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A MOVING PSEUDO-BOUNDARY MFS FOR VOID DETECTION

A. KARAGEORGHIS, D. LESNIC, AND L. MARIN

Abstract. We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determi-
nation of the boundary of a void. This problem can be modelled as an inverse boundary value problem for harmonic

functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization
of the unknown void shape in two dimensions. The centre of this radial polar parametrization is considered to be
unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear
least-squares problem. This approach addresses the major problem of locating the pseudo-boundary in the MFS

in a natural way since the inverse problem in question is nonlinear anyway. The feasibility of this new method is
illustrated by several numerical examples.

1. Introduction

Although the basic ideas behind the MFS had been around long before [1, 22, 23, 24], the MFS was first introduced
as a numerical technique in the late seventies in a paper by Mathon and Johnston [27]. In this and the subsequent
early papers on the MFS [5, 11, 14, 13, 15] the so called dynamic MFS was used. In this approach, the locations of
the singularities in the MFS approximation are considered to be part of the unknowns along with the coefficients of
the fundamental solutions in the approximation. The unknowns are then determined by collocating the boundary
conditions. Because the coordinates of the singularities appear non-linearly, this approach leads to a non-linear least
squares minimization problem. The obvious criticism of this approach is that in the case of linear boundary value
problems one is required to solve a non-linear discrete problem at a high cost. On the other hand, the dynamic

approach essentially deals with the long-standing issue of the optimal location of the singularities in the MFS.
Although the dynamic approach was applied successfully to non-linear problems [16, 17, 18, 19, 29], it became less
popular than the static approach in which the singularities are pre-assigned and fixed leading to a linear problem.

In this study we propose the use of a version of the dynamic approach for the solution of inverse problems. The
MFS has been used extensively in recent years for the solution of various types of inverse problems [21] because
of the ease with which it can be implemented. We consider a particular type of inverse problems, the so-called
inverse geometric problems. These problems are non-linear and the static MFS discretization leads to systems of
non-linear equations. These are solved using appropriate non-linear least squares minimization software. In view
of this nonlinearity, we consider the use of the MFS in which a parameter(s) describing the position(s) of the
pseudo-boundary(ies) is(are) taken to be unknowns in the non-linear minimization process at little additional cost.
In addition, we consider voids described parametrically by polar coordinates with no knowledge of the centre of
this polar system. The coordinates of the centre are taken as additional unknowns in the non-linear minimization
process.

The paper is organized as follows. In Section 2 we present the mathematical formulation of the problem. The MFS
approximation for this problem is described in Section 3, while the implementational details are given in Section 4.
Several numerical examples are investigated in Section 5 and an extension to multiple voids is presented in Section
6. Finally, some comments and conclusions are given in Section 7.
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2 A. KARAGEORGHIS, D. LESNIC, AND L. MARIN

2. Mathematical formulation

In this section we formulate the direct and inverse problems related to a void such as a rigid inclusion or a cavity.
The direct mixed problem given by the Laplace equation

∆u = 0 in Ω, (2.1a)

subject to the Dirichlet boundary condition

u = f on ∂Ω2, (2.1b)

and the homogeneous boundary condition

αu+ (1− α)∂nu = 0 on ∂Ω1 , where α ∈ {0, 1}, (2.1c)

has a unique weak solution u ∈ H1(Ω) if f ∈ H1/2(∂Ω2), and a unique classical solution u ∈ C2(Ω)∩C(Ω̄), provided
f is sufficiently smooth. In the above, Ω = Ω2\Ω1, where Ω1 ⊂ Ω2, is a bounded annular domain with boundary
∂Ω = ∂Ω1∪∂Ω2. The void Ω1 may have many connected components, but Ω should be connected. Equation (2.1c),
covers both Dirichlet (α = 1), i.e. a rigid inclusion, and Neumann (α = 0), i.e. a cavity, boundary conditions on
∂Ω1.

The inverse problem we are concerned with consists of determining not only the function u, but also the void Ω1

so that u satisfies the Laplace equation (2.1a), given the Dirichlet data f ̸≡ constant in (2.1b), the homogeneous
boundary condition (2.1c) and the Neumann current flux measurement

g := ∂nu on ∂Ω2 . (2.1d)

In (2.1c) and (2.1d), the vector n denotes the outward unit normal to the annular domain Ω.
Clearly, the fact that in the inverse problem the location of Ω1 is not known is compensated by the additional
boundary condition (2.1d). When α = 0, for (2.1a), (2.1c) and (2.1d) to be consistent, we require

∫

∂Ω2

g(s) ds = 0. (2.2)

In contrast to the direct (forward) boundary value problem (2.1a)-(2.1c), the inverse problem (2.1a)-(2.1d) is
nonlinear and ill-posed. Although the solution is unique, see [8], it is unstable with respect to small errors in the
input Cauchy data (2.1b) and (2.1d). Finally, it is worth mentioning that the uniqueness of identifying multiple
voids, e.g. cavities or rigid inclusions, from a single Cauchy data measurement also holds, see [2, 30].

