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Spacecraft Attitude Maneuvers, 

S. Zhang1 • G.J. Tang2 • M.I Friswell3 • D.J Wagg4 

Communicated by Mauro Pontani     

 

Abstract The zero propellant maneuver is an advanced space station, large angle attitude maneuver technique, 

using only control momentum gyroscopes. Path planning is the key to success and this paper studies the associated 

multi-objective optimization problem. Three types of maneuver optimal control problem are formulated: (i) 

momentum-optimal, (ii) time-optimal and, (iii) energy-optimal. A sensitivity analysis approach is used to study the 

Pareto optimal front and allows the tradeoffs between the performance indices to be investigated. For example, it is 

proved that the minimum peak momentum decreases as the maneuver time increases, and the minimum maneuver 

energy decreases if a larger momentum is available from the control momentum gyroscopes. The analysis is verified 

and complemented by the numerical computations. Among the three types of zero propellant maneuver paths, the 

momentum-optimal solution and the time-optimal solution generally possess the same structure, and they are 

singular. The energy-optimal solution saves significant energy, while generally maintaining a smooth control profile.  
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2 

1  Introduction 

NASA has successfully conducted two Zero Propellant Maneuver (ZPM) missions on 5 November 2006 and 

3 March 2007, when the International Space Station (ISS) was rotated by 90° [1] and 180° [2], respectively. The 

ZPM technique is a new concept to maneuver a space station using only Control Momentum Gyroscopes (CMGs). In 

particular, the environmental torque is exploited to enable large angle maneuvers to be achieved, whilst 

simultaneously maintaining the CMGs within their operational limit [3]. A ZPM is a complex attitude maneuver 

guidance problem, in which maneuver path planning is the key to success. The executed trajectories of the two ZPM 

missions were momentum-optimal. The momentum objective, defined in the Optimal Control Problem (OCP), gives 

the maneuver path with the largest CMGs angular momentum redundancy, which brings increased robustness to the 

angular momentum deviations arising from various disturbances [4]. This robustness is especially important for paths 

that are planned off-line. However, the momentum-optimal path has a large rate of momentum change of the CMGs 

around the initial and final times that require fast gimbal motion, which may harm the CMGs. Thus, maneuver path 

types, other than momentum-optimal, should be studied, and different path types synthesized. The other types of 

maneuver paths require different objectives in the ZPM OCP formulation; typical examples include the energy-

optimal and the time-optimal paths. The optimal energy performance index yields the maneuver path, which 

minimizes the energy consumed. Since the electrical power that dives the CMGs is limited on-board, methods to 

save energy have practical value. The optimal time performance index seeks the path that gives the minimum time to 

fulfill the maneuver and this improved agility is required under certain situations. 

The momentum-optimal solution is specific to the ZPM OCP. Although energy- or time-optimal attitude 

maneuver problems have been studied for decades, the ZPM OCP version differs in a number of respects that are 

now outlined. First, in a ZPM the motion of the CMGs needs to be considered and, generally, the angular momentum 

of the CMGs has a final state requirement. Second, generally the ZPM is a rest-to-rest reorientation with respect to 

the orbit reference frame instead of the inertial frame, and thus the rotation of the orbit frame needs to be considered. 

Third, the path constraint of the ZPM is not a simple bounded control torque constraint, but is more complex since 

the angular momentum and the rate of momentum change of the CMGs must be restricted within their allowable 

range. Fourth, the environmental torque must be exploited to realize a ZPM, while it is neglected in the classic 

optimal attitude maneuver studies. The total angular momentum of the spacecraft system, including the space station 

body and the CMGs, may change greatly during a ZPM. As an angular momentum change device, the CMGs cannot 

produce the angular momentum. Thus, the environmental torque is required to realize the momentum change for the 
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ZPM. These differences show the inapplicability of classic OCP results and highlight the necessity to study the ZPM 

problem. 

The three performance indices may be considered as a Multi-objective Optimization Problem (MOP). In 

general, a solution, which optimizes all of the performance indices simultaneously, does not exist, and a compromise 

solution has to be sought. The concept of the Pareto optimum is a widely accepted tradeoff between the objectives 

[5]. Generally, the Pareto optimal set of the MOP must be determined numerically. There are two types of numerical 

methods; either the MOP is transformed to a set of Single-objective Optimization Problems (SOP) to be solved, or an 

evolutionary algorithm is utilized to solve the MOP directly [5]. Often large amount of computation is required to 

obtain the optimal front for a complex MOP, particularly to ensure that the numerical results uncover the tradeoff 

relationship with adequate accuracy. In an optimization problem, if the optimized performance index is a function of 

a parameter, which may be another performance index, then the Pareto optimal front may be investigated using the 

derivative, i.e. the sensitivity. For example, for a minimization MOP with two objectives, the first order sensitivity of 

the optimal front curve is negative and strictly monotonic. Thus the sensitivity analysis may be used to gain insight 

into the Pareto optimal front. To verify and complement the resulting conclusions, numerical computations are also 

performed using GPOPS (version 5.2) [6], which employs the Radau Pseudo Spectral (PS) method [7]. 

The paper is organized as follows. The ZPM MOP is formulated in Section 2. Section 3 presents the 

sensitivity analysis theory of the OCP objective with respect to a parameter. In Section 4, the ZPM MOP is studied, 

the optimal solutions for a single objective are investigated, and the conclusions, deduced using the sensitivity 

analysis method, are verified and complemented by the numerical computations. 

