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Abstract

Free boundary problems with nonlinear diffusion occur in some applications concern-
ing the solidification over a mould with dissimilar nonlinear thermal properties or, sat-
urated/unsaturated absorption in the soil beneath a pond. In this paper, we consider a
novel inverse problem of determining a free boundary from the mass/energy specification
in a one-dimensional nonlinear diffusion. It turns out that this problem is well-posed
and a stability estimate is established. Numerically, the problem is recast as a nonlinear
least-squares minimization problem which is solved using the lsqnonlin routine from the
MATLAB toolbox. Numerical results are presented and discussed showing that accurate
and stable numerical solutions are achieved. For noisy data, the instability is manifested
in the derivative of the moving free surface, but not in the free surface itself, or the con-
centration/temperature.

Keywords: Nonlinear diffusion; Free boundary problem; Finite-difference method.

1 Introduction

Driven by the demands from applications both in industry and other sciences, the field of
inverse problem has undergone a tremendous development with in the last decades, where
resent emphasis has been given for nonlinear inverse problems. In [2, 3], the authors inves-
tigated the problem of determining unknown coefficients for a nonlinear heat conduction
problem together with temperature. While the problem of nonlinear diffusion with a free
boundary was considered in [1], where the Stefan solidification problem was modelled
as such. In addition, in [11] the authors developed a procedure to find an approximate
stable solution to the unknown coefficient from over specification data based on the finite
difference method combined with Tikhonov’s regularization approach. In this work, we
consider the problem of identifying the free boundary in a nonlinear diffusion problem.

This paper is organized as follows. In the next section, we give the formulation of the
inverse problem under investigation. The numerical methods for solving the direct and
inverse problems are described in Sections 3 and 4, respectively. Furthermore, the numer-
ical results and discussion are given in Section 5 and finally, conclusions are presented in
Section 6.
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2 Mathematical formulation

In this section we consider the nonlinear one-dimensional diffusion equation which given
by

∂u

∂t
(x, t) =

∂

∂x

(

a(u)
∂u

∂x
(x, t)

)

+ f(x, t), (x, t) ∈ Ω, (1)

where the domain Ω = {(x, t) : 0 < x < h(t), 0 < t < T < ∞} with unknown free smooth
boundary x = h(t) > 0. The initial condition is

u(x, 0) = ϕ(x), 0 ≤ x ≤ h(0) =: h0, (2)

where h0 > 0 is given, and the Dirchlet boundary conditions

u(0, t) = µ1(t), u(h(t), t) = µ2(t), 0 ≤ t ≤ T, (3)

In order to determine the unknown boundary h(t) for t ∈ (0, T ] we impose the over-
determination condition of integral type

∫ h(t)

0

u(x, t)dx = µ3(t), 0 ≤ t ≤ T, (4)

which represents the specification of mass/energy of the diffusion system, see [4]. In the
above, the functions a > 0, ϕ, µi, i ∈ {1, 2, 3} and f are given. In (1), u represents the
concentration/ temperature, f represent a source/sink, and a represents the diffusivity.

The pair of functions (h(t), u(x, t)) ∈ C1[0, T ] × C2,1(Ω) with h > 0 is said to be a
solution of problem if fulfills the equations (1)–(4).

The mathematical model (1)–(4) has been considered in [6] where the following exis-
tence and uniqueness of solution theorems are proved.

Theorem 1. (Existence)
Assume that the following assumptions are fulfilled:

1. ϕ ∈ C2[0, h0], µi ∈ C1[0, T ], i ∈ {1, 2, 3}, f ∈ C1,0([0, H1]× [0, T ]), a ∈ C1[M0,M1];

2. ϕ(x) > 0 for x ∈ [0, h0], µi > 0 for t ∈ [0, T ], i ∈ {1, 2, 3}, f(x, t) ≥ 0 for
(x, t) ∈ [0, H1] × [0, T ], a(s) ≥ a0 > 0 for s ∈ [M0,M1], where a0 is some given
constant;

3. µ1(0) = ϕ(0), µ2(0) = ϕ(h0),
∫ h0

0
ϕ(x)dx = µ3(0),

µ′

1(0) = a(µ1(0))ϕ
′′(0) + a′(µ1(0))ϕ

′2(0) + f(0, 0),
µ′

2(0) = a(µ2(0))ϕ
′′(h0) + a′(µ2(0))ϕ

′2(h0) + ϕ′(h0)h
′(0) + f(h0, 0).