3. The method of fundamental solutions (MFS)

In the application of the MFS to (2.1), we seek an approximation to the solution of Laplace’s equation (2.1a) as a
linear combination of fundamental solutions of the form [20]

uN (c, ξ;x) =
2N
∑

k=1

ck G(ξk,x), x ∈ Ω, (3.1)

where G is the fundamental solution of the two-dimensional Laplace equation, given by

G(ξ,x) = − 1

2π
ln | ξ − x | . (3.2)

The sources (ξk)k=1,2N are located outside the solution domain Ω, i.e. in Ω1∪
(

R
2\Ω̄2

)

. In particular, (ξk)k=1,N ∈
Ω1 are placed on a (moving) pseudo-boundary ∂Ω′

1 similar (contraction) to ∂Ω1, while (ξk)k=N+1,2N ∈ R
2\Ω2 are

also placed on a (moving) pseudo-boundary ∂Ω′
2 similar (dilation) to ∂Ω2, as depicted in Figure 1. In the MFS,

taking the pseudo-boundary similar to the boundary yields, in general, improved results as has been demonstrated
by Gorzelańczyk and Kołodziej [7]. In (3.1), the singularities (ξk)k=N+1,2N are not preassigned. Also, the sources

(ξk)k=1,N move with ∂Ω1, as will be described in the iterative process presented in the sequel. The fact that the
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locations of the pseudo-boundaries ∂Ω′
1 and ∂Ω′

2 are determined as part of the solution takes care of the inherent
problem of optimally locating the sources in the MFS.

∂Ω
1 ∂Ω

2

Ω

 n

 n

Figure 1. Geometry of the problem. The crosses (+) denote the source points.

Without loss of generality, we shall assume that the (known) fixed exterior boundary ∂Ω2 is a circle of radius R.
As a result, the outer boundary collocation and source points are chosen as

xN+ℓ = R(cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M, (3.3)

ξN+k = ηextR(cosϑk, sinϑk), k = 1, N, (3.4)

respectively, where ϑ̃ℓ =
2π(ℓ−1)

M , ℓ = 1,M and ϑk = 2π(k−1)
N , k = 1, N , and the (unknown) parameter ηext ∈ (1, S)

with S > 1 prescribed.
We further assume that the unknown boundary ∂Ω1 is a smooth, star-like curve with respect to the centre which
has unknown coordinates (X,Y ). This means that its equation in polar coordinates can be written as

x = X + r(ϑ) cosϑ, y = Y + r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.5)

where r is a smooth 2π−periodic function.

The discretized form of (3.5) for ∂Ω1 becomes

rk = r(ϑk), k = 1, N (3.6)

and we choose the inner boundary collocation and source points as

xk = (X,Y ) + rk (cosϑk, sinϑk) , (3.7)

ξk = (X,Y ) + ηint rk (cosϑk, sinϑk) , k = 1, N, (3.8)

where the (unknown) parameter ηint ∈ (0, 1).
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4. Implementational details

The coefficients (ck)k=1,2N in (3.1), the radii (rk)k=1,N ∈ (0, 1) in (3.6), the contraction and dilation coefficients ηint
and ηext in (3.8) and (3.4), and the coordinates of the centre (X,Y ) can be determined by imposing the boundary
conditions (2.1b), (2.1c) and (2.1d) in a least-squares sense. This leads to the minimization of the functional

S(c, r,η,C) : =
N+M
∑

j=N+1

[uN (c, ξ;xj)− fε(xj)]
2
+

N+M
∑

j=N+1

[∂nuN (c, ξ;xj)− gε(xj)]
2

+

N
∑

j=1

[αuN (c, ξ;xj) + (1− α)∂nuN (c, ξ;xj)]
2
+ λ1|c|2 + λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2
, (4.1)

where λ1, λ2 ≥ 0 are regularization parameters to be prescribed, c = [c1, c2, . . . , c2N ]T , r = [r1, r2, . . . , rN ]T ,
η = [ηint, ηext]

T and C = [X,Y ]T .

