This is a repository copy of Recent Developments in the Evolution Strategies of Genetic
Algorithms: Theory and Applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81058/

Monograph:

Chaiyaratana, N. and Zalzala, A.M.S. (1997) Recent Developments in the Evolution
Strategies of Genetic Algorithms: Theory and Applications. Research Report. ACSE
Research Report 666 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Department of

AUTOMATIC
CONTROL

and SYSTEMS
ENGINEERING

UNIVERSITY of SHEFFIELD

RECENT DEVELOPMENTS IN THE EVOLUTION STRATEGIES OF
GENETIC ALGORITHMS: THEORY AND APPLICATIONS

N. Chaiyaratana and A.M.S. Zalzala

Robotics Research Group
Department of Automatic Control and Systems Engineering
The University of Sheffield
Mappin Street, Sheffield S1 3JD, United Kingdom

Research Report #666
February 1997

. Tel : +44 (0)114 2225250
P\ - Fax : +44 (0)114 2731729
]\m EMail : rre@sheffield.ac.uk

ﬁd Robotics Research Group

200391379

AR

Recent Developments in the Evolution Strategies of Genetic Algorithms: Theory and
Applications

N. Chaiyaratana and A. M. S. Zalzala

University of Sheffield, UK

Email: mg@sheffield.ac.uk

Abstract

This paper provides a review on current developments in
genetic algorithms. The discussion includes theoretical
aspects of genetic algorithms and genetic algorithm
applications. Theoretical topics under review include
genetic algorithm techniques, genetic operator
techniques, niching techniques, genetic drift, method of
benchmarking genetic algorithm performances,
measurement of difficulty level of a test-bed function,
population genetics and developmental mechanism in
genetic algorithms. Examples of genetic algorithm
application in this review are pattern recognition,
robotics, artificial life, expert system, electronic circuit
design, cellular automata, and biological applications.
While the paper covers many works on the theory and
application of genetic algorithms, not much details are
reported on genetic programming, parallel genetic
algorithms, in addition to more advanced technigues e.g.
micro-genetic algorithms and multiobjective
optimisation.

1. Introduction

Genetic Algorithms have been intensively studied during
the past three decades. Amounts of applications have
benefited from the utilisation of genctic algorithms.
Theoretical approaches on genetic algorithms have also
helped researchers to understand the mechanisms of
genetic algorithms. This paper is produced in an attempt
to provide a brief description of current developments in
genetic algorithms. The discussion can be divided
roughly into two main parts: theoretical aspects of
genetic algorithms and genetic algorithm applications.

2. Theoretical Aspects of Genetic Algorithms
2.1 Genetic Algorithm Techniques.

Two genetic algorithm techniques are discussed in this
paper. They are coevolution and breeder genetic
algorithm,

In co-operative coevolution genetic algorithm
(CCGA), the population contains a number of species or
sub-populations. Each species represents a variable or a
part of the problem which is needed to be optimised. The
combination of all species will leads to a complete
solution which can be used as an index to fitness value.

Potter and De Jong (1994) have demonstrated the use of
this technique in multivariable function optimisation
problems. Every function used in this case is a
nmultimodal function. Each species is representing a
single variable in the optimisation problem. The fitness
of a species member is obtained by combining it with the
current best individuals of the remaining species. CCGA.
outperform standard genetic algorithm in every case of
function optimisation except in the case of function with
high interdependencies between the function variables.
Potter and De Jong (1994) have slightly modified CCGA
to accommodate this problem. Rather than only combine
an individual with the current best individuals from
other species, each individual is also randomly combined
with other individuals from the remaining species during
fitness evaluation. The one between these two cases that
gives a higher fitness value will be used as the
offspring’s fitness. CCGA has been used in a number of
applications. For example, Potter et al. (1995) and De
Jong and Potter (1995) have used CCGA to evolve
sequential decision rules in a genetic algorithm based
system called SAMUEL (Strategy Acquisition Method
Using Empirical Learning). Different SAMUEL modules
are used to represent different set of decision rules. Each
SAMUEL module will be represented as a species in the
population. These sets of rules are used to evolve
behaviour of a robot. Another application which utilises
CCGA is the design of a cascade neural network (Potter
and De Jong, 1995). Since this type of network is self-
growing in nature, CCGA has to introduce a new species
to the population each time the network grows. A new
set of connection weights which is introduced to the
network is coded as a new species.