2  Formulation of the ZPM MOP 

2.1  State Equations 

To derive the equations of motion, relevant reference frames are defined first. The body reference frame, b, 

has its origin at the center of mass of the space station. It is fixed with the space station and its axes are aligned with 

the geometric characteristic directions, which are not necessarily the principal inertia axes. The Local Vertical Local 

Horizontal (LVLH) orbit reference frame, o , has origin oo  that coincides with the center of mass of the space 

station. The o oo z  axis is aligned with the local vertical, towards the centre of Earth, the o oo x  axis lies on the 

orbit plane in the transverse direction, normal to o oo z , and the o oo y  axis is perpendicular to the orbit plane, 

completing a right-handed triad. The orbit frame makes one rotation about the Earth during each orbit period. In this 
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paper, a circular orbit is assumed for the space station, so that the orbit rotation rate, n, is constant.  

The Modified Rodrigues Parameters (MRPs) are the minimal description of attitude, which avoids 

singularities for a principal rotation up to ‒ 360 deg [8]. They are defined as 

 ] _T1 2 3: : tan
4

su u u? ?ı e , (1) 

where e  is the principal rotation axis and s  is the principal rotation angle. The kinematic equation which 

describes the attitude of the space station with respect to the orbit is 

 * +( ) o? /ı T ı Ȧ Ȧ , (2) 

where ( )T ı  is the kinematic matrix, Ȧ  and ] _T( ) 0 0b

o o n? /Ȧ R ı  are the space station angular velocity and 

the orbit frame angular velocity, described in the body frame, respectively, b

oR  is the rotation matrix from the orbit 

frame, o, to the body frame, b. The specific form of ( )T ı  and b

oR  are given by Schaub et al. [8]. 

The dynamic equation described in the body reference frame is 

 * +1

e ( )/? / / ·Ȧ J Ĳ u Ȧ JȦ , (3) 

where J is the inertia matrix of the space station, u is the control generated by the CMGs, and the “· ” denotes the 

vector cross product. The environmental torques acting on the space station, eĲ , include the earth gravity gradient 

torque, the aerodynamic torque and other types of torques. Since the magnitude of the other environmental torques is 

much smaller than that of the gravity gradient torque and the aerodynamic torque, they are neglected in the path 

planning problem. The models for the gravity gradient torque and the aerodynamic torque are given by Bhatt [4].  

The motion of the CMGs must also be considered in the maneuver, because of their limited capacity and the 

boundary condition constraints. The equation of motion of the CMGs is 

 
cmg cmg? / ·h u Ȧ h , (4) 

where cmgh  is the angular momentum of the CMGs described in the body frame. In order to apply the analysis 

theory developed in next section, here the pseudo-control w  is defined as 

 
cmg:? / ·w u Ȧ h . (5) 

The transformation of the control does not affect the solution of the OCP, but it guarantees the rigorousness of the 

sensitivity analysis. Equations (3) and (4) are transformed to 

 * +1

e cmg( )/? / / · -Ȧ J Ĳ w Ȧ JȦ h , (6) 

 
cmg ?h w . (7) 
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2.2  Boundary Conditions 

Generally, a ZPM transfers the space station from one Torque Equilibrium Attitude (TEA) to another. For a 

TEA, the attitude and corresponding angular velocity are associated, and the CMGs momentum state is prescribed 

for the momentum management [4]. The general form of the initial and final boundary conditions is 

 
0 0 0 0 cmg 0 0( ) , ( ) , ( )t t t? ? ?ı ı Ȧ Ȧ h h , (8) 

 
cmg( ) , ( ) , ( )f f f f f ft t t? ? ?ı ı Ȧ Ȧ h h , (9) 

where 
0t  is the initial time, and f

t  is the final time. In this paper, the initial time 
0t  

is set to be zero, so that f
t  

represents the maneuver time. 
0 0 0, ,ı Ȧ h  

and , ,
f f f

ı Ȧ h  are the prescribed initial and final boundary 

conditions, respectively. 

 

2.3  Path Constraints 

CMGs have limits on their angular momentum and torque. Hence, during a maneuver the CMGs must operate 

within their performance range, which may be written as constraints on the angular momentum and the rate of 

angular momentum change [4] as 

 
2

2

cmg maxh~h , (10) 

and 

 
2

cmg 2

max

d

d
h

t
~

h
, (11) 

where 
maxh  and 

maxh  are the momentum magnitude parameter and the rate of momentum change magnitude 

parameter, respectively. Note that the path constraints involve the Euclidean norm squared to ensure they are 

differentiable at zero. The first constraint is called the momentum constraint, which is a state constraint. The second 

constraint is called the rate of momentum change constraint. Using the control transformation given by (5), it may 

be transformed to a pure control constraint from a mixed state-control constraint. 

 

2.4  Objectives 

Three objectives are considered for the ZPM, namely the momentum objective, the time objective and the 

energy objective. The momentum objective represents the peak angular momentum of the CMGs during the 

maneuver, and takes the form 

1 :J i? ,    where  2

max: hi ? .                            (12) 
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This objective is equivalent to a Mayer objective ( )
f

ti , which may be induced by regarding i  as a state variable 

with state equation, 0i ? . The momentum-optimal control problem seeks the solution with minimum peak 

momentum during the maneuver, i.e.
 i: m nr i? . 

The time objective is the maneuver time. Thus 

 
2 :

f
J t? .   (13) 

The maneuver time in the time-optimal control problem is denoted as n: mi
f

tv ? .  

The energy consumed during the maneuver is an important measure of the control performance. In the paper 

the energy is represented by the integral of the square control torque, which is related to the energy consumed. Thus, 

the performance index is  

 
0 0

T T

cmg cmgd ( ) ( ) d:
f ft t

t t
E t t? - ·? - ·Ð Ðu u w Ȧ h w Ȧ h , (14) 

and the energy objective is 

 3 :J E? . (15) 

The energy performance in the energy-optimal control problem is denoted as i: m ne E? , which has units of N
2
m

2
s 

rather than energy. 