Note. It is noteworthy that the current technique of taking η as unknown may be used in the solution of the
corresponding direct problem in an annular domain where one now needs to minimize the functional

T (c,η) :=
N+M
∑

j=N+1

[uN (c, ξ;xj)− f(xj)]
2
+

N
∑

j=1

[αuN (c, ξ;xj) + (1− α)∂nuN (c, ξ;xj)]
2
. (4.2)

Clearly, in this case, the disadvantage is that one transforms a linear problem into a nonlinear one. However, one
does obtain the optimal locations of the inner and outer pseudo-boundaries.

Remarks.

(i) The first three terms in equation (4.1) represent a discretized version of the variational form

∥uN − fε∥2
H1/2(∂Ω2)

+ ∥∂nuN − gε∥2
H−1/2(∂Ω2)

+ ∥αuN + (1− α)∂nuN∥2
H1/2(∂Ω1)

,

in which, for implementational reasons, all the norms are replaced by the ℓ2−norm.
(ii) The Dirichlet data (2.1b) and the current flux data (2.1d) come from practical measurements which are

inherently contaminated with noisy errors, and we therefore replace f and g by fε and gε, respectively, such
that

∥fε − f∥L2(∂Ω2) ≤ ε and ∥gε − g∥L2(∂Ω2) ≤ ε. (4.3)

In computation, the noisy data are generated as

fε(xj) = (1 + ρj pf ) f(xj) , gε(xj) = (1 + ρj pg) g(xj) , j = N + 1, N +M , (4.4)

where pf and pg represent the percentage of noise added to the Dirichlet and Neumann boundary data on
∂Ω2, respectively, and ρj is a pseudo-random noisy variable drawn from a uniform distribution in [−1, 1] using
the MATLAB command -1+2*rand(1,M). In our numerical experiments it was observed that the effect of noise
added to the Dirichlet boundary data was similar to that of perturbing the Neumann data. As a result in the
numerical results section we only present results for noisy Neumann data, i.e. pg ̸= 0 and pf = 0.

(iii) In (4.1), the outward normal vector n is defined as follows:

n =











cosϑ i+ sinϑ j , if x ∈ ∂Ω2 ,
1

√

r2(ϑ) + r′2(ϑ)
[− (r′(ϑ) sinϑ+ r(ϑ) cosϑ) i+ (r′(ϑ) cosϑ− r(ϑ) sinϑ) j] , if x ∈ ∂Ω1 , (4.5)

where i = (1, 0) and j = (0, 1). As a result, from (3.1) the normal derivative ∂nuN is evaluated as

∂nuN = n · ∇uN = − 1

2π

2N
∑

k=1

ck
(x− ξk) · n
|x− ξk|2

. (4.6)
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In (4.5), we use the finite-difference approximation

r′(ϑi) ≈
ri+1 − ri−1

4π/N
, i = 1, N, (4.7)

with the convention that rN+1 = r1, r0 = rN .
(iv) Since the total number of unknowns is 3N + 4 and the number of boundary condition collocation equations

is N + 2M we need to take M ≥ N + 2.
(v) Since the inverse problem is ill-posed, in (4.1), the regularization terms λ1|c|2 and λ2

∑N
ℓ=2 (rℓ − rℓ−1)

2
are

added in order to achieve the stability of the numerical MFS solution uN and the smooth boundary ∂Ω1.
We do not include regularization terms λ3|η|2 and λ4|X|2 since both η and X only have a small number of
components (in this case two) and the numerical solution is expected to be stable in both η and X.

4.1. Non-linear minimization. The minimization of functional (4.1) is carried out using the MATLAB [28] op-
timization toolbox routine lsqnonlin which solves nonlinear least squares problems. This is achieved using the
MATLAB command
[x,resnorm,residual,exitflag,output] =

lsqnonlin(@f1,x0,lb,ub,

optimset(’Display’,’iter’,’MaxFunEvals’,mfe,’MaxIter’,mi,’TolFun’,tf,’TolX’,tx))

The routine lsqnonlin by default uses the so-called trust-region-reflective algorithm based on the interior-reflective
Newton method [3, 4].

The routine lsqnonlin terminates when

• the change in the solution vector x is less than the specified tolerance tx,
or

• the change in the residual is less than the specified tolerance tf,
or

• the number of iterations mi or the number of function evaluations mfe is exceeded.