Breeder Genetic Algorithm (BGA) is first introduced
by Mihlenbein and Schlierkamp-Voosen (1993). The
major difference between simple genetic algorithm and
BGA is the method of selection. Generally, truncation
selection is used in BGA. In truncation selection, T %
best individuals of the population are selected as parents.
Chromosome in BGA can be coded using either binary
or floating-point representation. A number of standard
recombination (crossover) and mutation methods for
BGA are discussed in details in Mihlenbein and
Schlierkamp-Voosen (1993), Mihlenbein and
Schlierkamp-Voosen (1995), Schlierkamp-Voosen and
Miihlenbein (1994) and Schlierkamp-Voosen and
Miihlenbein (1996). A comparative study on different
recombination method used in BGA can be found in

Voigt et al. (1995). Voigt et al. (1996) have shown that
fitness distribution of the population in any generation of
BGA using floating-point chromosome coding and
uniform fuzzy gene pool recombination can be described
by a gamma distribution. A gamma distribution appears
to fit the simulation results better than a normal
distribution in this case. It is shown that this conclusion
is more obvious in the case of optimisation with small
number of variables. BGA has been used to design an
optimal Sigma-Pi neural network (Zhang and
Miihlenbein, 1994). Sigma-Pi network has the structure
similar to a multilayer perceptron in the sense that some
of its units use weighted sum relations (Sigma). The
difference is that a Sigma-Pi network also contains units
which use weighted product reiations (Pi).

2.2 Genetic Operator Techniques.

Two new crossover operators have been included in this
survey: adapting crossover and gene pool recombination
technique.

Spears (1995) has introduced the use of combination
between uniform crossover and two-point crossover in
the same population. Each individual, coded in binary
form, has an extra bit attached to its chromosome. This
extra bit is used to indicate which kind of crossover the
individual will use when it mates. This extra bit will not
change by mutation operation. The tag bit of the
offspring is depended upon the tag bit of its parents. If
the parents have the same tag bits, the tag bit of the
offspring will be the same as its parents. On the other
hand, if the parents have different tag bits, the type of
crossover and the tag bit of the offspring will be defined
by using unbiased coin tossing method.

Miiblenbein and Voigt (1995) have introduced a new
crossover operator called gene pool recombination. This
method can be used with either binary or floating-point
chromosome coding. In gene pool recombination
technique, each time before a mating is taking place, a
pair of parents is selected from a conunon gene pool.
Gene on each locus is randomly selected with
replacement from the gene pool with a probability
obtained from the previous generation. Once the parents’
chromosomes are obtained, the offspring can be created
using standard genetic operators. Proportion of a gene in
the offspring’ chromosomes will result in the probability
of that gene in the gene pool for the next generation. For
binary chromosome coding, the process of selecting gene
is a Bernoulli distribution. Miihlenbein and Voigt (1995)
have shown that genetic algorithm with the use of gene
pool recombination can converge faster than standard
genetic algorithm.

2.3 Niching Techniques.

Two niching techniques - simple sub-population scheme
and deterministic crowding are included in this review.

In simple sub-population scheme, the population is
divided into sub-populations, each individual in each
sub-population can only perform mating with other
individuals from the same sub-population (Spears,
1994). Each individual will be tagged or labelled to
indicate which sub-population it belongs. In this case,
evolution strategy used is sharing. The optimal solutions
are treated as resources. Overcrowding on one particular
optimal solution implies that the resource is overused. In
this case the perceived fitness of that solution will
decrease. On the other hand if a few individuals are
concentrated on one solution, that resource is underused.
The perceived fitness of that solution will increase. This
is a modification to the internal structure of genetic

valgorithm. It is a change in the perception of genetic

algorithm to the objective function, not the objective
function itself.

Crowding method is a method for maintaining sub-
populations in genetic algorithm at different niches in
multimodal fitness landscape. In crowding method, a
small set of parents is selected from the population. Each
child will replace an individual from this set which is
most similar to itself. In this method, stochastic .
replacement errors prevent the algorithm from locating
all niches. Mahfoud (1994a) has introduced a new
variant of crowding method called deterministic
crowding. In deterministic crowding, the children
compele against their parents for inclusion in the new
generation. Unlike general crowding method, all parents
have to participate in the competition. In deterministic
crowding, similarity between children and parents can be
measured using either genotypic or phenotypic distance.
Detail comparison between deterministic crowding and
sharing, parallel hill-climbing and sequential niching
can be found in Mahfoud (1995).

2.4 Genetic Drift.

Genetic drift is an important phenomenon in genetic
algorithm search. Once the algorithm is converged, the
size of original gene pool is reduced to the size of found
solution(s) gene pool. This leads to genetic drift.