The ZPM MOP is now defined. The objectives are given by (12), (13) and (15), the state equations are 

given by (2), (6) and (7), the boundary conditions are given by (8) and (9), and the path constraints are given by 

(10) and (11). 

3  Sensitivity Analysis 

Consider a parameter in the optimization problem. Then the optimal performance index is a function of that 

parameter, and the analytical form of this function is often impossible to obtain explicitly. An alternative is to study 

the derivative, i.e. the sensitivity, of the function to the parameter about a baseline value. The first order sensitivity 

represents the tangent slope and the second order sensitivity represents the convexity. Generally, the sign of these 

two sensitivities determines the basic shape of the function, thus uncovering the influence of parameter changes on 

the optimal value. If the parameter is the value of one of the performance indices, then the sensitivity gives 

information on the Pareto optimal front. 

Rehbock et al. [9] calculated the first order sensitivity of the optimal performance index with respect to a 

static parameter, but the result is limited to the unconstrained OCP with free final states. In this section, the 
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sensitivity with respect to static parameters is generalized to the constrained OCP. Because the final time 
f

t  is 

often an important parameter as well as a performance index, the sensitivity to f
t  is also presented. For the 

subsequent studies, an initial assumption is that, if a solution to the OCP exits, then it is continuously differentiable 

with respect to the perturbation parameter of interest [10].  

 

Lemma 3.1  The constrained optimal control problem is given by 

 * +i: m nK J? , (16) 

subject to 

0 0

( , , ; ),

( ( ), ; ) , ( ( ), ; ) ,

( , , ; ) , ( , ; ) ,

f f

t a

t t a t t a

t a t a

?
? ?
~ ~

x f x u

ĳ x 0 ȥ x 0
C x u 0 S x 0

 

where 
0

( ( ), ; ) ( , , ; ): d
ft

f f
t

J t t a L t a th? - Ðx x u , x is the n dimensional state variable vector, u is the m dimensional 

control variable vector, a is the static parameter, and the final time f
t  may be fixed or free. In (16), ?x f  is the 

state equation, and ĳ  and ȥ  are the initial and final boundary conditions, respectively. C and S are path 

constraints, and represent the mixed state-control inequality constraint and the state inequality constraint 

respectively. Then, the sensitivity to the static parameter is calculated as 

 
0

0

d
( )d

d

ft

a f a a a
t

K
H t

a
h? © © - - Ðʌ ĳ ʌ ȥ! , (17) 

where :H L? - © - © - ©Ȝ f Ȟ S ȝ C  is the augmented Hamiltonian, 0ʌ  and f
ʌ  are the Lagrange multiplier 

parameters, Ȝ  is the costate vector, v  and ȝ  are the Karush-Kuhn-Tucker (KKT) multiplier variables, and the 

“ © ” denotes the vector dot product. The subscript a denotes the partial derivative with respect to a, for example 

a
a

•
?
•
ĳĳ . 

Lemma 3.1 may be proved by investigating the variation of the objective functional with respect to the 

variation of the parameter along the optimal solution. Thus, (17) is obtained from 

 * +* + * +
*, *

d
min ( , , ; ) ( , , ; )

d
t a t a

a
J

a
J

•
?
• x u

x u x u , (18) 

where 
0

0 ( ( ) )d:
ft

f
t

J L tr h© © - - / ©? © - - ©Ðʌ ĳ ȥ Ȝ f x Ȟ S ȝ C+ +  is the augmented objective obtained through the 

direct adjoining method [11], and *x  and *u  denote the optimal solutions corresponding to a specified parameter 

a. Note that the sensitivity given by Rehbock et al. [9] is a special case of (17). 
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Lemma 3.2  For the constrained optimal control problem given by (16) with fixed final time 
f

t ,  

 d
( )

d f ff t t f

f

K
H t

t
h? © - -ʌ ȥ , (19) 

where :H L? - ©Ȝ f  is the Hamiltonian. 

Lemma 3.2 is proved in the same way as Lemma 3.1. Equation (19) is consistent with the first order 

optimality condition when the final time is free. When the sensitivity is zero, i.e. 
d

0
d f

K

t
? , the optimal condition 

with respect to the final time variation is obtained. 

It will be shown that, by utilizing the property of the boundary conditions or KKT multiplier, the signs of the 

first order sensitivities presented in the Lemmas may be determined without solving the OCP, thus presenting 

qualitative results. The treatment in the presence of state inequality constraints is complex. When there are both state 

inequality constraints and mixed state-control inequality constraints, the applicability of the direct adjoining method 

is not fully proved. In [11], several specific cases are listed. When the mixed state-control inequality constraint is 

independent of the state, reducing to a pure control inequality constraint, the applicability is proven. The reason why 

the pseudo-control is defined in (5) is to guarantee the applicability of the theory developed here. 

4  Study of the ZPM MOP 

In this section, the optimal solutions for single objectives are investigated first. Then, the three objectives are 

considered in pairs to understand the tradeoffs between the objectives. Finally, the results are synthesized to gain 

insight into the potential solutions. To verify and complement the analytical results obtained, a common example 

taken from [4] will be used. The maneuver is an approximate −90 deg rotation from a +XVV TEA to +YVV TEA. 

The orbital rotation rate is n =1.1461×10
-3

 rad/s, and the inertia matrix of the space station is 

2

24180443 3780009 3896127

3780010 37607882 -1171169  kg m  

3896127 -1171169 51562389

Ç ×
È Ù? È Ù
È ÙÉ Ú

J . 