Then the inverse problem (1)–(4) is locally solvable (in time).

Theorem 2. (Uniqueness)
Suppose that condition 2. of Theorem 1 and the following condition

a(s) ∈ C1[M0,M1], f(x, t) ∈ C1,0([0, H1]× [0, T ])

holds. Then a solution of the inverse problem (1)–(4) is unique.
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In the above theorems, the constants H1, M0 and M1 have the following meaning using
the maximum principle [5] for the heat equation (1):

H1 =
1

M0

max
[0,T ]

µ3(t), M0 = min{min
[0,h0]

ϕ(x), min
[0,T ]

µ1(t), min
[0,T ]

µ2(t)},

M1 = max{max
[0,h0]

ϕ(x), max
[0,T ]

µ1(t), max
[0,T ]

µ2(t), max
[0,H1]×[0,T ]

f(x, t)}.

We can also derive a formula for h′(0) by differentiating equation (4) with time, and using
equations (1)–(3) to obtain

h′(0) =
µ′

3(0)− a(µ2(0))ϕ
′(h0) + a(µ1(0))ϕ

′(0)−
∫ h0

0
f(x, 0)dx

µ2(0)
. (5)

We perform the change of variable y = x/h(t) to reduce the problem (1)–(4) to the
following equivalent inverse problem in a rectangular domain for the unknowns h(t) and
v(y, t) := u(yh(t), t), [6]:

∂v

∂t
(y, t) =

1

h2(t)

∂

∂y

(

a(v)
∂v

∂y
(y, t)

)

+
yh′(t)

h(t)

∂v

∂y
(y, t) + f(yh(t), t), (y, t) ∈ Q (6)

where Q = {(y, t) : 0 < y < 1, 0 < t < T}. The initial condition is

v(y, 0) = ϕ(h0y), 0 ≤ y ≤ 1, (7)

and the boundary and over-determination conditions are

v(0, t) = µ1(t), v(1, t) = µ2(t), 0 ≤ t ≤ T, (8)

h(t)

∫ 1

0

v(y, t)dy = µ3(t), 0 ≤ t ≤ T. (9)

At the end of this section we establish the continuous dependence of the free boundary
h(t) on the input energy data (4).

Theorem 3. (Stability)
Suppose that the conditions of Theorem 1 are satisfied. Let µ3 and µ̃3 be two data (4) and
let (h(t),u(x, t)) and (h̃(t),ũ(x, t)) be the corresponding solutions of the inverse problem
(1)–(4). Then there is a positive constant C such that the following stability estimate
holds:

∥h− h̃∥C1[0,T ] + ∥v − ṽ∥C1,0(Ω) ≤ C∥µ3 − µ̃3∥C1[0,T ], (10)

where

v(y, t) = u(yh(t), t), ṽ(y, t) = ũ(yh̃(t), t), (y, t) ∈ Q. (11)
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Proof. In order to establish the stability estimate (10) we follow the proof of uniqueness
of solution given in [6]. Denote p(t) := h(t) − h̃(t), q(t) := h′(t) − h̃′(t), W (y, t) :=
v(y, t)− ṽ(y, t) and ∆µ3(t) := µ3(t)− µ̃3(t). First from (9) one obtains that

µ3(t) = h(t)

∫ 1

0

v(y, t)dy, µ̃3(t) = h̃(t)

∫ 1

0

ṽ(y, t)dy

or, after some calculus

p(t) = −
µ̃3(t)

(

∫ 1

0
v(y, t)dy

)(

∫ 1

0
ṽ(y, t)dy

)

∫ 1

0

W (y, t)dy +
∆µ3(t)

∫ 1

0
v(y, t)dy

, t ∈ [0, T ]. (12)

Note that condition 2. of Theorem 1 provides that v and ṽ are positive in Q.
Following the proof of Theorem 2 of [6] we also obtain the expression for the derivative

of p, namely

q(t) =
∆µ′

3(t)

µ2(t)
+

a(µ1(t))Wy(0, t)− a(µ2(t))Wy(1, t)