Mahfoud (1994b) has performed theoretical
calculation and simulation in order to test his theory
about genetic drift in sharing method. Sharing method is
generally used for maintaining stable sub-populations
when multiple niches are the aimed solutions. However,
some sub-populations may disappear before all solutions
are found. An expected time of sub-population loss is a
desirable measurement. This will indicate the generation
number which some fine tunings are needed to be done
on the population in order to prevent premature genetic
drift. Mahfoud (1994b) have shown that the expected
time of sub-population loss can be expressed in the
following equation:

1 nfc
P-L"—el (1)
c

where W, is the average expected time of subpopulation

loss,
c is the number of sub-populations or classes
and nis the size population.
The simulation results by Mahfoud (1994b) follow this
equation with 95% confidence level.

Asoh and Miihlenbein (1994b) have shown that for a
genetic algorithm with no selection and mutation, using
uniform crossover and each gene has only two alleles
(e.g. A and a), the time at which the allele that has less
distribution in the population disappears or the mean
convergence time T can be approximated by

T = 14N(0Slog, n+10)"* for p, =1/2
T = LON(0.7log, n+10)" for p, =3/4

T = 07N (08log, n+10)** for p, =7/8 (2)
where N is the size of population,
n is the number of loci on chromosome
and p, is the probability of existence of allele A in the
initial population.

2.5 Method of Benchmarking Genetic Algorithm
Performances.

Horn et al. (1994) have introduced a new way of
determining performance of an optimisation algorithm.
By considering the number of iterations required by an
algorithm to cover a path length - distance in which an
initial solution has to travel from the starting point to the
goal, performances from different algorithms can be
compared. For a problem of I-bit long and step size of
one bit, path length can be formed with the length of

|B[=3%2l¢-DR] _4 3)
where |Py| is the path length
and [is the bit length of the problem.
Path length increases in proportion to (v2)' and thus
grows exponentially in /. Horn et al. (1994) have
compared performances of genetic algorithm with no
mutation, steepest ascent hill-climbing and next ascent
hill-climbing by utilising this method. Genetic algorithm

is found to be the algorithm which covers the path length
with the minimum number of iterations.

2.6 Measurement of Difficulty Level of a Test-bed
Function.

Kargupta (1995) has utilised the idea of signal-to-noise
in genetic algorithm analysis. The higher the noise level,
the harder for genetic algorithm to solve the problem. In
this case, noise in genetic algorithm can be defined as a
combination between the variance within partition and
the covariance between different partitions. The term
“partition” in this case is referring to a group of
schemata which has the same fix-bit patterns. For
example, partition f** in 3-bit string will contain
schemata 1** and 0**. This partitioning leads to two

types of dependency between partitions: intra-partition
dependency and inter-partition dependency. When a
partition contains more than one fix position, schemata
which belong to that partition will also belong to lower
order partitions. For example, partition ff* contains
schemata 00*, 01*, 10* and 11*. In the same time, these
schemata will also be part of partition £** and *f*. This
kind of dependency is called intra-partition dependency.
On the other hand, certain strings will belong to more
than one partition. For example, string 11 will belong to
partition f* and *f. This leads to inter-partition
dependency. The covariance between different partitions
will depend on the levels of inter- partmon and intra-
partition dependency.

Jones and Forrest (1995) have introduced a techmque
which is based on a measurement of correlation between
the fitness of an individual and its distance to the global
optimum. Hence this technique is called fitness distance
correlation (FDC) method. The distance between the
position of an individual and the global optimum in the
search space can be measured in terms of Hamming
distance. For a given set of n individuals with their
fitness value f; and their Hamming distance d;, the
correlation coefficient r is given by

c
"S5, @
F°D

where Cpp = %2 (f: - £)(d; -d) is the covariance of

fitness and distance
and Sg,Sp,f.d are the standard deviations and

means of the fitness set and distance set, respectively.
The use of FDC in conjunction with a scatter plot
between fitness and distance can be used to measure the
level of GA difficulty of the test-bed function. For a
maximisation problem, the fitness value is expected to be
increasing as the distance to optimum solution is
reduced. This leads to the coefficient r of -1.0 for an
ideal fitness function. On the other hand, for a
minimisation, genetic algorithm should work well if the
fitness value is decreasing as the distance to optimum
solution is reduced. The coefficient of 1.0 is expected
for an ideal fitness function. By measuring a deviation
trom the ideal value of coefficient r, the level of difficulty
can be determined.

2.7 Population Genetics.

In population genetics, the relationship between response
to selection and selection deferential is given by
R(1) =b,5(z) ©)
where R(r) = M(t+1)-M(1),
S(1) =M (e+1)-M(1),
M(r) is the mean fitness value of population in
generation ¢,

M, (1) is the mean fitness value of selected

parents in generation £,
and b, is the realised heritability.