The constraints for the CMGs are a maximum momentum of maxh = 1.9524×10
4
 N m s and a maximum rate of 

change of momentum of maxh = 271.16 N m. The aerodynamic model utilizes a mass density of the atmosphere of 

2×10
-11

 kg/m
3
, and the drag coefficient is 2.2. The space station body includes two parts: the center body and the 

solar arrays. The center body is modeled by a quasi-cylinder of length 45 m and radius 2.25 m. The solar arrays are 

represented by two symmetrical plates of length 20 m and width 4 m. Described in the body frame, The vectors from 
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the total mass center to the pressure centers are assumed to be fixed, and given by [-0.17, -0.10, 4.50]
T
 m and [-0.17, 

-0.10, -9.00]
T
 m, respectively. Table 1 gives the initial and final boundary conditions. Several typical ZPM OCPs 

will be designed, and these are detailed in Table 2. Note that 
maxh  is the optimization parameter in the ZPM 

momentum-optimal problem, and its value is intentionally changed in some numerical computations. 

 

Table 1  The initial and final boundary conditions for the ZPM mission 

Initial state Value Final state Value 

0ı  [0.1352, -0.4144, 0.5742]
T
×10

-1
 f

ı  [-0.3636, -0.2063, -4.1360]
T
×10

-1
 

0Ȧ (rad/s) [-0.2541, -1.1145, 0.0826]
T
×10

-3
 f

Ȧ (rad/s)  [1.1353, 0.0030, -0.1571]
T
×10

-3
 

0h (N m s) [-672.4768, -237.2650, -5276.7736]
T 

f
h (N m s) [-12.2022, -4822.5806, -183.0330]

T 

 

Table 2  The designed ZPM path planning cases 

Case Path type Final time f
t (s) 

Momentum magnitude 

parameter maxh (N m s) 
Initial f

t (s) 

1 Momentum-optimal 6000 Minimize maxh  Not applicable 

2 Time-optimal Minimize f
t  1.9524×10

4
 1 

3 Energy-optimal 6000 1.9524×10
4
 Not applicable 

4 Momentum-optimal 9000 Minimize maxh  Not applicable 

5 Time-optimal Minimize f
t  5.3427×10

3
 1 

6 Time-optimal Minimize f
t  Infinity 1 

7 Energy-optimal 6000 Infinity Not applicable 

8 Energy-optimal Free 1.9524×10
4
 1 

9 Energy-optimal Free 1.9524×10
4
 15000 

 

4.1  Optimal Solutions for a Single Objective 

The solutions for momentum-optimal, time-optimal and energy-optimal control problems (corresponding to 

ZPM cases 1 to 3 in Table 2, respectively) were computed. The related results show the characteristics of different 

types of ZPM paths. The state solutions of the three OCPs are presented in Fig. 1. It is shown that, for the 

momentum-optimal and time-optimal solutions, the angular velocity changes sharply near the initial and final time. 

The profiles of the components of the CMGs momentum for the three solutions, 
cmg( )

x
h  and 

cmg( )
y

h , are similar, 

while the components 
cmg( )

z
h  are obviously different.  
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Fig. 1  The state solutions of the three ZPM OCPs 

 

Figure 2 presents the momentum magnitude profiles and Fig. 3 presents the rate of momentum change 

magnitude profiles. For the energy-optimal solution, the momentum constraint is active for about 900 s, and the rate 

of momentum change profile is smooth. The momentum-optimal and time-optimal solutions have the same structure. 

The rate of momentum change constraint is active near the initial and final time, and the momentum constraint is 

active at intermediate times. This phenomenon may be explained physically. For the time-optimal solution, the rate 

of momentum change constraint is active to provide the largest control. The CMGs then maintain the maximum 

momentum to yield the largest possible angular velocity. At the end of the maneuver, the angular momentum of the 

CMGs must decrease quickly to reach the prescribed final boundary condition. So, the rate of momentum change 

constraint is active again. For the momentum-optimal solution, the final time is fixed and the peak momentum is 

maintained for as long as possible. Hence, to reduce the time for the momentum of the CMGs to change between the 

boundary value and the peak value, the rate of momentum change reaches the threshold, in a similar way to the time-

optimal solution. 
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Fig. 2  The CMGs angular momentum magnitude profiles of the three ZPM OCPs 
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Fig. 3  The rate of CMGs angular momentum change magnitude profiles of the three ZPM OCPs 

 

The property that the time-optimal and momentum-optimal solutions have the same structure may be 

accounted for mathematically, by observing that the Hamiltonians of the momentum-optimal and time-optimal 

control problems only differ by a constant, and the resulting optimality conditions are the same, except for the 

boundary conditions. In Fig. 3, it is shown that the rate of momentum change constraint is active near the initial and 

the final time, and this can be explained by the stationarity condition. Take the momentum-optimal control problem 

for example. The augmented Hamiltonian H  is 

 * + * + 

cmgT T T 2 T

p1 max p2 cm c g

T

g m

dd d
:

d d d
H h

t t t
n n i- - - / - /? Ȧı h

hı ȦȜ Ȝ h hȜ w w , (20) 

where ıȜ , ȦȜ , and hȜ  are the costate variables, and p1n  and p2n  are the KKT multiplier variables. Since 

1 T 1( )/ /?J J , the resulting stationarity condition is 
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 1

p12
H n/•

? -
•

?/h ȦȜ J Ȝ w
w

0 . (21) 

If 1( )// ”h ȦȜ J Ȝ 0 , then 
p1 0n ” , and 

2 2

maxh?w . If 1( )// ?h ȦȜ J Ȝ 0 , then singularity occurs and the control 

cannot be determined from (21). Figure 3 shows that the ZPM momentum-optimal and time-optimal control 

problems are singular OCPs with a singular arc in the middle. 

