0.1 16.7 	 0.5 0.58
Prkaa2 (AMPK) 14.8 	 0.1 15.0 	 0.3 0.91
Ppargc1a (PGC-1�) 16.9 	 0.2 17.1 	 0.1 0.93

Glucocorticoid
metabolism and action

H6pd 15.6 	 0.1 16.2 	 0.3 0.66
Hsd11b1 (11�-HSD1) 17.5 	 0.6 18.5 	 0.8 0.48
Nr3c1 (GR�) 15.8 	 0.1 16.3 	 0.2 0.72

Lipid metabolism

Acaca (ACC1) 15.1 	 1.0 16.7 	 0.2 0.33
Acacb (ACC2) 13.6 	 0.3 14.4 	 0.2 0.60
Lpl 12.6 	 0.2 13.2 	 0.1 0.68
Lipe (HSL) 16.4 	 0.6 18.1 	 0.1 0.30
Pnpla2 (ATGL) 13.7 	 0.5 15.1 	 0.1 0.39
Dgkd (DGK�) 21.3 	 0.5 21.4 	 0.1 0.97
Pparg (PPAR�) 21.2 	 0.5 22.4 	 0.3 0.43

Ceramide metabolism

Sptlc1 (SPT1) 17.8 	 0.1 18.6 	 0.0 0.59
Ugcg (glucosylceramide synthase) 18.8 	 0.1 19.5 	 0.1 0.61
Asah1 (acid ceramidase) 19.0 	 0.1 19.3 	 0.1 0.82
Lass1 16.9 	 0.1 17.3 	 0.1 0.77
Lass6 20.5 	 0.4 21.1 	 0.0 0.68

Other genes

Prkca (PKC-�) 16.6 	 0.2 16.6 	 0.1 0.94
Prkcb1 (PKC-�) 22.7 	 0.3 22.8 	 0.3 0.96
Prkcc PKC-�) 22.6 	 0.1 23.1 	 0.7 0.69
Ppara (PPAR�) 18.7 	 0.3 19.0 	 0.1 0.85

Internal controls
Ppib (cyclophilin B) 18.1 	 0.2 18.4 	 0.1 0.79
Hprt1 16.5 	 0.2 17.1 	 0.0 0.69

Cortisone pellet–implanted KK mice were treated with a selective 11�-HSD1 inhibitor, A2, or vehicle for 4 days before animals were killed
(n � 3 per group, for detailed protocol see RESEARCH DESIGNS AND METHODS). Data presented as means �ct 	 SE for both groups of animals
relative to 18 s as an internal housekeeping gene, higher �ct values corresponding with lower gene expression. Fold changes in gene
expression were calculated as described in RESEARCH DESIGNS AND METHODS. Specific target genes and all changes �2-fold increase or 0.5-fold
decrease vs. vehicle (highlighted in bold) were endorsed with real-time PCR (see Fig. 5).
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glucocorticoid exposure is to limit insulin-stimulated glu-
cose uptake.

In addition to the effect of exogenous glucocorticoids,
we have shown that prereceptor metabolism of endoge-
nous glucocorticoid by 11�-HSD1 is a crucial regulator of
insulin sensitivity in skeletal muscle. 11�-HSD1 is ex-
pressed and biologically active in human skeletal muscle
(41). Overexpression of 11�-HSD1 has been described in
rodent skeletal muscle in models of diabetes (42) and
myotubes isolated from patients with insulin resistance
and type 2 diabetes (43,44). However, this is not a consis-
tent finding (45), and its precise contribution to metabolic
and muscle phenotype is still to be clarified. Selective
11�-HSD1 inhibitors are currently in development; in
rodents and primates they limit local glucocorticoid avail-
ability and improve glucose tolerance, lipid profiles, and
insulin sensitivity (16,46). Very recently, studies using in
vitro differentiated primary in human myoblasts have
shown that 11�-HSD1 inhibition (pharmacological or
siRNA) can limit cortisone- but not cortisol-induced
changes in glucose uptake, glycogen synthesis, and palmi-
tate oxidation. However, in this model, an insulin-sensitiz-
ing action could not be demonstrated (47). In our study,
we have clearly shown expression and activity of 11�-
HSD1 in human and rodent skeletal muscle that is blocked
by selective and nonselective 11�-HSD1 inhibitors. This is
functionally important and not only restores IRS1 protein
levels to control values but also decreases pSer307 IRS1,
enhances Akt/PKB activation, and may represent an im-
portant insulin-sensitizing mechanism of selective 11�-
HSD1 inhibitors. These observations appear consistent in
both our in vitro and rodent in vivo models. A2 has an
insulin-sensitizing action as evidenced by decreased fast-
ing glucose and insulin levels, decreased homeostasis
model assessment scores, and reduced insulin secretion
across an OGTT. Unfortunately, clamp studies were not
performed as part of this protocol but have been reported
elsewhere with other selective 11�-HSD1 inhibitors (16).
In addition to the actions described above, A2 administra-
tion to mice in vivo decreased lipogenic gene expression
(ACC1, FAS, and DGAT) and increased FFA utilization
(decreased ACC2 leading to a decrease in the malonyl
CoA-mediated inhibition of �-oxidation) in agreement with
published observations (48). Furthermore, decreased HSL
and ATGL will afford decreases in FFA and DAG genera-
tion. Interestingly, we also observed a 1.7-fold increase in
PDK4 expression with A2 treatment in vivo. PDK4 is a
negative regulator of the pyruvate dehydrogenase com-
plex, limiting acetyl CoA generation. Rodents with dele-
tion of PDK4 have increased glucose oxidation (49), and in
cell culture systems, glucocorticoids increase PDK4 ex-
pression (47). The discrepancies with our data, where A2
increased PDK4 expression, almost certainly reflect the
complexities of whole-animal versus cell culture models
(we too have observed decreased PDK4 expression after
Dex treatment in C2C12 myotubes [data not shown]).
Importantly, the increase in PDK4 with selective 11�-
HSD1 inhibitors may further serve to drive lipid oxidation
at the expense of glucose oxidation. The net effect of all
these observations will be to decrease intramyocellular
lipid accumulation as well as local FFA and DAG genera-
tion. Consequently, PKC
 activation will be decreased, and
this may be responsible for the reduction in Ser307 phos-
phorylation after selective 11�-HSD1 inhibition. However,
this hypothesis remains to be proven and needs to be
addressed in future studies.

In conclusion, Ser307 phosphorylation of IRS1 is a novel
mechanism of glucocorticoid-induced insulin resistance.
The prereceptor modulation of glucocorticoid availability
is an important regulator of glucocorticoid action in
skeletal muscle. Selective 11�-HSD1 inhibitors enhance
insulin action, and we propose that this may predomi-
nantly be through modulation of lipid metabolism within
skeletal muscle. Clinical data utilizing 11�-HSD1 inhibitors
are beginning to emerge in obese patients and those with
type 2 diabetes (50); it is likely that their efficacy in muscle
will provide an additional pharmacological benefit in the
treatment of type 2 diabetes and insulin resistance.
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