It is important in population genetics to be able to
estimate the value of realised heritability. Asoh and
Miihlenbein (1994a) bave shown a method of estimating
the value of b, . It is shown that the value of b, can be

computed from genetic variance of the population.
Variance of the fitness function f can be decomposed into
Var, =V +Vo+..4V,_ +V, (6)

where n is the number of loci on chromosome. Details of
each term can be found in Asoh and Miihlenbein
(1994a). With the use of random mating and uniform
crossover, the covariance can be estimated by

&l
@$=Z§ﬂ @)

This estimated value of covariance is approximately
equal to the value of realised heritability.

2.8 Developmental Mechanism in Genetic Algorithms.

Hart et al. (1994) have stressed the importance of
developmental mechanisms in genetic algorithms. The
term "development” is used in the context of process by
which genotypes are transformed into phenotypes.
Developmental mechanisms in genetic algorithms
contain two major parts: maturation and learning.
Maturation is the process by which a genotype is mapped
into a phenotype and learning refers to local search such
as hill-climbing. A number of advantages are gained
from the use of maturation and local search. Hart et al.
(1994) have explained these advantages in three different
issues: fitness -transformations, time complexity and
evolutionary bias.

3. Genetic Algorithm Applications
3.1 Pattern Recognition Applications.

In any pattern recognition application, a minimum
feature set which yields a maximum classification
accuracy is desirable. Imam and Vafaie (1994) and
Vafaie and Imam (1994) have performed a comparative
study between the use of genetic algorithm and important
score method for reducing the number of feature used in
pattern recognition application via the use of AQ1S
learning system. Genetic algorithm is used to search the
space of all possible subsets of the complete set which
includes all features. The feature set is coded as a binary
string which each bit represents presence or absence of a
particular feature. The classification accuracy will be
used as fitness. Genetic algorithm gives a better
classification accuracy than important score method
with the expenses of a higher number of iterations
required and a higher number of features required in the
reduced feature set. The same technique in using genetic

algorithm to find an optimal feature set is also applied to
a hybrid GA-ID3 system by Bala et al. (1995). Genetic
algorithm can also be used to select a new feature set
which combines original features and new features
constructed by applying arithmetic operations (such as +,
-, *, /) to the original features (Vafaie and De Jong,
1995).

3.2 Robotics and Artificial Life Applications.

Menczer and Belew (1994) have used steady-state
genetic algorithm to evolve sensory characteristics of
artificial organism in an environment with controlled
complexity. The environment model used is called a
latent energy environment (LEE). Feed-forward neural
networks are used to simulate organisms. Two types of
sensors are interested in this study: contact and ambient.
Contact sensors are presented in the organism which is
required to learn avoidance tasks. Reinforcement
learning is used to train motor actions which are the
outputs from neural network. Ambient sensors are
presented in organism which approaching task is
required. Back-propagation learning is used to train
sensory prediction outputs of the network. Any changes
in motor characteristic of this type of organism can only
be achieved via evolution. Steady-state genetic algorithm
is used in this study as follows. Each individual,
represented by neural network, must acquire energy from
atoms in the environment beyond a fixed threshold
before it can asexually reproduce. If the enmergy level
within an individual is lower than a threshold, that
individual will die. Chromosome of each individual
contains two parts, one in floating-point format, the
other in binary format. The connection weights in neural
network are coded into the floating-point section of
chromosome. Mutation is done by randomly added
uniformly distributed noise to the chromosome. The
types of atoms the sensors sensed are coded into the
binary part. Bit-flip mutation is used in this section.

Grefenstette and Schultz (1994) have used genetic
algorithm to evolve rule sets in SAMUEL system. The
evolving rule sets contain the rules for collision
avoidance and energy resources finding. The SAMUEL
system consists of two modules: execution system
module and off-line system module. Execution system
module contains the actual robot and environment. Off-
line system module consists of robot simulation module
and genetic algorithm module for rule sets evaluation.
The initial population is a heterogeneous population
which contains a variety of rule sets and their variants
which are automatically generated. After the off-line
learning is accomplished, the rule sets are tested on the
actual system. Ramsey and Grefenstette (1994) have
modified this learning system to include real-time
modification to the robot model. This learning strategy is
called cased-based anytime learning.

Jakobi (1995) has introduced a new encoding scheme
in genetic algorithm. During evolution process, a multi-

cellular organism is created and is finally transformed
into a recurrent network. This neural network can be
used as a robot controller. The neural network robot
controller can be used to control a robot to perform
corridor following task and object avoidance task.
Within each cell there is a genomic regulatory network
(GRN). GRN is composed of a number of units, each
unit contains a single string genome. One genome is
responsible for the production of one protein. Protein
which is produced by one unit regulates other genes in
the different units. Proteins within each cell are divided
into different classes which effect the gross behaviour of
the cell. Signal proteins diffuse out of one cell and into
another, resulting in an interaction between cells.
Initially a single cell is placed in a controlled
environment which contains a number of predefined
extra-cellular signal protein sources. This leads to
cellular developments including cell division and cell
movement. Interaction between cells will eventually lead
to cell differentiation. Once a cell is differentiate, a
number of densities are grown out of each cell. When a
dendrite from one cell contacts another cell, a synaptic
connection is established. After every cell has been fully
developed, thresholds and weights are assigned to each
cell and dendrite, respectively. This leads to the
formation of a recurrent neural network.