Table 3 shows the results of the three types of ZPM solutions computed. The time-optimal solution gives the 

minimum time to implement the maneuver under the current CMGs capacity, and it consumes the most energy. The 

momentum-optimal solution gives the largest angular momentum margin for the CMGs. The rate of momentum 

change of the CMGs reaches the threshold for the time-optimal and momentum-optimal maneuvers. The energy-

optimal solution consumes the least energy; the reduction is significant and the control profile is the smoothest.  

 

Table 3  Results of the three optimal solutions 

Case Path type Maneuver time (s) 
Peak momentum of the 

CMGs (N m s) 

Maneuver Energy 

(N
2
m

2
s) 

1 Momentum-optimal 6000 1.0618×10
4
 1.2192×10

7 

2 Time-optimal 4099.9 1.9524×10
4
 1.7854×10

7
 

3 Energy-optimal 6000 1.9524×10
4
 1.2647×10

6 

 

4.2  Peak Momentum and Maneuver Time 

Bhatt [4] pointed out that a shorter maneuver time generally requires a greater momentum with respect to the 

momentum-optimal path. This conjecture is now proved. 

 

Proposition 4.1  For the ZPM momentum-optimal control problem, the peak momentum monotonically decreases 

when the maneuver time f
t  increases under the ideal TEA final boundary condition. 

Proof:  The Hamiltonian H  of the ZPM momentum-optimal control problem is 

 cmgT TT
dd d

d d
:

dt t
H

t
- -? Ȧ hı

hı ȦȜ ȜȜ . (22) 

According to Lemma 3.2, the sensitivity of the optimal performance : minr i?  to the final time f
t  is 

 T1 T 1

cmg

Td d
( ) ( ( ))

d df

f

et

f t

r
H

t t

/ /Ã Ô? ? / - - / · -Ä Õ
Å Ö

ıh Ȧ Ȧ
ıȜ J Ȝ Ȝw Ȝ J Ĳ Ȧ JȦ h . (23) 
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If the ideal TEA boundary condition is achieved at 
f

t , then 
d

d
ftt
?

ı
0  and * +e cmg( )

ft
/ · - ?Ĳ Ȧ JȦ h 0 . Substitute 

the stationarity condition given by (21) into (23), and note that the KKT multiplier is non-negative. Then 

 2

p1

d
2 ( ) 0

d
f

f

r
t

t
n? / ~w . (24) 

Since r  is the square of the minimum peak momentum, this proves that the peak momentum decreases as f
t  

increases.  Ƒ 

 

Figure 3 shows that the rate of momentum change constraint is generally active at the end of the maneuver. 

The KKT multiplier satisfies 
p1( ) 0

f
tn @ , and thus 2

p1 max

d
2 ( ) 0

d
f

f

r
t h

t
n? / > . Denote the larger one of the boundary 

conditions of the CMGs momentum, 0h  and 
fh , by Bh . Then, the case 

d
0

d f

r

t
?  occurs when the peak 

momentum equals Bh . In this case, 
p1( ) 0

f
tn ? , and the rate of momentum change constraint is inactive. 

For the ZPM time-optimal control problem, the following conclusion may be obtained using the sensitivity 

analysis method. 

 

Proposition 4.2  For the ZPM time-optimal control problem, the maneuver time : min
f

tv ?  monotonically 

decreases when maxh  increases, i.e. 

max

d
0

dh

v
~ . When the momentum constraint is active in the maneuver, 

max

d
0

dh

v
> ; when the momentum constraint is inactive, 

max

d
0

dh

v
? . 

Proof:  The augmented Hamiltonian H  of the ZPM time-optimal control problem is 

 * + * + 

cmgT T T 2 T 2

p1 max p2 cmg cmg ma

T

x

dd d
: 1

d d d
H h h

t t t
n n- - - /? - / -Ȧ hı

hı ȦȜ Ȝ w w h hȜ . (25) 

From Lemma 3.1, and noting that 
p2 ( ) 0tn ‡ , the sensitivity of the optimal performance : min

f
tv ?  to the 

parameter maxh  is 

 
0

p2 max

max

d
2 d 0

d

ft

t
h t

h

v n? / ~Ð . (26) 
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When the momentum constraint is active during the maneuver, 
p2 ( )tn  will not equal zero for the whole time span, 

and thus 

max

d
0

dh

v
> . When the momentum constraint is inactive during the maneuver, then 

p2 ( ) 0tn ?  and so 

max

d
0

dh

v
? . Ƒ 

 

The implementation of the ZPM depends on the utilization of the environmental torque. Hence, there is a 

lower limit to the maneuver time even with no constraint. Furthermore, the rate of momentum change constraint may 

take effect and determine the minimum maneuver time. When the value of maxh  increases, there exists an 
U

maxh  

such that 

U
max

max

d

d
h

h

v  becomes zero. 
U

maxh  is called the upper limit of the momentum parameter, and the 

corresponding solution is defined as the critical time-optimal solution, with the maneuver time denoted by Ut . 

When 
U

max maxh h@ , the momentum constraint is no longer active, and the minimum maneuver time equals Ut . On 

the other hand, there may exist an L

maxh  such that 
L
max

max

d

d
h

h

v
 tends to infinity. The continuous differentiability 

assumption means that the maneuver is not realizable if maxh  decreases further from 
L

maxh . 
L

maxh  is called the 

lower limit of the momentum parameter and the corresponding minimum maneuver time is denoted by Lt . Since, 

generally, the existence of a time-optimal solution is equivalent to the existence of a solution, it is reasonable to infer 

that 
L

maxh  equals Bh . 

When the momentum constraint is active in the maneuver, the parameter maxh  just equals the peak angular 

momentum, * +cmgmax ( )th . For the solutions on the optimal front, if the minimum maneuver time is f
t , given a 

certain maxh , the minimum peak momentum is maxh when the maneuver time is set to f
t , and vice versa. So, a 

conclusion stronger than Proposition 4.1 is obtained as follows. 