µ2(t)h(t)

+
p(t)

µ2(t)

[

ṽ(1, t)a(µ2(t))− ṽ(0, t)a(µ1(t))

h(t)h̃(t)
−

∫ 1

0

f(yh(t), t)dy

− h̃(t)

∫ 1

0

dy

∫ 1

0

yfz(yz, t)

∣

∣

∣

∣

z=h̃(t)+σ(h(t)−h̃(t))

dσ

]

. (13)

We also have that

W (y, t) =

∫ t

0

∫ 1

0

G(y, t; η, τ)

[

(

−
ηh̃′(τ)

h(τ)h̃(τ)
ṽη(η, τ)−

h(τ) + h̃(τ)

h2(τ)h̃2(τ)
a(ṽ(η, τ))

+

∫ 1

0

ηfz(ηz, τ)

∣

∣

∣

∣

z=h̃(τ)+σ(h(τ)−h̃(τ))

dσ
)

p(τ) +
q(τ)

h(τ)

+W (η, τ)

∫ 1

0

a′(z)

∣

∣

∣

∣

z=ṽ(η,τ)+σ(v(η,τ)−ṽ(η,τ))

dσ

]

dηdτ, (y, t) ∈ Q, (14)

where G(y, t; η, τ) is the Green function for the linear partial differential equation

Wt =

(

a(v(y, t))

h2(t)
Wy

)

y

+
yh′(t)

h(t)
Wy (15)

subject to the homogenous initial and boundary conditions

W (y, 0) = 0, y ∈ [0, 1] (16)

W (0, t) = W (1, t) = 0, t ∈ [0, T ]. (17)

The expression for the derivative Wy(y, t) is obtained by replacing G(y, t; η, τ) with
Gy(y, t; η, τ) in (14). In [6], the uniqueness of the solution of the problem (1)–(4) is
obtained by remarking that when µ3 = µ̃3, i.e. ∆µ3 = 0, then the system of equa-
tions (12)–(14) is a homogenous system of Volterra integral equations of second kind with
integrable kernels for the triplet solution (p(t), q(t),W (y, t)).
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For the stability, one can observe that the inhomogenous free terms in equations (12)
and (13) are

∆µ3(t)
∫ 1

0
v(y, t)dy

and
∆µ′

3(t)

µ2(t)
,

respectively. These terms are bounded by 1
M0

||∆µ3||C1[0,T ]. Then the stability estimate
(10) follows immediately.

Remark 1. From Theorem 3 we have the continuous dependence of h upon the in-
put data µ3 in the C1[0, T ] norm. However, in practice the energy data µ3, as given by
(4), comes from measurement which is inherently contaminated with noise, see later on
equations (30)–(32). Therefore, the input data µ3 is in C[0, T ], but not in C1[0, T ], and
consequently, the derivative µ′

3 of the noisy function µ3 will be unstable. However, there
exist numerous numerical methods, see e.g. [9], which can stabilise the ill-posed process
of numerical differentiation.

3 Solution of Direct Problem

There is no major difficulty in formally applying finite-difference methods to non-linear
parabolic equations. The major difficulties are associated with the difference equations
themselves. These are usually solved iteratively after being linearized in some way, as we
will discuss later on.

In this section, we consider the direct initial-boundary value problem (6)–(8), where
h(t), f(x, t), a(u) and µi(t), i ∈ {1, 2} are known and the solution u(x, t) is to be deter-
mined together with µ3(t) defined by equation (4). To do so, we use the three-time levels
finite difference scheme suggested by Lees [7].

The discrete form of our problem is as follows. We uniformly divide the fixed domain
Q = (0, 1)×(0, T ) intoM and N subintervals of equal step length ∆y and ∆t, where ∆y =
1/M and ∆t = T/N , respectively. So, the solution at the node (i, j) is vi,j := v(yi, tj),
where yi = i∆y, tj = j∆t, h(tj) = hj, ϕ(xi) = ϕi, and f(yi, tj) = fi,j for i = 0,M ,
j = 0, N .