3.3 Expert System Applications.

Roache et al. (1995) have explained how to use a genetic
algorithm to validate an expert system. The objective of
testing an expert system is to find input combinations
which will cause the expert system to give inappropriate
responses. Changes can then be made to the expert
system. It is exhaustive to test an expert system with all
possible input combinations. Genetic algorithm can be
used to generate test inputs to the expert system. This
results in an optimal number of test cases which yield a
good coverage of all possible input combinations to the
expert system. In this case, an expert system is used to
control electricity output of a power station. Plant
parameters are used to code chromosomes. The fitness
function used is based on the plant heat rate. Plant heat
rate is the number of British Thermal Units (BTUs)
required to produce one Kilowatt-hour of electricity. A
combination of plant inputs and environment inputs
which makes the expert system to respond
inappropriately and increases the plant heat rate will
result in high fitness.

3.4 Electronic and Electrical Applications.

Koza et al. (1996d) have introduced a method
incorporating genetic programming in electronic circuit
design. Both topology and components' value in a circuit
will be automatically determined by a pool of evolving
programs. These evolving programs will undergo a
genetic programming evolution which includes

reproduction, crossover and mutation. In order to apply
genetic programming to a circuit design, electrical
circuits must be mapped to program trees. Each program
tree contains two main types of function: connection-
modifying functions which modify the topology of the
circuit and component-creating functions which insert
electronic components into locations within the topology
of the circuit. The examples of circuit designed by using
genetic programming are crossover (woofer and tweeter)
filter (Koza et al., 1996d), low pass filter (Koza et al.,
1996b), double band-pass filter (Koza et al., 1996c),
amplifier circuit (Koza et al., 1996a) and food-forging
controller for simulating behaviour of a lizard (Koza et
al., 1996e).

" 3.5 Cellular Automata Applications.

Cellular automata are an abstract way of analysing the
simultaneous execution of local rules. A cellular space is
a uniform array of cells arranged in some forms of
topology and dimension. For a cellular automaton (CA),
cach cell in the cellular space contains an identical
automaton. The next state of each automaton is defined
by a function of its current state and the current state of
other automala in a predefined neighbourhood. Andre et
al. (1996a,b) have used genetic programming with ~
automatically delined functions to produce state-
transition rule of linear cellular automaton for solving
majority classification problem. The cellular space
consists of 149 automaton in linear arrangement. Each
automaton has either state O or state 1 at any given time.
The next state of each automaton depends on its own
current state and the states of its six neighbour automata,
three to the left and three to the right. In this case, the
program tree contains result-producing branch and
automatically defined functions. The resulting state-
transition rule can solve the majority classification
problem with a higher accuracy than the Gacs-
Kurdyumov-Levin (GKL) rule and other known human-
written rules.

Das et al. (1994) bave also studied the behaviour of
cellular automata via the use of linear cellular
automaton. Unlike the work by Andre et al. (1996a,b),
Das et al. (1994) use genetic algorithm to evolve the

state-transition rules. Chromosome of each individual

represents the output bits from all rules in a rule set in
lexicographic order of neighbourhood configuration.
Since in this case, each rule output depends on the states
of seven cells, each individual will have chromosome of
length 128 (27). Das et al. (1994) have applied this
technique on majority classification task. Although their
results are very promising, the resulting rule has a lower
classification accuracy than that of GKL rule. Das et al.
(1995) have utilised the same technique on
synchronisation task. Further analysis of majority
classification task and synchronisation task using
cellular automata and genetic algorithm can be found in
Hordijk et al. (1996).

3.6 Applications in Biology and Medicine.

Hightower et al. (1995) have used genetic algorithm to
model an evolution in an immune system. Chromosome
of each individual represents libraries of genetic material
in the immune system. These genetic materials are used
to construct antibodies which are responsible for
recognising antigens. Unlike other applications using
genetic algorithm, phenotype of an individual which is
represented by antibodies produced is not a complete
mapping from every gene in the chromosome.
Chromosome is divided into four libraries of genetic
material. Each library contains eight elements. An
antibody is produced by combing one element from every
library. This study has demonstrated that genetic
algorithm is capable of improving fitness of the
population even only partial information about each
individual is given to the algorithm during each
generation. Hightower et al. (1996) have extended this
study to include Baldwin effect in evolving immune
system.

