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Abstract

In this paper, we consider the inverse problem of simultaneous determination of time-dependent
leading coefficient (thermal diffusivity) and free boundary in the one-dimensional time-dependent
heat equation. The resulting inverse problem is recast as a nonlinear regularized least-squares
problem. Stable and accurate numerical results are presented and discussed.
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1 Introduction

Many heat transfer applications can be modeled by the heat equation with a fixed boundary.
However, there are numerous other problems for which the domain or the boundary varies with
time and such problems are known as free boundary or Stefan problems [1]. For instance, when
a conductor melts and the liquid is drained away as it appears, the heat conduction problem
within the remaining solid involves the heat equation in a domain that is physically changing
with time. In particular, the one-phase Stefan problem can be regarded as an inverse problem.

In [2], the author investigated the heat equation with an unknown heat source in a domain
with a known moving boundary. In [3, 4], the authors investigated the numerical solution of
inverse Stefan problems using the method of fundamental solutions. In [5], an inverse moving
boundary problem is solved using the least-squares method. In our work we consider the time-
dependent nonlinear inverse one-dimensional and one-phase Stefan problem which consists in
the simultaneous determination of the time-dependent thermal diffusivity and free boundary.

This paper is organized as follows: In the next section, we give the formulation of the inverse
problem under investigation. The numerical methods for solving the direct and inverse problems
are described in Sections 3 and 4, respectively. Furthermore, the numerical results and discussion
are given in Section 5 and finally, conclusions are presented in Section 6.

2 Mathematical formulation

Consider the one-dimensional time-dependent heat equation

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + f(x, t), (x, t) ∈ Ω (1)

in the domain Ω = {(x, t) : 0 < x < h(t), 0 < t < T < ∞} with unknown free smooth boundary
x = h(t) > 0 and time-dependent thermal diffusivity a(t) > 0. The initial condition is

u(x, 0) = ϕ(x), 0 ≤ x ≤ h(0) =: h0, (2)

where h0 > 0 is given, and the boundary and over-determination conditions are

u(0, t) = µ1(t), u(h(t), t) = µ2(t), 0 ≤ t ≤ T, (3)

−a(t)ux(0, t) = µ3(t),

∫ h(t)

0
u(x, t)dx = µ4(t), 0 ≤ t ≤ T. (4)
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Note that µ1 and µ3 represent Cauchy data at the boundary end x = 0, whilst µ4 represent the
specification of the energy of the heat conducting system, [6].

First we perform the change of variable y = x/h(t) to reduce the problem (1)–(4) to the
following inverse problem for the unknowns a(t), h(t) and v(y, t) := u(yh(t), t):

∂v

∂t
(y, t) =

a(t)

h2(t)

∂2v

∂y2
(y, t) +

yh′(t)

h(t)

∂v

∂y
(y, t) + f(yh(t), t), (y, t) ∈ Q (5)

in the fixed domain Q = {(y, t) : 0 < y < 1, 0 < t < T} with unknown time-dependent
coefficients a(t) and h(t). The initial condition is

v(y, 0) = ϕ(h0y), 0 ≤ y ≤ 1, (6)

and the boundary and over-determination conditions are

v(0, t) = µ1(t), v(1, t) = µ2(t), 0 ≤ t ≤ T, (7)

−a(t)vy(0, t) = µ3(t)h(t), h(t)

∫ 1

0
v(y, t)dy = µ4(t), 0 ≤ t ≤ T. (8)

This model has been considered in [7]. The triplet (h(t), a(t), v(y, t)) is called a solution to
the inverse problem (5)–(8) if it belongs to the class C1[0, T ] × C[0, T ] × C2,1(Q), h(t) > 0,
a(t) > 0, t ∈ [0, T ], and satisfies the equations (5)–(8). For the input data we make the following
regularity and compatibility assumptions:

(A) µi(t) ∈ C1[0, T ], µi(t) > 0 for t ∈ [0, T ], i = 1, 2, 4, µ3(t) ∈ C1[0, T ], µ3(t) < 0 for t ∈ [0, T ],
ϕ(x) ∈ C2[0, h0], ϕ(x) > 0, ϕ′(x) > 0 for x ∈ [0, h0], and f(x, t) ∈ C1,0([0, H1] × [0, T ]),
f(x, t) ≥ 0 for (x, t) ∈ [0, H1]× [0, T ], where

H1 = max
[0,T ]

µ4(t)

(

min

{

min
[0,h0]

ϕ(x),min
[0,T ]

µ1(t),min
[0,T ]

µ2(t)

})

−1

;

(B) ϕ(0) = µ1(0), ϕ(h0) = µ2(0), and
∫ h0

0 ϕ(x)dx = µ4(0).