 

Corollary 4.1  For the ZPM momentum-optimal control problem, provided the peak momentum is higher than the 

lower limit of the momentum parameter, the peak momentum decreases strictly monotonically as the maneuver time 

f
t  increases under arbitrary fixed final boundary conditions. 
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In deducing Proposition 4.2, there was no special requirement on the final boundary conditions, so the final 

boundary conditions may be arbitrary in Corollary 4.1. Regarding the strict monotonicity, because the momentum 

constraint is active, 
d

0
d f

r

t
~  is derived from 

max

d
0

dh

v
> , and 

d
0

d f

r

t
?  occurs only when 

max

d

dh

v
? /¢ . Define the 

momentum-optimal solution with final time equal to Lt  as the critical momentum-optimal solution. Then 

L

d
0

d
f t

t

r
? . The peak momentum performance will not improve, but maintain the value of 

L

maxh , even if a longer 

maneuver time is permitted. For the momentum-optimal maneuver with the ideal TEA final boundary condition, the 

critical momentum-optimal solution is the interface where the rate of momentum change constraint at the final time 

changes from active to inactive. 

In order to seek the critical momentum-optimal solution and the critical time-optimal solution, and to verify 

the relation between the minimum peak momentum and the maneuver time, the ZPM cases 1, 2, 4, 5 and 6 given in 

Table 2 were run. Case 5 is designed to seek the critical momentum-optimal solution, and the momentum magnitude 

parameter given in Table 2 is B 0h ? h . Case 6 seeks the critical time-optimal solution. Figure 4 gives the 

momentum magnitude profiles, and shows that the peak momentum decreases as the maneuver time increases. For 

the critical momentum-optimal solution (case 5), the magnitude of momentum of the CMGs stays at Bh  except for 

the time around f
t , and the maneuver time is Lt =11013.9s. For the critical time-optimal solution (case 6), the 

momentum profile is approximately triangular and 
U

maxh =1.32976×10
5
 N m s. The corresponding maneuver time is 

Ut =1274.6s, which is restricted by the rate of momentum change constraint as shown in Fig. 5. In Fig. 5, only results 

for cases 4, 5 and 6 are presented because cases 1 and 2 have been given in Fig. 3. The curve for case 4 is similar to 

cases 1 and 2 except that the time, when the constraint is active, is shorter. For the critical momentum-optimal 

solution, the rate of change of the CMGs momentum reaches the threshold only around f
t . For the critical time-

optimal solution, the rate of momentum change constraint is active throughout the maneuver.  
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Fig. 4  The angular momentum magnitude profiles of the CMGs 
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Fig. 5  The rate of angular momentum change magnitude profiles of the CMGs 

 

The strict monotonicity in the preceding analysis means that the Pareto optimal front between the peak 

momentum and the maneuver time is continuous. A set of numerical computations was performed to calculate the 

optimal front using the constraint method [5]. The results, together with the current time-optimal solution from case 

2, the critical momentum-optimal solution from case 5 and the critical time-optimal solution from case 6, are all 

presented in Fig. 6. Clearly, the minimum peak momentum decreases as the maneuver time increases. The optimal 

front is fixed by the critical time-optimal solution and critical momentum-optimal solution. The slope of the curve 

tends to infinity at the critical time-optimal solution and equals zero at the critical momentum-optimal solution, 

which is consistent with the previous analysis. Figure 7 presents the rate of momentum change at f
t  with respect to 

the maneuver time, and shows that the rate of momentum change constraint is not active as the maneuver time 

increases beyond the maneuver time of the critical momentum-optimal solution. 
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Fig. 6  The Pareto optimal front between the peak momentum and the maneuver time
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Fig. 7  The relation between the rate of momentum change of the CMGs at f
t  and the maneuver time 

 

4.3  Maneuver Energy and Peak Momentum 

For the ZPM energy-optimal control problem, given the fixed maneuver time and arbitrary final boundary 

conditions, the conclusion below holds. 

 

Proposition 4.3  For the ZPM energy-optimal control problem with fixed final maneuver time, the energy 

performance : mine E?  monotonically decreases when the parameter maxh  increases, i.e. 
max

d
0

d

e

h
~ . When the 

momentum constraint is active, 

max

d
0

d

e

h
> ; when the momentum constraint is inactive, 

max

d
=0

d

e

h
.  

 

According to Lemma 3.1, the deduction is similar to Proposition 4.2. When the momentum constraint is active 

in the maneuver, the parameter maxh  equals the peak angular momentum, * +cmgmax ( )th . Similarly, there is a 
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critical angular momentum, 
C

maxh , from which 

max

d
=0

d

e

h
. The corresponding solution is defined as the critical 

energy-optimal solution, and its energy performance is denoted by Ce , which represents the minimum energy 

consumed under the given boundary conditions and maneuver time when the momentum constraint is neglected. 

When 
C

max maxh h> , the momentum magnitude constraint is active. When 
C

max maxh h‡ , this constraint is inactive 

and the energy consumed will not be changed. 