We develop the procedure described in [7] in order to solve the direct problem for the
nonlinear parabolic equation (6), subject to the initial condition (7) and the Dirichlet
boundary conditions (8). We need to define the standard difference operators D+, D−,
and D0, as follows:

D+v(xi, tj) =
v(xi+1, tj)− v(xi, tj)

∆y
, D−v(xi, tj) =

v(xi, tj)− v(xi−1, tj)

∆y
,

D0v(xi, tj) =
v(xi+1, tj)− v(xi−1, tj)

2∆y
.

Finally, for any suitably defined function k(x, t), we put

ā(k(xi, t)) = a

(

k(xi, t) + k(xi−1, t)

2

)

.

For each j = 0, N we put v0,j = µ1(j∆t) and vM,j = µ2(j∆t). Then the three time
level scheme is given by

vi,0 = ϕi, i = 0,M, (18)
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where we have that ϕ0 = µ1(0) and ϕM = µ2(0),

vi,1 = vi,0 +
∆t

h2
0

D+ (ā(ϕi)D−ϕ) +
(∆t)yih

′

0

h0

D−ϕ+ (∆t)fi,0, i = 1,M − 1, (19)

where h′

0 = h′(0) is given by (5),

vi,j+1 = vi,j−1 +
2∆t

h2
j

D+ (ā(vi,j)D−v̂i,j) +
2(∆t)yih

′

j

hj

D−v̂i,j

+ 2(∆t)fi,j, i = 1,M − 1, j = 1, N − 1, (20)

where h′

j = h′(tj), and

v̂i,j =
vi,j+1 + vi,j + vi,j−1

3
. (21)

It is clear that the three-level difference scheme determines vi,j+1 uniquely as the solution
of a linear, well-conditioned, tridiagonal system of equations which can be solved using
traditional linear algebra methods to advance the solution to the next time step. The
equations (18) and (19) provide the necessary starting values for (20). In [7], the author
proved that the above scheme is stable, second-order accurate and convergent for suffi-
ciently small values of ∆y and ∆t. Although, equation (1) or (6) is nonlinear, the linearity
is achieved in vi,j+1 by evaluating all coefficients at a time level of known solution values
in previous steps. The stability is preserved by averaging vi,j over three time levels as
(21) and the accuracy is maintained by using central-difference approximations, [10].

Equation (20) can be put in a simpler form as

vi,j+1 = v̂i,j−1 + Ai,j v̂i−1,j − Bi,j v̂i,j + Ci,j v̂i+1,j + 2(∆t)fi,j, (22)

where,

Ai,j =
2(∆t)a2i,j
h2
j(∆y)2

−
(∆t)yih

′

j

hj∆y
, Bi,j =

2(∆t)a3i,j
h2
j∆y

, Ci,j =
2(∆t)a1i,j
h2
j(∆y)2

+
(∆t)yih

′

j

hj∆y
,

a1i,j = ā(v(xi+1, tj)), a2i,j = ā(v(xi, tj)), a3i,j = a1i,j + a2i,j.

As mentioned before, to ensure the stability we average the solution over three levels as

v̂i−1,j−1 =
1

3
(vi−1,j+1 + vi−1,j + vi−1,j−1) ,

v̂i,j =
1

3
(vi,j+1 + vi,j + vi,j−1) ,

v̂i+1,j−1 =
1

3
(vi+1,j+1 + vi+1,j + vi+1,j−1) .

Then the final version of (22) becomes

−A∗

i,jvi−1,j+1 + (1 +B∗

i,j)vi,j+1 − C∗

i,jvi+1,j+1 = A∗

i,jvi−1,j − B∗

i,jvi,j + C∗

i,jvi+1,j

+ A∗

i,jvi−1,j−1 + (1−B∗

i,j)vi,j−1 + C∗

i,jvi+1,j−1

+ 2(∆t)fi,j, j = 1, N, i = 2, (M − 1), (23)
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where A∗ = A
3
, B∗ = B

3
and C∗ = C

3
. At each time step tj for j = 1, (N − 1), using the

Dirichlet boundary conditions (8), the above difference equation can be reformulated as
a (M − 1)× (M − 1) system of linear equations of the form,

Lu = b, (24)

where

u = (v2,j+1, v3,j+1, ..., vM−1,j+1)
tr, b = (b2, b3, ..., bM−1)

tr.