The routine lsqnonlin does not require the user to provide the gradient and, in addition, it offers the option of
imposing lower and upper bounds on the elements of the vector of unknowns x = [c, r,η,C]T through the vectors
lb and up. We can thus easily impose the constraints 0 < ri < 1, i = 1, N , 0 < ηint < 1, 1 < ηext < S and
−R < X < R,−R < Y < R . In our numerical experiments we chose S = 4. Moreover, we choose the initial vector

of unknowns x0 = (c0, r0, ηint, ηext, X0, Y0)
T
= (0,0.1, 0.5, 2, 0, 0)

T
.

5. Numerical examples

In the first three examples, the centre of the cavity C = [X,Y ]T is assumed to be known.

5.1. Example 1. We first consider an example for which the exact solution is known. Here we consider the case
where X = Y = 0, R = 1 and α = 0. In particular, we consider

Ω1 =
{

(x, y) ∈ R
2 : x2 + y2 < R2

0 < 1
}

, Ω2 =
{

(x, y) ∈ R
2 : x2 + y2 < 1

}

(5.1)

and
u(x, y) =

x

R2
0

+
x

x2 + y2
. (5.2)

For any 0 < R0 < 1, the function u satisfies problem (2.1a)-(2.1d), with

f(x, y) = x

(

1

R2
0

+ 1

)

and g(x, y) = x

(

1

R2
0

− 1

)

, (x, y) ∈ ∂Ω2. (5.3)

Note that the compatibility condition (2.2) on the Neumann flux data g is automatically satisfied.

In our numerical experiments we consider the case R0 = 0.5.
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In Figure 2 we present the reconstructed curves for various numbers of degrees of freedom obtained in 20 iterations,
no noise and no regularization. From this figure it can be seen that very accurate and convergent numerical results
are obtained. In Figures 3 and 4 we present typical examples of reconstructed curves with noise levels of pg = 5%
and 10%, respectively, with no regularization and N = 48,M = 72. From these figures it can be seen that if no
regularization is employed then the numerical solution becomes unstable, provided that the number of iterations
exceeds a certain threshold value which depends on the amount of noise pg. On the other hand, the numerical
solutions obtained after 20 to 50 iterations are very accurate and stable even if the input data are contaminated
with quite a large amount of noise. In Figures 5 and 6 we present the corresponding reconstructed curves with
noise levels of 5% and 10%, respectively, after 100 iterations and various regularization parameters λ1 with λ2 = 0.
The corresponding curves for various regularization parameters λ2 with λ1 = 0 are presented in Figures 7 and 8.
Overall, from Figures 2–8 it can be concluded that the numerical results are more accurate as the amount of noise
decreases. Also, regularization with λ2 (Figures 7 and 8) improves the stability of the numerical solution more
than when regularization with λ1 (Figures 5 and 6), or no regularization (Figures 3 and 4) is employed.

N=16, M=24 N=32, M=48

N=48, M=72 N=64, M=96

Figure 2. Example 1: Results for various numbers of degrees of freedom, no noise and no regularization.

5.2. Example 2. In this example, we consider a more complicated peanut-shaped cavity whose boundary ∂Ω1 is
described by X = Y = 0, R = 1 and the radial parametrization

r(ϑ) =
3

4

√

cos2(ϑ) + 0.25 sin2(ϑ) , ϑ ∈ [0, 2π), (5.4)

in the case of α = 0, which was considered in [12]. The Dirichlet data (2.1b) on ∂Ω2 is taken as [12]

u(1, ϑ) = f(ϑ) = e− cos2 ϑ , ϑ ∈ [0, 2π). (5.5)

Since in this case no analytical solution is available, the Neumann data (2.1d) is simulated by solving the direct
mixed well-posed problem (2.1a), (2.1c) and (5.5), when ∂Ω1 is given by (5.4), using the MFS with M = N = 200.
In order to avoid committing an inverse crime, the inverse solver is applied using N = 48,M = 64. Furthermore,
noise is added as in (4.4).
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iter=25 iter=50

iter=75 iter=100

Figure 3. Example 1: Results for noise pg = 5% and no regularization.

iter=25 iter=50

iter=75 iter=100

Figure 4. Example 1: Results for noise pg = 10% and no regularization.