The following existence and uniqueness of solution theorems are proved in [7].

Theorem 1. (Local existence)
If the conditions (A) and (B) are satisfied, then there exists t0 ∈ [0, T ], (defined by the input
data) such that a solution of problem (5)–(8) exists locally for (y, t) ∈ [0, 1]× [0, t0].

Theorem 2. (Uniqueness)
Suppose that the following conditions are satisfied:

(i) 0 ≤ f(x, t) ∈ C1,0 ([0, H1]× [0, T ]);

(ii) ϕ(x) > 0 for x ∈ [0, h0], µ1(t) > 0, µ2(t) > 0, µ3(t) < 0, and µ4(t) > 0 for t ∈ [0, T ].

Then a solution to problem (5)–(8) is unique.
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3 Solution of Direct Problem

In this section, we consider the direct initial boundary value problem (5)–(7), where a(t), h(t),
f(x, t), ϕ(x), and µi(t), i = 1, 2, are known and the solution u(x, t) is to be determined addi-
tionally with µi(t), i = 3, 4. To achieve this, we use the Crank-Nicolson finite-difference scheme
[8], which is unconditionally stable and second-order accurate in space and time.

The discrete form of our problem is as follows. We divide the domain Q = (0, 1) × (0, T )
into M and N subintervals of equal step length ∆y and ∆t, where ∆y = 1/M and ∆t = T/N ,
respectively. So, the solution at the node (i, j) is vi,j := v(yi, tj), where yi = i∆y, tj = j∆t, and
a(tj) = aj , h(tj) = hj and f(yi, tj) = fi,j for i = 0,M , j = 0, N . Based on the Crank-Nicolson
method, equation (5) can be approximated as:

−Ai,j+1vi+1,j+1 + (1 +Bj+1)vi,j+1 − Ci,j+1vi−1,j+1

= Ai,jvi+1,j + (1−Bj)vi,j + Ci,jvi−1,j +
∆t

2
(fi,j + fi,j+1) (9)

for i = 1, (M − 1), j = 0, N , where

Ai,j =
(∆t)αj

2(∆y)2
− (∆t)γjyi

4∆y
, Bj =

(∆t)αj

(∆y)2
, Cj =

(∆t)αj

2(∆y)2
+

(∆t)γjyi
4∆y

,

αj =
aj
h2j

, γj =
h′(tj)

hj
.

The initial and boundary conditions (6) and (7) can also be collocated as:

vi,0 = ϕ(h0yi), i = 0,M, (10)

v0,j = µ1(tj), vM,j = µ2(tj), j = 0, N. (11)

At each time step tj , for j = 0, (N − 1), using the Dirichlet boundary conditions (11), the
above difference equation (9) can be reformulated as a (M − 1) × (M − 1) system of linear
equations of the form,

Lu = b, (12)

where

u = (v1,j+1, v2,j+1, ..., vM−1,j+1)
tr, b = (b1, b2, ..., bM−1)

tr

and

L =















1 +Bj+1 −C1,j+1 0 · · · 0 0 0
−A2,j+1 1 +Bj+1 −C2,j+1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −AM−2,j+1 1 +Bj+1 −CM−2,j+1

0 0 0 · · · 0 −AM−1,j+1 1 +Bj+1















,

b1 = A1,jv0,j + (1−Bj)v1,j + C1,jv2,j +A1,j+1v0,j+1 +
∆t

2
(f1,j+1 + f1,j),

bi = Ai,jvi−1,j + (1−Bj)vi,j + Ci,jvi+1,j +
∆t

2
(fi,j+1 + fi,j), i = 2, (M − 2),

bM−1 = AM−1,jvM−2,j + (1−Bj)vM−1,j + CM−1,jvM,j + CM−1,j+1vM,j+1

+
∆t

2
(fM−1,j+1 + fM−1,j).
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As an example, consider the problem (5)–(7) with T = ℓ = 1 and

a(t) = 1 + t, h(t) = 1 + 2t, h0 = h(0) = 1, ϕ(h0y) = (1 + y)2, µ1(t) = 1 + 8t,

µ2(t) = (2 + 2t)2 + 8t, f(h(t)y, t) = 6− 2t.