The ZPM cases 3 and 7 in Table 2 were run. Case 7 is designed for the critical energy-optimal solution. In 

Fig. 8, the momentum constraint of case 3 is active during the maneuver. The result for case 7 shows that the peak 

momentum of the critical energy-optimal solution under the set maneuver time and boundary conditions is 

C

maxh =2.5985×10
4
 N m s. Figure 9 shows that the rate of momentum change constraint is not violated, and the 

profiles are smooth. The energy performance metric for case 3 is E=1.2647×10
6 N

2
m

2
s, and for case 7 is 

E=1.1007×10
6
 N

2
m

2
s, which is the value of Ce . 
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Fig. 8  The angular momentum magnitude profiles of the CMGs 
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Fig. 9  The rate of angular momentum change magnitude profiles of the CMGs 
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The Pareto optimal front between the maneuver energy and the peak momentum was also computed by the 

constraint method. Note that the final time is fixed at 6000s. Figure 10 shows the optimal front, together with the 

momentum-optimal solution from case 1, the current energy-optimal solution from case 3 and the critical energy-

optimal solution from case 7. As expected, the minimum maneuver energy decreases when the peak momentum 

increases for a fixed 
f

t . The front is bounded by the momentum-optimal solution and the critical energy-optimal 

solution. The slope of the curve tends to infinity at the momentum-optimal solution and the slope is zero at the 

critical energy-optimal solution.  
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Fig. 10  The Pareto optimal front between maneuver energy and peak momentum 

 

4.4  Maneuver Energy and Maneuver Time 

For the ZPM energy-optimal control problem, it will be shown that the maneuver energy does not decrease 

monotonically as the maneuver time increases, even under the ideal TEA final boundary condition. According to 

Lemma 3.2, the sensitivity is 

 cmgT T T T

cmg cmg

dd d d
( ) ( )

d d d df

f

t

f t

e
H

t t t t

Ã Ô
- · - · - - -Ä Õ

Å Ö
? ? ı Ȧ hȜ

hı Ȧ
w Ȧ h w Ȧ h Ȝ Ȝ . (27) 

The augmented Hamiltonian H  of the ZPM energy-optimal control problem is 

    

* + * + 

cmgT T T T

cmg cmg

T 2 T 2

p1 max p2 cmg cmg max

dd d
: ( ) ( )

d d d
H

t t t

h hn n

- · - · - - -

- / - /

? Ȧ hı

hıȜ Ȧ
w Ȧ h w Ȧ h Ȝ Ȝ

w w h h

, (28) 

and the resulting stationarity condition is 

 1

cmg p12( ) 2
H n/•

? - · / - -
•

?Ȧ hw Ȧ h J Ȝ Ȝ w
w

0 . (29) 
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Two situations are now discussed, which depend on whether the rate of momentum change constraint is active 

or not. If the rate of momentum change constraint at 
f

t  is active, then substituting the stationarity condition given 

by (29) into (27), together with the ideal TEA final boundary condition, i.e. 
d

d
ftt
?

ı
0  and 

* +cmg( )
f

e
t

/ · - ?Ĳ Ȧ JȦ h 0 , gives 

 T T 2

p1 max

d
2 ( ) 2 ( )

d
f f f f f f

f

e
t h

t
n? / - · /u u u Ȧ h , (30) 

where 
f

u  is the abbreviation of ( )
f

tu . Here, w is replaced by 
cmg? / ·w u Ȧ h  for simplicity. If the rate of 

momentum change constraint at f
t  is not active, then p1( ) 0

f
tn ? , and hence 

 
T Td

= 2 ( )
d

f f f f f

f

e

t
/ - ·u u u Ȧ h . (31) 

In (30), since maxh?w , it is straightforward to verify that 
T T2 ( ) 0f f f f f/ - · >u u u Ȧ h  using the data 

given in Table 1. Thus, 
d

0
d f

e

t
> . In (31), the sign of 

d

d f

e

t
 cannot be determined. Thus, the energy performance can 

also increase as the maneuver time increases. This is because the maintenance of the final angular momentum of the 

CMGs still consumes energy, i.e. 
f f? · ”u Ȧ h 0 . The energy-optimal solution that satisfies 

d
=0

d f

e

t
 is defined as 

the extremum energy-optimal solution.  

In contrast, if we introduce a pseudo energy performance index given by 

 
0

T: d
ft

t
E t? Ð w w , (32) 

with the similar analysis as above, it may be proved that the optimal value of this performance index, denoted as 

: mine E? , decreases when the maneuver time f
t  increases under the ideal TEA final boundary condition. 

A set of ZPM energy-optimal problems with different fixed maneuver time was solved numerically to obtain 

the relation curve between the minimum energy and maneuver time. Especially, the two ZPM cases 7 and 8 in Table 

2 were used to seek possible extrema energy-optimal solutions. Figure 11 shows that the curve is not monotonic and 

that the Pareto optimal front (the solid line) between the maneuver energy and maneuver time is discontinuous. 

There are two extrema energy-optimal solutions. The first appears when the maneuver time is 9049.7s, with an 

energy performance of 4.4340×10
5
 N

2
m

2
s. The second happens at 15358.5s with an energy performance of 

2.3640×10
5
 N

2
m

2
s. Generally, the minimum energy decreases as the maneuver time increases. This occurs because in 
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(31), f f
·Ȧ h  is a small quantity, and thus 

d
0

d f

e

t
>  holds for most of time. The relation between peak momentum 

and maneuver time in the energy-optimal solutions is presented in Fig. 12. The curve is complex. It is shown that 

before a maneuver time of 7500s the momentum magnitude threshold is reached, and then the peak momentum 

keeps decreasing before the first extremum energy-optimal solution. 
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Fig. 11  The Pareto optimal front between maneuver energy and maneuver time 
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Fig. 12  The relation between peak momentum and maneuver time for the energy-optimal solutions 

 

4.5  Synthesis of the ZPM MOP 

As three objectives are involved in the ZPM MOP, the Pareto optimal front is a surface. The investigation 

above was performed considering pairs of objectives, and the results will be synthesized in this subsection. In 

practice, long maneuver times can cause problems for the space station power and thermal safety. The minimum 

peak momentum and the minimum energy consumed change marginally when the maneuver time is near met , which 

denotes the maneuver time of the first extremum energy-optimal solution. Denote the minimum maneuver time as 

mtt . Paths with maneuver times in the span mt me,[ ]t t  may be considered as practical paths. Let maxh  be the current 
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momentum magnitude parameter of the CMGs and meh  be the peak momentum of the first extremum energy-

optimal solution. For the ZPM mission with boundary conditions given in Table 1, two synthesized sketches, which 

describe the relations among minimum maneuver energy, minimum peak momentum and maneuver time, are now 

presented. They are also heuristic for other ZPM missions. 