In Figures 9 and 10 we present the results obtained for different numbers of iterations, with noise pg = 0 and 10%,
respectively, and no regularization, i.e. λ1 = λ2 = 0. From these figures it can be seen that if no regularization is
employed then the solution is quite accurate and remains the same between 100 and 1000 iterations. However, the
unregularized numerical solution shown in Figure 10 for pg = 10% will eventually become unstable if sufficiently
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λ
1
=0 λ

1
=10−4

λ
1
=10−3 λ

1
=10−2

Figure 5. Example 1: Results for noise pg = 5% and regularization with λ1.

λ
1
=0 λ

1
=10−3

λ
1
=3 × 10−3 λ

1
=10−2

Figure 6. Example 1: Results for noise pg = 10% and regularization with λ1.

more iterations are considered. In Figures 11 and 12 we present the corresponding reconstructed curves with noise
level of 10%, respectively, after 1000 iterations and various regularization parameters λ1 when λ2 = 0, and λ2 when
λ1 = 0, respectively. From these figures it can be seen that the inclusion of regularization, either with λ1 or λ2,
yields stable numerical solutions.
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λ
2
=0 λ

2
=0.1

λ
2
=1 λ

2
=10

Figure 7. Example 1: Results for noise pg = 5% and regularization with λ2.

λ
2
=0 λ

2
=0.1

λ
2
=1 λ

2
=10

Figure 8. Example 1: Results for noise pg = 10% and regularization with λ2.

5.3. Example 3. We consider a bean-shaped cavity whose boundary ∂Ω1 is described by X = Y = 0, R = 1 and
the radial parametrization

r(ϑ) =
0.5 + 0.4 cos(ϑ) + 0.1 sin(2ϑ)

1 + 0.7 cos(ϑ)
, ϑ ∈ [0, 2π), (5.6)
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iter=10 iter=100

iter=500 iter=1000

Figure 9. Example 2: Results for various numbers of iterations for no noise and no regularization.

iter=10 iter=100

iter=500 iter=1000

Figure 10. Example 2: Results for various numbers of iterations for noise pg = 10% and no regularization.

in the case of α = 0. This example, which was also considered in [12], is more difficult than Example 2 because
of the presence of a sharp cusp-like portion mimicking a re-entrant corner. The Neumann data (2.1d) is simulated
by solving the direct mixed well-posed problem (2.1a), (2.1c) and (5.5), when ∂Ω1 is given by (5.4), using the
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λ
1
=0 λ

1
=10−4

λ
1
=10−3 λ

1
=10−2

Figure 11. Example 2: Results for noise pg = 10% and regularization with λ1.

λ
2
=0 λ

2
=10−3

λ
2
=10−2 λ

2
=10−1

Figure 12. Example 2: Results for noise pg = 10% and regularization with λ2.

MFS with M = N = 400. In order to avoid committing an inverse crime, the inverse solver is applied using
N = 56,M = 64. Noise is added to the data as in the previous examples.

In Figures 13 and 14 we present the results obtained for different numbers of iterations, no regularization, and
p = 0 and 10%, respectively. In Figures 15 and 16 we present the corresponding reconstructed curves for the noise



12 A. KARAGEORGHIS, D. LESNIC, AND L. MARIN

level of pg = 10%, after 1000 iterations and various regularization parameters λ1 with λ2 = 0, and λ2 with λ1 = 0,
respectively. The same conclusions as in the previous example are obtained, compare Figures 9–12 of Example 2
with Figures 13–16 of Example 3.

iter=10 iter=100

iter=500 iter=1000

Figure 13. Example 3: Results for various numbers of iterations, no noise and no regularization.

iter=10 iter=100

iter=500 iter=1000

Figure 14. Example 3: Results for various numbers of iterations for noise pg = 10% and no regularization.
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λ
1
=0 λ

1
=10−3

λ
1
=10−2 λ

1
=10−1

Figure 15. Example 3: Results for noise pg = 10% and regularization with λ1.

λ
2
=0 λ

2
=10−3

λ
2
=10−2 λ

2
=10−1

Figure 16. Example 3: Results for noise pg = 10% and regularization with λ2.

5.4. Example 4. We consider an obstacle Ω1 described by X = 0.5, Y = −1, R = 3.5 and the radial parametriza-
tion

r(ϑ) = 1.52− 0.24 sin(3ϑ) , ϑ ∈ [0, 2π), (5.7)
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in the case of α = 0. This example, which was considered in [26] for the Stokes equations in slow viscous flow, is
more difficult than the previous examples because of the fact that the coordinates of the centre of the cavity are
unknown. The Neumann data (2.1d) is simulated by solving the direct mixed well-posed problem (2.1a), (2.1c)
and (5.5), when ∂Ω1 is given by (5.7), using the MFS with M = N = 400. In order to avoid committing an inverse
crime, the inverse solver is applied using N = 56,M = 64.