The exact solution of the direct problem (5)–(7) is given by v(y, t) = (1+ y+2yt)2+8t, and the

desired outputs are µ3(t) = −2(1+t) and µ4(t) =
(2+2t)3−1

3 +8t(1+2t). The numerical and exact
solutions for v(y, t) are shown in Figure 1 and very good agreement is obtained. Tables 1 and 2
give the numerical heat flux at y = 0 and the numerical integral in comparison with the exact
values, i.e. µ3 and µ4. These have been calculated using the following O(h2) finite-difference
approximations for derivative and trapezoidal rule for integration:

vy(0, tj) =
4v1,j − v2,j − 3v0,j

2∆y
, j = 1, N, (13)

∫ 1

0
v(y, tj)dy =

∆y

2

(

v(0, tj) + v(1, tj) + 2

M−1
∑

i=1

v(yi, tj)

)

, j = 0, N. (14)

From these tables it can be seen that the numerical results are in very good agreement with the
exact ones and that a rapid monotonic decreasing convergence is achieved.

Table 1: The exact and the numerical heat flux −a(t)vy(0, t)/h(t) for M = N ∈ {10, 20}, for the direct

problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000

M = N = 20 -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000

exact -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000

Table 2: The exact and the numerical integral h(t)
∫

1

0
v(y, t)dy for M = N ∈ {10, 20, 40, 100}, for the

direct problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 4.1789 6.5192 ... 31.8880 38.1539 45.0450

M = N = 20 4.1767 6.5158 ... 31.8660 38.1265 45.0113

M = N = 40 4.1762 6.5150 ... 31.8605 38.1196 45.0028

M = N = 100 4.1760 6.5147 ... 31.8590 38.1177 45.0005

exact 4.1760 6.5147 ... 31.8587 38.1173 45.0000

4



0

0.5

1

0

0.5

1
0

5

10

15

20

25

t

Exact solution

y

v(
y,

t)

0

0.5

1

0

0.5

1
0

5

10

15

20

25

t

Numerical solution for M=N=40

y

v(
y,

t)

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

x 10
−14

t

Error graph for M=N=40

y

A
bs

ol
ut

e 
er

ro
r

Figure 1: Exact and numerical solutions for v(y, t) and the absolute error for the direct problem obtained

with M = N = 40.

4 Numerical Approach for the Inverse Problem

In the inverse problem, we assume that the thermal diffusivity a(t) and free boundary h(t)
are unknown. Usually, the nonlinear inverse problem (5)–(8) can be formulated as a nonlinear
least-squares minimization. The regularized objective function which is minimized is given by

F (a, h) =

∥

∥

∥

∥

∥

− a(t)

h(t)
vy(0, t)− µ3(t)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

h(t)

∫ 1

0
v(y, t)dy − µ4(t)

∥

∥

∥

∥

∥

2

+ β
(

∥a(t)∥2 + ∥h(t)∥2
)

, (15)

where β ≥ 0 is a regularization parameter and the norm is usually the L2[0, T ]-norm. The
discretization of (15) is

F (a, h) =

N
∑

j=0

[

− aj
hj

vy(0, tj)− µ3(tj)
]2

+

N
∑

j=0

[

hj

∫ 1

0
v(y, tj)dy − µ4(tj)

]2

+ β





N
∑

j=0

a2j +

N
∑

j=1

h2j



 . (16)

The unregularized case β = 0 yields the ordinary nonlinear least-squares method which is
usually unstable. The minimization of F subject to the physical constraints a > 0 and h > 0 is
accomplished using the MATLAB toolbox routine lsqnonlin, which does not require supplying
(by the user) the gradient of the objective function, [9]. The routine lsqnonlin attempts to find
a minimum of a scalar function of several variables, starting from an initial guess, subject to
constraints and this generally is referred to as a constrained nonlinear optimization.