In Fig. 13, on each curve the maneuver time is fixed. The left end point and the right end point of each curve 

represent the momentum-optimal solution and the critical energy-optimal solution, respectively. The Pareto solutions 

located on the dashed line are not available under current CMGs capacity. In Fig. 14, on each curve the momentum 

magnitude parameter of the CMGs is fixed. Along the thick lines the momentum constraint is active during the 

maneuver, i.e. * +max cmg= max ( )h th ; along the thin line this constraint is not active, and the peak momentum 

decreases gradually. The left end points represent the time-optimal solutions under different momentum magnitude 

parameters, while the rightmost point of intersection is the extremum energy-optimal solution. 

 

Fig. 13  The variation in the Pareto front as the maneuver time varies 

 

 

Fig. 14  The variation in the Pareto front as the maximum momentum varies 

 

For the three types of ZPM paths, the energy-optimal path is the most favorable because of its smooth control 

profile and energy-saving property. However, for practical flight, sufficient angular momentum redundancy of the 
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CMGs is necessary. Figures 13 and 14 show the tradeoff relations among performance indices, and these may be 

used for the compromise design of the ZPM path. 

5  Conclusion 

Three types of Zero Propellant Maneuver (ZPM) paths are considered: (i) momentum-optimal, (ii) time-

optimal and, (iii) energy-optimal. For the ZPM momentum-optimal control problem, the minimum peak momentum 

of Control Momentum Gyroscopes (CMGs) is shown to decrease as the maneuver time increases under ideal Torque 

Equilibrium Attitude (TEA) final boundary conditions. Indeed, the minimum peak momentum decreases as the 

maneuver time increases under arbitrary fixed final boundary conditions. For the ZPM time-optimal control problem, 

the minimum maneuver time decreases as the momentum magnitude parameter of the CMGs increases. For the ZPM 

energy-optimal control problem, the minimum energy consumed will decrease if a larger CMGs momentum is 

available. The minimum energy consumed does not monotonically decrease as the maneuver time increases, and 

there could be several local extrema. However, the minimum energy generally decreases while the corresponding 

peak momentum may change in a complex way. The Pareto optimal fronts between the peak momentum and the 

maneuver time, and between the maneuver energy and the peak momentum are continuous, while the front between 

the energy and the maneuver time is discontinuous. 

Among the three path types, the typical ZPM momentum-optimal solution and time-optimal solution possess 

the same structure, and they are singular. The energy-optimal path could save significant energy and the control 

profile is smooth, and thus is a reasonable choice for the ZPM. For a specific ZPM case, the Multi-objective 

Optimization Problem (MOP) is synthesized and conditioned simplified sketches of the Pareto optimal fronts are 

presented. The sensitivity analysis method may be used to study the influence of parameter changes on the objective, 

and applied to study the Pareto optimal front. By taking advantage of the properties of boundary conditions and KKT 

multipliers, the first order sensitivity may be used to give insight into the solutions to the ZPM MOP.  

The present paper uses heuristic methods, looking forward to a rigorous method. To this end, a promising 

approach is the one proposed in [12], which is based on image space analysis and separation theorems. It is able to 

find all the Pareto solutions and, overall, to optimize a scalar function over the Pareto set, without requiring to find it 

explicitly. Due to its theoretical relevance, the latter approach is extremely interesting and will be studied in a 

forthcoming paper. 
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Tables 

 

Table 1  The initial and final boundary conditions for the ZPM mission 

Initial state Value Final state Value 

0ı  [0.1352, -0.4144, 0.5742]
T
×10

-1
 f

ı  [-0.3636, -0.2063, -4.1360]
T
×10

-1
 

0Ȧ (rad/s) [-0.2541, -1.1145, 0.0826]
T
×10

-3
 f

Ȧ (rad/s)  [1.1353, 0.0030, -0.1571]
T
×10

-3
 

0h (N m s) [-672.4768, -237.2650, -5276.7736]
T 

f
h (N m s) [-12.2022, -4822.5806, -183.0330]

T 

 

Table 2  The designed ZPM path planning cases 

Case Path type Final time f
t (s) 

Momentum magnitude 

parameter maxh (N m s) 
Initial f

t (s) 

1 Momentum-optimal 6000 Minimize maxh  Not applicable 

2 Time-optimal Minimize f
t  1.9524×10

4
 1 

3 Energy-optimal 6000 1.9524×10
4
 Not applicable 

4 Momentum-optimal 9000 Minimize maxh  Not applicable 

5 Time-optimal Minimize f
t  5.3427×10

3
 1 

6 Time-optimal Minimize f
t  Infinity 1 

7 Energy-optimal 6000 Infinity Not applicable 

8 Energy-optimal Free 1.9524×10
4
 1 

9 Energy-optimal Free 1.9524×10
4
 15000 

 

Table 3  Results of the three optimal solutions 

Case Path type Maneuver time (s) 
Peak momentum of the 

CMGs(N m s) 

Maneuver Energy 

(N
2
m

2
s) 

1 Momentum-optimal 6000 1.0618×10
4
 1.2192×10

7 

2 Time-optimal 4099.9 1.9524×10
4
 1.7854×10

7
 

3 Energy-optimal 6000 1.9524×10
4
 1.2647×10

6 
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