In Figures 17 and 18 we present the results obtained for different numbers of iterations, no regularization, and
pg = 0 and 3%, respectively. In Figures 19 and 20 we present the corresponding reconstructed curves with a noise
level of pg = 3% after 1000 iterations and various levels of regularization λ1 with λ2 = 0, and λ2 with λ1 = 0,
respectively. The L-curves [10, 9] obtained with regularization in λ1 and λ2 for noise pg = 3% and 1000 iterations
are presented in Figures 21(a) and (b), respectively. These indicate that the corresponding optimal values of the
regularization parameters are λ1 = 10−4 and λ2 = 0, and λ1 = 0 and λ2 = 10−4, as confirmed from Figures 19
and 20, respectively. Also, from Figures 19 and 20 it can be seen that regularization with λ2 is more accurate and
stable than with λ1.

iter=10 iter=100

iter=500 iter=1000

Figure 17. Example 4: Results for various numbers of iterations for no noise and no regularization.

5.5. Example 5. We finally consider the case when obstacle Ω1 is a square of side 2, rotated by π/4, described
by X = −0.5, Y = 1.2, R = 3.5, in the case of α = 1. This has the following radial parametrization

r(ϑ) =















































√
2

cos(ϑ) + sin(ϑ)
ϑ ∈ [0,

π

2
),

√
2

− cos(ϑ) + sin(ϑ)
ϑ ∈ [

π

2
, π),

−
√
2

cos(ϑ) + sin(ϑ)
ϑ ∈ [π,

3π

2
),

√
2

cos(ϑ)− sin(ϑ)
ϑ ∈ [

3π

2
, 2π).

(5.8)
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iter=10 iter=100

iter=500 iter=1000

Figure 18. Example 4: Results for various numbers of iterations for noise pg = 3% and no regularization.

λ
1
=0 λ

1
=10−5 λ

1
= 10−4

λ
1
=10−3 λ

1
=10−2 λ

1
=10−1

Figure 19. Example 4: Results for noise pg = 3% and regularization with λ1.

This example which is similar to the one considered in [25], but for a boundary determination problem, is more
difficult than the previous examples because the coordinates of the centre of the rigid inclusion are unknown and



16 A. KARAGEORGHIS, D. LESNIC, AND L. MARIN

λ
2
=0 λ

2
=10−5 λ

2
= 10−4

λ
2
=10−3 λ

2
=10−2 λ

2
=10−1

Figure 20. Example 4: Results for noise pg = 3% and regularization with λ2.
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Figure 21. Example 4: L-curves obtained with regularization in (a) λ1 and (b) λ2 for noise pg = 3%.

also its boundary is now piecewise smooth. The Neumann data (2.1d) is numerically simulated by solving the
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direct Dirichlet well-posed problem (2.1a), (2.1c) and (5.5), when ∂Ω1 is given by (5.8), using the MFS with
M = N = 400. In order to avoid committing an inverse crime, the inverse solver is applied using N = 56,M = 64.

In Figures 22 and 23 we present the results obtained for different numbers of iterations, no regularization, and
pg = 0 and 5%, respectively. In Figures 24 and 25 we present the corresponding reconstructed curves obtained
with a noise level of pg = 5%, 100 iterations and various levels of regularization λ1 with λ2 = 0, and λ2 with
λ1 = 0, respectively. From Figure 22 it can be seen that in the case of no noise the numerical solution is accurate
and almost unchanged for iteration numbers between 10 and 100. However, for 5% noise the solution becomes
visibly unstable as the number of iterations increases beyond 50 when no regularization is employed, see Figure
23. However, the unstable numerical solution shown in Figure 23 for 100 iterations can be further stabilized by
employing regularization with either λ1, see Figure 24 for λ1 = 10−4 to 10−2, or λ2, see Figure 25 for λ2 = 10−4

to 10−1.

iter=10 iter=20

iter=50 iter=100

Figure 22. Example 5: Results for various numbers of iterations for no noise and no regularization.