We take bounds for the positive quantities a(t) and h(t) say, we seek them in the interval
(10−10,103). We also take the parameters of the routine as follows:

• Number of variables M = N = 40.
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• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103 × (number of variables).

• x Tolerance (xTol) = 10−10.

• Function Tolerance (FunTol) = 10−10.

• Nonlinear constraint tolerance = 10−6.

We take the initial guess as a(0) = h(0) = 1. It is worth mentioning that at the first time step,
i.e. j = 0, the derivative vy(0, 0) is obtained from (10) and (13), as

vy(0, 0) =
4ϕ1 − ϕ2 − 3ϕ0

2∆y
, (17)

where ϕi = ϕ(h0yi) for i = 0,M . In addition, when we solve the inverse problem we approximate

h′(tj) =
h(tj)− h(tj−1)

∆t
=

hj − hj−1

∆t
, j = 1, N. (18)

We also express h′(0) as

h′(0) =
µ′

2(0)− a(0)ϕ′′(h0)− f(h0, 0)

ϕ′(h0)
, (19)

which can easily be derived from equation (3) using the chain rule technique. In (19), a(0) is
unknown.

If there is noise in the measured data (8), we replace µ3(tj) and µ4(tj) in (16) by µϵ1
3 (tj) and

µϵ2
4 (tj), namely,

µϵ1
3 (tj) = µ3(tj) + ϵ1j , µϵ2

4 (tj) = µ4(tj) + ϵ2j , j = 0, N, (20)

where ϵ1j and ϵ2j are random variables generated from a Gaussian normal distribution with
mean zero and standard deviations σ1 and σ2, respectively, given by

σ1 = p× max
t∈[0,T ]

|µ3(t)|, σ2 = p× max
t∈[0,T ]

|µ4(t)|, (21)

where p represents the percentage of noise. We use the MATLAB function normrnd to generate
the random variables ϵ1 and ϵ2 as follows:

ϵ1 = normrnd(0, σ1, N + 1), ϵ2 = normrnd(0, σ2, N + 1). (22)

5 Numerical Results and Discussion

The numerical results are illustrated for two different examples according to the linear or non-
linear variation of estimated coefficients. In addition, we add noise, as in (20), to the measured
input data (8). To compute the thermal diffusivity a(t) and the free boundary h(t) we use the
lsqnonlin routine from MATLAB optimization toolbox with the Trust-Region-Reflective algo-
rithm, [9], to find the minimizer of the nonlinear Tikhonov regularization functional (16). We
have also calculated the root mean square error (rmse) to analyse the error between the exact
and estimated solution, defined as,

rmse(a(t)) =

√

√

√

√

1

N + 1

N
∑

j=0

(anumerical(tj)− aexact(tj))
2, (23)

rmse(h(t)) =

√

√

√

√

1

N

N
∑

j=1

(hnumerical(tj)− hexact(tj))
2. (24)

For simplicity, we take T = 1.
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Example 1

Consider the problem (1)–(4) with unknown coefficients a(t) and h(t), and solve this inverse
problem with the following input data:

µ1(t) = 1 + 8t, µ2(t) = (2 + 2t)2 + 8t, µ3(t) = −2(1 + t),

µ4(t) =
(2 + 2t)3 − 1

3
+ 8t(1 + 2t), h0 = 1, ϕ(x) = (1 + x)2, f(x, t) = 6− 2t.

One can remark that the conditions of Theorem 2 are satisfied hence, the uniqueness of solution
holds. With this data the analytical solution is given by

a(t) = 1 + t, h(t) = 1 + 2t, u(x, t) = (1 + x)2 + 8t. (25)

Then

a(t) = 1 + t, h(t) = 1 + 2t, v(y, t) = u(yh(t), t) = (1 + y(1 + 2t))2 + 8t, (26)

is the analytical solution of the problem (5)–(8).
Consider first the case where there is no noise in the input data (8). The objective function

(16), as a function of the number of iterations, is represented in Figure 2. From this figure it can
be seen that the convergence is rapidly achieved in a few iterations. The objective function (16)
decreases rapidly and takes a stationary value of O(10−8) in about 7 iterations. The numerical
results for the corresponding unknowns a(t) and h(t) are presented in Figure 3. From this figure
it can be seen that the retrieved thermal diffusivity a(t) and free surface h(t) are in very good
agreement with the exact values from (26).