and

L =















1 + B∗

1,j −C∗

1,j 0 · · · 0 0 0
−A∗

2,j 1 + B∗

2,j −C∗

2,j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −A∗

M−2,j 1 + B∗

M−2,j −C∗

M−2,j

0 0 0 · · · 0 −A∗

M−1,j 1 + B∗

M−1,j















,

b2 = A∗

1,jv0,j − B∗

1,jv1,j + C∗

1,jv2,j + A∗

1,jv0,j−1 + (1−B∗

1,j)v1,j−1 + C∗

1,jv2,j−1

+ 2(∆t)f1,j + A∗

1,jv0,j+1,

bi = A∗

i−1,jvi,j − B∗

i,jvi,j + C∗

i,jvi+1,j + A∗

i,jvi−1,j−1 + (1− B∗

i,j)vi,j−1

+ C∗

i,jvi+1,j−1 + 2(∆t)fi,j, i = 3, (M − 2),

bM−1 = A∗

M−1,jvM−2,j −B∗

M−1,jvM−1,j + C∗

M−1,jvM,j + A∗

M−1,jvM−2,j−1 + (1− B∗

M−1,j)vM−1,j−1

+ C∗

M−1,jvM+1,j−1 + 2(∆t)fM−1,j + C∗

M−1,jvM,j+1.

3.1 Example

As an example, consider the problem (6)–(8) with T = ℓ = 1 and

a(v) = e−v, h(t) = 1 + t, h0 = h(0) = 1, ϕ(h0y) = 1 + (1 + y)2,

µ1(t) = 1 + et, µ2(t) = (2 + t)2 + et, f(h(t)y, t) = et + e−(1+y+yt)2−et(4(1 + y + yt)2 − 2).

The exact solution of the direct problem (6)–(8) is given by

v(y, t) = (1 + y + yt)2 + et

and the desired output (4) is

µ3(t) =
(2 + t)3 − 1

3
+ (1 + t)et.

The numerical and the exact solution for the interior solution are shown in Figure 1
and one can notice that a very good agreement is obtained because the direct problem is
well-posed. Figure 2 shows the numerical solution in comparison with exact one for µ3.
The trapezoidal rule is employed to compute the integral in (4) based on the formula

∫ 1

0

v(y, tj)dy =
1

2M

(

µ1(tj) + µ2(tj) + 2
M−1
∑

i=1

v(yi, tj)

)

, j = 0, N. (25)

7



From this figure it can be seen that the numerical solution is in excellent agreement with
the exact one.
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Figure 1: Exact and numerical solutions for v(y, t) and the absolute error for the direct problem
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4 Numerical Approach to the Inverse Problem

In the inverse problem, we assume that the free boundary h(t) is unknown. The nonlinear
inverse problem (6)–(9) can be reformulated as a nonlinear least-squares minimization of

F (h) =

∥

∥

∥

∥

∥

h(t)

∫ 1

0

v(y, t)dy − µ3(t)

∥

∥

∥

∥

∥

2

L2[0,T ]

, (26)

defined over the set of admissible functions

h ∈ Λad := {h ∈ C1[0, T ]
∣

∣h(0) = h0, h(t) > 0 for t ∈ [0, T ]}. (27)

The discretization of (26) is

F (h) =
N
∑

j=1

[

hj

∫ 1

0

v(y, tj)dy − µ3(tj)
]2

, (28)

where h = (hj)j=1,N . As it will be seen from the numerical results presented and discussed
in the next section, it seems that there is no need to regularize the least-squares functional
(26) by adding to it a Tikhonov penalty term of some norm of h, the problem being rather
stable with respect to noise added in the input data µ3(t).

The minimization of F subject to the physical constraints h > 0 is accomplished using
the MATLAB toolbox routine lsqnonlin, which does not require supplying by the user the
gradient of the objective function (28), [8]. This routine attempts to find a minimum of
a scalar function of several variables, starting from an initial guess, subject to constraints
and this generally is referred to as a constrained nonlinear optimization.

We take bounds for the positive h(t) say, we seek the components of the vector h in
the interval (10−10,103). We also take the parameters of the routine as follows:

• Number of variables M = N = 40.

• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103 × (number of variables).

• x Tolerance (xTol) = 10−10.

• Function Tolerance (FunTol) = 10−10.