Parsons et al. (1995) have introduced a method
involving the use of genetic algorithm in gene
sequencing. The simulation is based on an actual
sequencing method called short-gun sequencing method.
Firstly, DNA is replicated many times and then
individual strands of the double helix are broken
randomly into fragments. These fragments (from both
strands) are then wused in pair-wise relationship
computation process. Each pair of fragments is compared
and their similarities are determined, resulting in an
overlap strength. All possible orientations and
alignments are tried to maximise the overlap strength.
The overlap strength will be the key to fitness value used
in genetic algorithm. All fragments are then totally
ordered. Different possible permutations of fragment
order will be represented by individuals in genelic
algorithms. Once the ordering process starts, a number
of fragments will form a continuous layout called contig.
Initially, there will be many short length contigs
presented in the process. Toward the end of the process,
contigs should increase in their length and reduce their
number. Finally, the end sequence or the consensus
sequence should contain only one contig.

4. Conclusions

This paper summarises a number of current
developments in genetic algorithms. It includes both
theoretical aspects of genetic algorithms and some
potential applications which incorporate the use of
genetic algorithms.

References

Andre, D., Bennett III, F. H. and Koza, J. R. (1996a).
Discovery by genetic programming of a cellular

automala rule that is better than any known rule for
the majority classification problem. In J. R. Koza, D.
E. Goldberg, D. B. Fogel and R. L. Riolo (Eds.),
Genetic Programming 1996: Proceedings of the First
Annual Conference (pp. 3-11). Cambridge, MA: MIT
Press.

Andre, D., Bennett I1I, F. H. and Koza, J. R. (1996b).
Evolution of intricate long-distance communication
signals in cellular automata using genetic
programming. Artificial Life V: Proceedings of the
Fifth International Workshop on the Synthesis and
Simulation of Living Systems, Cambridge, MA: MIT
Press.

Asoh, H. and Miihlenbein, H. (1994a). Estimating the
heritability by decomposing the genetic variance. In
Y. Davidor, H. P. Schwefel and R. Ménner (Eds.),
Lecture Notes in Computer Science 866 - Parallel
Problem Solving from Natre - PPSNIII,
International ~ Conference on Evolutionary
Computation, The Third Conference on Parallel
Problem Solving from Nature (pp. 98-107). Berlin,
Germany: Springer-Verlag.

Asoh, H. and Miihlenbein, H. (1994b). On the mean
convergence time of evolutionary algorithms without
selection and mutation. In Y. Davidor, H. P.
Schwefel and R. Minner (Eds.), Lecture Notes in
Computer Science 866 - Parallel Problem Solving
from Nawre - PPSNIII, International Conference on
Evolutionary Computation, The Third Conference on
Parallel Problem Solving from Nature (pp. 88-97).
Berlin, Germany: Springer-Verlag.

Bala, J., Huang, J., Vafaie, H., De Jong, K. A. and
Wechsler, H. (1995). Hybrid learning using genetic
algorithms and decision trees for pattern
classilication. Proceedings of the 14™ International
Joint Conference on Artificial Intelligence, Montreal,
Quebec, Canada.

Das, R., Mitchell, M. and Crutchfield, J. P. (1994). A
genetic algorithm discovers particle-based
computation in cellular automata. In Y. Davidor, H.
P. Schwefel and R. Minner (Eds.), Lecture Notes in
Computer Science 866 - Parallel Problem Solving
from Nawre - PPSNIII, International Conference on
Evolutionary Computation, The Third Conference on
Parallel Problem Solving from Nature (pp. 344-353).
Berlin, Germany: Springer-Verlag.

Das, R., Crutchfield, J. P., Mitchell, M. and Hanson, J.
E. (1995). Evolving globally synchronized cellular
automata. In L. J. Eshelman (Ed.), Proceedings of
the Sixth International Conference on Genetic
Algoritlms. San Francisco, CA: Morgan Kaufmann.

De Jong, K. A. and Potter M. A. (1995). Evolving
complex structures via cooperative coevolution.
Proceedings of the Fourth Annual Conference on
Evolutionary Programming, San Diego, CA.

Grefenstette, J. J. and Schultz, A. (1994). An
evolutionary approach to leamning in robots. Machine

Learning Workshop on Robot Learning, New
Brunswick, NIJ.

Hart, W. E. (1994). The role of development in genetic
algorithms. In D. Whitley and M. Vose (Eds.),
Foundations of Genetic Algorithms 3. Morgan
Kaufmann.