6. Extension to multiple voids

The MFS analysis performed so far showed the successful implementation of this method for the identification of
a single void. In this section we extend the analysis to multiple voids which may contain both cavities and rigid
inclusions. For the sake of clarity, we describe the formulation for the case of two cavities. Therefore, we consider
the inverse problem

∆u = 0 in Ω, (6.1a)

subject to the boundary conditions

u = f and ∂nu = g on ∂Ω2, (6.1b)

and the homogeneous boundary conditions

α1u+ (1− α1)∂nu = 0 on ∂Ωa
1 , where α1 ∈ {0, 1}, (6.1c)
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iter=10 iter=20

iter=50 iter=100

Figure 23. Example 5: Results for various numbers of iterations for noise pg = 5% and no regularization.
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Figure 24. Example 5: Results for noise pg = 5% and regularization with λ1.

and

α2u+ (1− α2)∂nu = 0 on ∂Ωb
1 , where α2 ∈ {0, 1}. (6.1d)
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Figure 25. Example 5: Results for noise pg = 5% and regularization with λ2.

Here Ωa
1 and Ωb

1 are two disjoint voids, such that Ωa
1 ∪ Ωb

1 = Ω1 and Ωa
1 ∩ Ωb

1 = ∅.
We seek an approximation of the form

uN (c, ξ;x) =
3N
∑

k=1

ck G(ξk,x), x ∈ Ω. (6.2)

The sources (ξk)k=1,3N are located outside the solution domain Ω, i.e. in Ω1∪
(

R
2\Ω̄2

)

. In particular, (ξk)k=1,N ∈
Ωa

1 are placed on a (moving) pseudo-boundary ∂Ωa
1
′ similar (contraction) to ∂Ωa

1 , (ξk)k=N+1,2N ∈ Ωb
1 are placed on

a (moving) pseudo-boundary ∂Ωb
1
′
similar (contraction) to ∂Ωb

1, while (ξk)k=2N+1,3N ∈ R
2\Ω2 are also placed on a

(moving) pseudo-boundary ∂Ω′
2 similar (dilation) to ∂Ω2. The situation is depicted in Figure 26. The contraction

parameters for ∂Ωa
1
′ and ∂Ωb

1
′
are taken to be ηaint ∈ (0, 1) and ηbint ∈ (0, 1), respectively.

The outer boundary collocation and source points are chosen as

x2N+ℓ = R(cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M, (6.3)

ξ2N+k = ηextR(cosϑk, sinϑk), k = 1, N, (6.4)

respectively, where ϑ̃ℓ =
2π(ℓ−1)

M , ℓ = 1,M and ϑk = 2π(k−1)
N , k = 1, N , and the (unknown) parameter ηext ∈ (1, S)

with S > 1 prescribed.
We further assume that the unknown boundaries ∂Ωa

1 and ∂Ωb
1 are a smooth, star-like curves with respect to their

centres which have unknown coordinates (Xa, Y a) and (Xb, Y b), respectively. This means that their equations in
polar coordinates can be written as

x = Xa + ra(ϑ) cosϑ, y = Y a + ra(ϑ) sinϑ, (6.5)

x = Xb + rb(ϑ) cosϑ, y = Y b + rb(ϑ) sinϑ, ϑ ∈ [0, 2π), (6.6)

where ra and rb are smooth 2π−periodic functions.
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Figure 26. Geometry of the problem with two inclusions. The crosses (+) denote the source points.

The discretized forms of (6.5) and (6.6) for ∂Ωa
1 and ∂Ωb

1 become

rak = ra(ϑk), rbk = rb(ϑk) k = 1, N. (6.7)

We choose the inner boundary collocation and source points as

xk = (Xa, Y a) + rak (cosϑk, sinϑk) , k = 1, N (6.8)

xk = (Xb, Y a) + rbk (cosϑk, sinϑk) , k = N + 1, 2N (6.9)

ξk = (Xa, Y a) + ηaint r
a
k (cosϑk, sinϑk) , k = 1, N, (6.10)

ξk = (Xb, Y b) + ηbint r
b
k (cosϑk, sinϑk) , k = N + 1, 2N. (6.11)

The coefficients (ck)k=1,3N in (6.2), the radii (rak)k=1,N ,
(

rbk
)

k=1,N
∈ (0, 1) in (6.7), the contraction and dilation

coefficients ηaint, η
b
int and ηext, and the coordinates of the centres (Xa, Y a), (Xb, Y b) can be determined by imposing
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the boundary conditions in a least-squares sense. This leads to the minimization of the functional