• Nonlinear constraint tolerance = 10−6.

In addition, when we solve the inverse problem we approximate

h′(tj) =
h(tj)− h(tj−1)

∆t
=

hj − hj−1

∆t
, j = 1, N, (29)

and we express h′

0 := h′(0) as in (5). If there is noise in the measured data (4), we replace
µ3(tj) in (28) by µϵ

3(tj) given by

µϵ
3(tj) = µ3(tj) + ϵj, j = 1, N, (30)
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where ϵj are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation σ, given by

σ = p× max
t∈[0,T ]

|µ3(t)|, (31)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ϵ = (ϵj)j=1,N as follows:

ϵ = normrnd(0, σ,N). (32)

5 Numerical Results and Discussion

In this section, we will describe the numerical results for our nonlinear inverse problem
for two different example according to the linear and nonlinear (rational) variation of free
boundary. Moreover, we add noise to the measured input data (9) to mimic the reality
situation by using (30) via (32). To compute this coefficient we use the lsqnonlin routine
combined with Trust-Region-reflective algorithm [8] to find the minimizer of the nonlinear
functional (28). We also calculate the root mean square error (rmse) to analyse the error
between the exact and numerically obtained coefficient, defined as,

rmse(h(t)) =

√

√

√

√

1

N

N
∑

j=1

(hnumerical(tj)− hexact(tj))
2. (33)

For simplicity, we take T = 1 and the initial guess h(0) = 1 for all examples.

Example 1

Consider the problem (1)–(4) with unknown coefficient h(t), and solve this inverse problem
with the following input data:

ϕ(x) = (1 + x)2 + 1, µ1(t) = 1 + et, µ2(t) = (2 + t)2 + et,

µ3(t) =
(2 + t)3

3
+ (1 + t)et −

1

3
, a(u) = e−u,

f(x, t) = et + e−(1+x)2−et(4x2 + 8x+ 2), h0 = 1,

One can remark that the conditions of Theorems 1 and 2 are satisfied hence, the existence
and uniqueness of solution hold. With this data the analytical solution of inverse problem
(1)–(4) is given by

h(t) = 1 + t, u(x, t) = (1 + x)2 + et. (34)

Then

h(t) = 1 + t, v(y, t) = u(yh(t), t) = (1 + y + yt)2 + et, (35)

is the analytical solution of the problem (6)–(9).

10



We consider the case where there is no noise, i.e. p = 0, and when there is p = 2%
noise in the input data (9).

The functional (28), as a function of the number of iterations, is represented in Fig-
ure 3. From this figure it can be seen that the convergence is very fast in five and seven
iterations for p = 0 and p = 2%, respectively. The objective function (28) decreases
rapidly and takes a stationary value of O(10−7) and 0.3411, for p = 0 and p = 2%, re-
spectively. The numerical results for the corresponding unknown free boundary h(t) are
presented in Figure 4. From this figure it can be seen that the retrieved free boundary
h(t) is in very good agreement with the exact one in the case where no noise in the input
data. While, when the input data is contaminated by p = 2% noise then we can see that
the retrieved solution is stable and within the same range of errors as the input data is.
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Figure 3: Objective function (28) without noise (—), and for p = 2% noise (- - -) for Example

1.
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Figure 4: Free boundary h(t), without noise (-△-), and for p = 2% noise (- - -) in comparison

with the exact solution (—), for Example 1.

The restored temperatures v(y, t) and u(x, t) for p = 2% noise are shown in Figures
5 and 6, respectively. From these figures it can be seen that the solutions are stable by
being free of high oscillations and unbounded behaviour.

Overall form the numerical results presented for this example it can be seen that the
inverse problem seems to be well-posed and that the numerical solutions are accurate and
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stable with respect to noise in the input data for both the free boundary h(t) and the
temperature/concentration v(y, t) or u(x, t).

0

0.5

1

0

0.5

1
0

5

10

15

y

Exact solution

t

v(
y,

t)

0

0.5

1

0

0.5

1
0

5

10

15

y

Numerical solution

t

v(
y,

t)

0

0.5

1

0

0.5

1
0

5

10

15

20

y

Relative error

t

R
el

at
iv

e 
er

ro
r (

%
)

Figure 5: The analytical and numerical solutions, and the relative error for v(y, t) for p = 2%

noise for Example 1.
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Figure 6: The analytical and numerical solutions for u(x, t) for p = 2% noise for Example 1.