Hightower, R. R., Forrest, S. and Parelson, A. 5. (1995).
The evolution of emergent organization in immune
system gene libraries. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 344-350). San Francisco,
CA: Morgan Kaufmann.

Hightower, R. R., Forrest, S. and Parelson, A. S. (1996).
The Baldwin effect in the immune system: learning
by somatic hypermutation. In R. K. Belew and M.
Mitchell (Eds.), Adaptive Individuals in Evolving
Populations (pp. 159-167). Reading, MA: Addison-
Wesley.

Hordijk, W., Crutchfield, J. P. and Mitchell, M. (1996).
Embedded-particle computation in evolved cellular
automata. Physics and Computation’96.

Horn, J. Goldberg, D. E. and Deb, K. (1994). Long path
problems. In Y. Davidor, H. P. Schwefel and R.
Minner (Eds.), Lecture Notes in Computer Science
866 - Parallel Problem Solving from Natre -
PPSNIII, International Conference on Evolutionary
Computation, The Third Conference on Parallel
Problem Solving from Nature (pp. 149-158). Berlin,
Germany: Springer-Verlag.

Imam, I. F. and Vafaie, H. (1994). An empirical
comparison between global and greedy-like search for
feature selection. Proceedings of the Florida Al
Research Symposium, FLAIRS-94, FL, 66-70.

Jakobi, N. (1995). Harnessing morphogenesis.
International Conference on Information Processing
in Cells and Tissues, Liverpool, UK.

Jones T. and Forrest, S. (1995). Fitness distance
correlation as a measure of problem difficulty for
genetic algorithms. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 184-192). San Francisco,
CA: Morgan Kaufmann. ’

Kargupta, H. (1995). Signal-to-noise, crosstalk and long
range problem difficulty in genetic algorithms. In L.
J. Eshelman (Ed.), Proceedings of the Sixth
International Conference on Genetic Algorithms (pp.
193-200). San Francisco, CA: Morgan Kaufmann.

Koza, J. R., Andre, D., Bennett 1], F. H. and Keane, M.
A. (1996a). Evolution of a low-distortion, low-bias 60
decibel op amp with good frequency generalization
using genetic programming. In J. R. Koza (Ed.), Late
Breaking Papers at the Genetic Programming 1996
Conference (pp. 94-100). Stanford, CA: Stanford
'University Bookstore.

Koza, J. R., Andre, D., Bennett III, F. H. and Keane, M.
A. (1996b). Use of automatically defined functions
and architecture-altering operations in automated
circuit synthesis with genetic programming. In J. R.

* wz |

Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo
(Eds.), Genetic Programming 1996: Proceedings of
the First Annual Conference (pp. 132-140).
Cambridge, MA: MIT Press.

Koza, J. R., Bennett III, F. H., Andre, D. and Keane, M.
A. (1996c). Automated WYWIWYG design for both
topology and component values of electrical circuits
using genetic programming. In J. R. Koz, D. E.
Goldberg, D. B. Fogel and R. L. Riolo (Eds.),
Genetic Programming 1996: Proceedings of the First
Annual Conference (pp. 123-131). Cambridge, MA:
MIT Press.

Koza, J. R., Bennett III, F. H., Andre, D. and Keane, M.
A. (1996d). Four problems for which a computer
program evolved by genetic programming is
competitive with human performance. Proceedings of
1996 I[EEE International Conference on
Evolutionary Computation, Nagoya, Japan, 1-10.

Koza, J. R., Bennett III, F. H., Andre, D. and Keane, M.
A. (1996e). Toward evolution of electronic animals
using genetic programming. Artificial Life V:
Proceedings of the Fifth International Workshop on
the Synthesis and Simulation of Living Systems,
Cambridge, MA: MIT Press. '

Mahfoud, S. W. (1994a). Crossover interactions among
niches. Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEE World Congress on
Computational Intelligence, Orlando, FL, 188-193.

Mahfoud, S. W. (1994b). Genetic drift in sharing
method. Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress
on Computational [ntelligence, Orlando, FL, 67-72.

Mahfoud, S. W. (1995). A comparison of parallel and
sequential niching methods. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 136-143). San Francisco,
CA: Morgan Kaufmann. ’

Menczer, F. and Belew, R. K. (1994). Evolving sensors
in environments of controlled complexity. In R. A.
Brooks and P. Maes (Eds.), Artificial Life IV:
Proceedings of the Fourth International Workshop
on Synthesis and Simulation of Living Systems (pp.
210-221). Cambridge, MA: MIT Press.

Miihlenbein, H. and Schlierkamp-Voosen, D. (1993).
Predictive models for the breeder genetic algorithm:
[. continuous parameter optimization. Evolutionary
Computation, 1(1), 25-49.