S(c, ra, rb,η,C) : =
2N+M
∑

j=2N+1

[uN (c, ξ;xj)− fε(xj)]
2
+

2N+M
∑

j=2N+1

[∂nuN (c, ξ;xj)− gε(xj)]
2

+

N
∑

j=1

[α1uN (c, ξ;xj) + (1− α1)∂nuN (c, ξ;xj)]
2

+
2N
∑

j=N+1

[α2uN (c, ξ;xj) + (1− α2)∂nuN (c, ξ;xj)]
2

+λ1|c|2 + λa
2

N
∑

ℓ=2

(

raℓ − raℓ−1

)2
+ λb

2

N
∑

ℓ=2

(

rbℓ − rbℓ−1

)2
, (6.12)

where λ1, λ
a
2 , λ

b
2 ≥ 0 are regularization parameters to be prescribed, c = [c1, c2, . . . , c3N ]T , ra = [ra1 , r

a
2 , . . . , r

a
N ]T ,

rb = [rb1, r
b
2, . . . , r

b
N ]T , η = [ηaint, η

b
int, ηext]

T and C = [Xa, Y a, Xb, Y b]T .
The number of unknowns is 5N +7 and the number of boundary collocation equations 2N +2M , and thus we need
to take 2M ≥ 3N + 7.
In the case of multiple voids, the assumption that the voids stay disjoint requires some manual adjustments in the
iteration process in order to avoid the intersection of the approximating curves ∂Ωa

1 and ∂Ωb
1.

6.1. Example 6. We consider the case when two obstacles Ωa
1 and Ωb

1 are present. Ωa
1 is a disk of radius 1, with

centre Xa = 1, Y a = −1, while Ωb
1 is described by the radial parametrization

r(ϑ) =
1 + 0.8 cos(ϑ) + 0.2 sin(2ϑ)

1 + 0.7 cos(ϑ)
, ϑ ∈ [0, 2π), (6.13)

and has centre Xb = −1, Y b = 1. In this example R = 3.5 and we consider Dirichlet boundary conditions
(α1 = α2 = 1) on the boundaries of both rigid inclusions. The Neumann data (2.1d) is simulated by solving the
direct problem using the MFS with M = N = 400. In order to avoid committing an inverse crime, the inverse
solver is applied using N = 40,M = 64.

In Figures 27 and 28 we present the results obtained for different numbers of iterations, no regularization, and
pg = 0 and 5%, respectively. In Figures 29 and 30 we present the corresponding reconstructed curves with a noise
level of pg = 5%, after 100 iterations, and various levels of regularization λ1 with λ2 = λa

2 = λb
2 = 0, and λ1 = 0

with λ2 = λa
2 = λb

2, respectively. Overall, Figures 27–30 illustrate that the MFS can indeed retrieve successfully
voids having two connected components.

7. Conclusions

In this paper we propose a new MFS algorithm for the solution of inverse geometric problems. This algorithm has
the following features:

• It is based on the so-called dynamic approach in which the location of the pseudo-boundaries is taken to
be unknown and has to be determined as part of the solution. This algorithm to a large extent resolves, in
a natural way, one of the major issues related to the MFS, namely the problem of the initial placement of
the sources. This is so because of the non-linear nature of the type of problems investigated. In previous
investigations the exterior pseudo-boundary was pre-assigned while the interior boundary was selected
based on an a posteriori approach similar to the one used in [31].

• In addition, in contrast to previous applications of the MFS to such inverse problems, we consider problems
in which the centre of the void to be reconstructed is unknown. The coordinates of the centre are merely
taken as additional unknowns in the algorithm.
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iter=10 iter=20

iter=50 iter=100

Figure 27. Example 6: Results for various numbers of iterations for no noise and no regularization.

iter=10 iter=20

iter=50 iter=100

Figure 28. Example 6: Results for various numbers of iterations for noise pg = 5% and no regularization.

• The MATLAB optimization toolbox routine lsqnonlin is used, for the first time, instead of the MINPACK
[6] routine lmdif. While both routines are designed to solve nonlinear least squares problems, the former
allows for the imposition of simple bounds on the variables. This facilitates, from the start, the elimination
of physically unrealistic solutions.
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Figure 29. Example 6: Results for noise pg = 5% and regularization with λ1.

• The stability of the proposed algorithm is achieved using two regularization parameters while their optimal
values can be determined by the use of the L-curve criterion. The method is shown to accurately reconstruct
smooth or piecewise smooth, convex or concave, single or multiple cavities and rigid inclusions.

Future applications of the proposed algorithm will include inverse geometric problems governed by different linear
partial differential equations in two dimensions, such as the Laplace-Beltrami equation, Helmholtz-type equations
and the Lamé system, and extensions to three-dimensions.
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