Example 2

In this example, we consider a more severe test case where the unknown function h(t) is
nonlinear with the following data

ϕ(x) = (1 + x)2 + 1, µ1(t) = 1 + et, µ2(t) =

(

2 + t

1 + t

)2

+ et,

µ3(t) =
1

3

(

2 + t

1 + t

)3

+
et

1 + t
−

1

3
, a(u) = e−u,

f(x, t) = et + e−(1+x)2−et
(

4x2 + 8x+ 2
)

, h0 = 1.

One can notice that the conditions of Theorems 1 and 2 are satisfied hence, the existence
and uniqueness of solution holds. With this data, the analytical solution of the inverse
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problem (1)–(4) is given by

h(t) =
1

1 + t
, u(x, t) = (1 + x)2 + et. (36)

Then

h(t) =
1

1 + t
, v(y, t) = u(yh(t), t) =

(

1 +
y

1 + t

)2

+ et, (37)

is the analytical solution of the problem (6)–(9).
We study the case of exact and noisy input data (9). The objective function (28), as

a function of the number of iterations is presented in Figure 7. From this figure it can be
seen that the functional decreases very fast to stationary value at O(10−7) and 0.0188 in
about 7 and 12 iterations, for p = 0 and p = 2% noise, respectively.
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Figure 7: Objective function (28) without noise (—), and for p = 2% noise (- - -) for Example

2.

The numerical results for the corresponding free boundary h(t) are presented in Figure
8. From this figure it can be seen that the identified free boundary is in very good
agreement with the exact one in the absence of noise and this situation changes only a
little when we perturb the input data by p = 2% noise.
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Figure 8: Free boundary h(t), without noise (-△-), and with p = 2% noise (- - -) in comparison

with the exact solution (—), for Example 2.
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The numerical solutions for v(y, t) and u(x, t) are shown in Figure 9 and 10, respec-
tively, in comparison with the exact solutions for p = 2% noise. As in Example 1, stable
numerical solutions are obtained.

One can conclude that the inverse problem is well-posed since small errors in the
measurement in (4) cause only small errors in the retrieved pair solution (h(t), u(x, t)).
Consequently, we can say that the problem depends continuously on the input data.

Finally, for completeness, other details about the number of iterations, number of
function evaluations, objective function value at final iteration and rmse(h) for Examples
1 and 2 are given in Table 1. For this table it can be seen that accurate and stable numer-
ical solutions are rapidly achieved by the iterative MATLAB toolbox routine lsqnonlin.

Table 1: Number of iterations, number of function evaluations, value of the objective function

(28) at final iteration and rmse values (33), for Examples 1 and 2.

p = 0 p = 2%

Example 1

No. of iterations 5 7
No. of function evaluations 252 336
Function value at final iteration 2E − 7 0.3411
rmse(h) 0.0035 0.0793

Example 2

No. of iterations 7 12
No. of function evaluations 336 546
Function value at final iteration 6E − 7 0.0188
rmse(h) 0.0023 0.0212
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Figure 9: The analytical and numerical solutions and the relative error for v(y, t) for p = 2%

noise for Example 2.
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Figure 10: The analytical and numerical solutions for u(x, t) for p = 2% noise for Example 2.

6 Conclusions

The inverse problem concerning the identification of free boundary h(t) and the temper-
ature u(x, t) in the heat equation with nonlinear diffusivity a(u) has been investigated.
The additional condition which ensures a unique solution is given by the energy/mass
specification µ3(t) given by equation (4). As with other free surface problems, it turns
out that the problem is well-posed if the data µ3 is smooth. The direct solver based on a
three-level finite difference scheme is developed. The inverse solver is based on a nonlinear
least-squares minimization which is solved using the MATLAB toolbox routine lsqnonlin.
As expected, for exact data, the numerical results obtained are very accurate. For noisy
data µϵ

3 which consist of a random perturbation of the exact data µ3, the results for h(t),
v(y, t) and u(x, t) are still stable and accurate. The instability is only manifested in the
derivative h′(t) for which the use of a regularization method would be warranted.
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