Mihlenbein, H. and Schlierkamp-Voosen, D. (1995).
Analysis of selection, mutation and recombination in
genetic algorithms. In W. Banzhaf and F. H
Eeckman (Eds.), Lecture Notes in Computer Science
899 - Evolution and Biocomputation, Computational
Models of Evolution (pp. 142-168). Berlin, Germany:
Springer-Verlag,

Miiblenbein, H. and Voigt, H.-M. (1995). Gene pool
recombination in genetic algorithms. In I. H. Osman
and J. P. Kelly (Eds.), Proceedings of Metaheuristic

International ~ Conference. Norwell: Kluwer
Academic Publishers.

Parsons, R. J., Forrest, S. and Burks, C. (1995). Genetic
operators for the DNA fragment-assembly problem.
Machine Learning, 21(1/2), 11-33.

_ Potter, M. A. and De Jong, K. A. (1994). A cooperative
coevolutionary approach to function optimization. In
Y. Davidor, H. P. Schwefel and R. Minner (Eds.),
Lecture Notes in Computer Science 866 - Parallel
Problem Solving from Nawmre - PPSNIII,
International Conference on Evolutionary
Computation, The Third Conference on Parallel
Problem Solving from Nature (pp. 249-257). Berlin,
Germany: Springer-Verlag.

Potter, M. A. and De Jong, K. A. (1995) Evolving neural
networks with collaborative species. Proceedings of
the 1995 Summer Computer Simulation Conference,
Ottawa, Ontario, Canada, 340-345,

Potter, M. A., De Jong, K. A. and Grefenstette, J. J.
(1995). A coevolutionary approach to learning
sequential decision rules. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 366-372). San Francisco,
CA: Morgan Kaufmann.

Ramsey, C. L. and Grefenstette, J. J. (1994). Cascd-
based anytime learning. In D. W. Aha (Ed.), Cased-
Based Reasoning: Papers from the 1994 Workshop.
Menlo Park, CA: AAAI Press.

Roache, E. A., Hickok, K. A., Loje, K. F., Hunt, M. W.
and Grefenstette, J. J. (1995). Genetic algorithms for
expert system validation. Proceedings of 1995
Western MultiConference, Las Vegas, NV.

Schlierkamp-Voosen, D. and Miihlenbein, H. (1994).
Strategy adaptation by competing subpopulations. In
Y. Davidor, H. P. Schwefel and R. Minner (Eds.),
Lecture Notes in Computer Science 866 - Parallel
Problem Solving from Nawre - PPSNIII,
International Conference on Evolutionary
Computation, The Third Conference on Parallel
Problem Solving from Nawre (pp. 199-208). Berlin,
Germany: Springer-Verlag.

Schlierkamp-Voosen, D. and Miihlenbein, H. (1996).
Adaptation of population sizes by competing
Subpopulations. Proceedings of 1996 IEEE
International ~ Conference on Evolutionary
Computation, Nagoya, Japan, 330-335.

Spears, W. M. (1994). Simple subpopulation schemes.
Proceedings of the Third Annual Conference on
Evolutionary Programming, San Diego, CA, 296-
307.

Spears, W. M. (1995). Adapling crossover in
evolutionary algorithms. Proceedings of the Fourth
Annual Conference on Evolutionary Programming,
San Diego, CA.

Vafaie, H. and De Jong, K. A. (1995). Genetic
algorithms as a tool for restructuring feature space
representations. Proceedings of the Seventh

International Conference on Tools with AI, Herndon,
VA, 8-11,

Vafaie, H. and Imam, I. F. (1994). Feature selection
methods: genetic algorithms vs. greedy-like search.
Proceedings of the International Conference on
Fuzzy and Intelligent Control Systems, Louisville,
KY.

Voigt, H.-M., Mihlenbein, H. and Cvetkovic’, D,
(1995). Fuzzy recombination for the breeder genetic
algorithm. In L. J. Eshelman (Ed.), Proceedings of
the Siah International Conference on Genetic
Algorithms (pp. 104-111). San Francisco, CA:
Morgan Kaufmann.

Voigt, H.-M., Miihlenbein, H. and Schlierkamp-Voosen,
D. (1996). The response to selection equation for
skew fitness distribution. Proceedings of 1996 IEEE
International ~ Conference on Evolutionary
Computation, Nagoya, Japan, 820-825.

Zhang, B.-T. and Mihlenbein, H. (1994). Synthesis of
Sigma-Pi neural networks by the breeder genetic
programming. Proceedings of the First IEEE
International ~ Conference =~ on Evolutionary
Computation, IEEE ~ World Congress on
Computational Intelligence, Orlando, FL, 318-323.