Next, we add p = 2% noise to the measured data µ3 and µ4, as in equation (20). The
regularized objective function (16) is plotted, as a function of the number of iterations, in Figure
4 and convergence is again rapidly achieved. Figure 5 presents the graphs of the recovered
functions, whilst the rmse values are given in Table 3. From this figure and table it can be
seen that there is not much difference between the numerical solution obtained with β = 0 or
β = 10−3, but there is some slight improvement in accuracy obtained for β = 10−1.

The recovered temperatures for β ∈ {0, 10−3, 10−1} are shown in Figure 6. From this figure
it can be seen that the temperature component of the solution is stable and is not significantly
affected by the inclusion of noise in the input data.
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Figure 2: Unregularized objective function (16), for Example 1 (—) and Example 2 (- - -) with no noise

and no regularization.
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Figure 5: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 1 with p = 2% noise and

regularization.

Example 2

In this example we consider the inverse problem (5)–(8) with the following input data:

µ1(t) = 1 + 8t, µ2(t) = (1 +
√
2− t)2 + 8t, µ3(t) = −2

√
1 + t,

µ4(t) =
(1 +

√
2− t)3 − 1

3
+ 8t

√
2− t, h0 =

√
2, ϕ(x) = (1 +

√
2x)2,

f(x, t) = 8− 2
√
1 + t.

One can remark that the conditions of Theorem 2 are satisfied hence, the uniqueness of solution
holds. The solution to this inverse problem is given by

a(t) =
√
1 + t, h(t) =

√
2− t, u(x, t) = (1 + x)2 + 8t. (27)

Then

a(t) =
√
1 + t, h(t) =

√
2− t, v(y, t) = u(yh(t), t) = (1 + y

√
2− t)2 + 8t, (28)

is the analytical solution of the problem (5)–(8). In this example the moving boundary is given
by a nonlinear function.
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Figure 6: (a) Temperature for β = 0, (b) β = 10−3, and (c) β = 10−1, for Example 1 with p = 2% noise.

Initially, we consider the case of noise free in the input data (8). The objective function
(16), as a function of the number of iterations, is presented in Figure 2. From this figure it
can be seen that the convergence is rapidly achieved in a few iterations. The objective function
(16) decreases dramatically and takes a stationary value of O(10−7) in about 7 iterations, the
same as in Example 1. The numerical results for the corresponding coefficients a(t) and h(t) are
presented in Figure 7. From this figure it can be seen that the identified coefficients are in very
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good agreement with the exact values from (28).
Next, we add p = 2% noise to the measured data µ3 and µ4, as in equation (20). The

regularized objective function (16) is plotted, as a function of the number of iterations, in
Figure 8 and convergence is again rapidly achieved. Figures 9 and 10 show the numerical
solution (a(t), h(t), u(x, t)) and the rmse values are given in Table 3. As in Example 1, one can
observe that the inverse problem is rather stable with respect to noise included in the input
data.
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Figure 7: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 2 with no noise and no

regularization.

Table 3: The rmse values for Examples 1 and 2 with p = 2% noise.

β = 0 β = 10−3 β = 10−1

Example 1
rmse(a) = 0.1010 0.1004 0.0628
rmse(h) = 0.0932 0.0922 0.0872

Example 2
rrmse(a) = 0.0336 0.0336 0.0368
rrmse(h) = 0.0253 0.0253 0.0248
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Figure 8: Regularized objective function (16), for Example 2 with p = 2% noise.
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Figure 9: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 2 with p = 2% noise and

regularization.
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Figure 10: (a) Temperature for β = 0, (b) β = 10−3, and (c) β = 10−1, for Example 2 with p = 2%

noise.

6 Conclusion

The inverse nonlinear problem which requires simultaneously determining the time-dependent
thermal diffusivity and free boundary in the parabolic heat equation has been investigated.
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The resulting inverse problem has been reformulated as a nonlinear least-squares optimization
problem which produced stable and reasonably accurate numerical results. Extension of the
present work to include the determination of unknown convection b(t)ux and reaction c(t)u
coefficients in the heat equation (1), in addition to the unknowns a(t) and h(t), [10], will be the
subject of future work.
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